Picturing Programs
An introduction to computer programming

Stephen Bloch!

"Math/CS Department, Adelphi University. Supported in part by NSF grant 0618543. Any
opinions, findings and conclusions or recommendations expressed in this material are those of
the author and do not necessarily reflect the views of the National Science Foundation (NSF).

Dedicated to my wife Deborah, with whom I would have done more fun things in the
past year if I hadn’t been busy writing a book.

vi

Contents

0 Introduction 1
0.1 Languages and dialects L oo 1
0.2 Problems, programs, and program testing 2
0.3 Using DrRacket Lo 3

0.3.1 Getting DrRacket 3
0.3.2 Starting DrRacket oL 3
0.3.3 Choosing languages e 4
0.3.4 Installing libraries0 L. 4
0.3.5 Gettinghelp Lo 5
0.4 Textbook website 5

PART I Running and writing programs 7

1 Drawing pictures 9
1.1 Working with pictures o oo 9

1.1.1 Importing pictures into DrRacket 9
1.1.2 The Interactions and Definitions panes 9
1.1.3 Choosing libraries o 10
1.2 Manipulating pictures L L 10
1.2.1 Terminology L 11
1.2.2 Combining pictures. 11
1.2.3 A Syntax Rule, Sorta oo 12
1.3 Making mistakes o 13
1.3.1 Leaving out the beginning left-parenthesis 13
1.3.2 Leaving out the ending right-parenthesis 14
1.3.3 Misspelling the operation name 15
1.3.4 Too few or too many arguments 15
1.3.5 Putting the operation and arguments in the wrong order 15
1.3.6 Doing something different from what you meant 16
1.4 Getting Help 0o o 16
1.5 More complex manipulations L. 16
1.6 Saving Your Work: the Definitions pane 18
1.7 The Stepper o e 19
1.8 Syntax and box diagrams oL o 20
1.9 Review o e 23
1.10 Reference 24

vii

viii CONTENTS
2 Variables 25
2.1 Defining a variable oo 25
2.2 The Definitions pane 27
2.3 What’s in a name? 27
24 Moresyntaxrules. oL 28
2.5 Variables and the Stepper 29
2.6 Review e 29
2.7 Reference e 29
3 Building more interesting pictures 31
3.1 Other kinds of arguments oL 31
3.1.1 Strings as arguments oL o 31
3.1.2 Numbers as arguments Lo 33

3.2 More mistakes 34
3.3 Creating simple shapes oL 34
3.4 Data types and contracts 36
3.4.1 String literals and identifiers 36
3.4.2 Function contracts oL 38
3.4.3 Comments. e 39
3.4.4 Comments in Practice 40

3.5 More functions on pictures Lo 41
3.5.1 Cutting up pictures 41
3.5.2 Measuring pictures Lo Lo 42
3.5.3 Placing images precisely oL 43
3.5.4 Text . . oL e 44
3.5.5 For further reading... oo 45
3.5.6 Playing with colors 45

3.6 Specifying results and checking your work 46
3.7 Reading and writing images L Lo oL 47
3.8 Expanding the syntax rules oL 48
3.9 Review 48
3.10 Reference L 49
4 Writing functions 51
4.1 Defining your own functions oL oL 51
4.2 What’s in a definition?o 53
4.2.1 Terminology 53
4.2.2 Lines and white spaceo 53

4.3 Parameters and arguments oL Lo e 55
4.4 Parameters, arguments, and the Stepper oL 56
4.5 Testing a Function Definition 58
4.5.1 Testing with string descriptions 58
4.5.2 Common beginner mistakes 0. 60
4.5.3 The check-expect function 61

46 Anewsyntaxrule L 62
4.7 Scope and visibilityo o 64
4.8 An analogy from English 0L 65
4.8.1 Proper nouns and literals 65
4.8.2 Pronouns and variables o000 65

4.8.3 Improper nouns and data types 66

CONTENTS

7

4.8.4 Verbs and functions oo oo
4.8.5 Noun phrases and expressions
4.9 Reviewo
4.10 Reference L
A recipe for defining functions
5.1 Step-by-step recipes
5.2 A more detailed recipe L
5.3 Function contracts and purpose statements
5.4 Examples (also known as Test Cases)
5.5 The function skeleton L
5.6 Common beginner mistakes L oL
5.7 Checking syntax L
5.8 Exercises on writing skeletons oL oL oL
5.9 Theinventory L
5.10 Inventories with values oo
5.11 The function body Lo
5.12 Testing e
5.13 Using the function o o
5.14 Putting it all together o oo o
5.15 Review e e
5.16 Reference e
Animations in DrRacket
6.1 Preliminaries
6.2 Tick handlers
6.3 Common beginner mistakes oL oo
6.4 Writing tick handlers oo
6.5 Writing draw handlers oL oL o
6.6 Other kinds of event handlers
6.7 Designrecipe L
6.8 Amnoteonsyntax
6.9 Recording
6.10 Review L
6.11 Reference
Working with numbers
7.1 Arithmetic syntax L o
7.2 Variables and numberso oo Lo
7.3 Prefixnotation oL
7.4 A recipe for converting from infix to prefix
7.5 Kindsof numbers
7.5.1 Integers L
7.5.2 Fractions
7.5.3 Inexact numbers
7.6 Contracts for built-in arithmetic functions
7.7 Writing numeric functionso oo oo
7.8 Manipulating colors in images L L
7.8.1 Images, pixels, and colors

7.8.2 Building images pixel by pixel o000

ix

66
66
67
68

69
69
69
70
73
75
75
78
79
79
82
83
86
86
87
88
89

91
91
92
93
95
97
99
105
106
107
107
108

7.8.3 Error-proofing
7.8.4 Building images from other images
7.8.5 A sneak preview
7.8.6 A problem with bit-maps
7.9 Randomness.
7.9.1 Testing random functions
7.9.2 Exercises on randomness
710 Review e
7.11 Reference

8 Animations involving numbers

81 Modeland view
8.2 Designrecipe
8.3 Animations using addl
8.4 Animations with other numeric functions
8.5 Randomness in animations
86 Review.
8.7 Reference

9 Working with strings

9.1 Operations
9.2 String variables and functions
9.3 Review.
9.4 Reference

10 Animations with arbitrary models

10.1 Model and view
10.2 Design recipe
10.3 Review e
10.4 Reference

11 Reduce, re-use, recycle

11.1 Planning for modification and extension
11.2 Re-using variables
11.3 Composing functions
11.4 Designing for re-use

11.5 Designing multi-function programs: a case study

11.6 Practicalities of multi-function programs
11.7 Re-using definitions from other files.
11.7.1 require and provide
11.7.2 provide-ing everything
11.8 Review o o
11.9 Reference L.

PART II Definition by Choices

12 Defining types

CONTENTS

183

CONTENTS

13 Booleans
13.1 A new data type
13.2 Comparing strings L e
13.3 Comparing numberso oL oL
13.4 Designing functions involving booleans
13.5 Comparing images e
13.6 Testing types o L e
13.7 Boolean operators L
13.8 Short-circuit evaluation L
13.9 Review o L e
13.10Reference L

14 Animations with Booleans
14.1 Stopping animations Lo o
14.2 Stopping in response to eventso
14.3 Review o o L o e
14.4 Reference L e

15 Conditionals
15.1 Making decisions o
15.2 Else and error-handlingo oo
15.3 Design recipeo
15.4 Case study: bank interest L.
15.5 Ordering cases in a conditional
15.6 Unnecessary conditionals oL
15.7 Nested conditionals oo
15.8 Decisions among data types Lo oo
15.9 Review 0 e e
15.10Referenceo

16 New types and templates
16.1 Definition by choiceso oo
16.2 Inventories and templates Lo
16.3 Outventories and templates L.
16.4 Else and definition by choices oL,
16.5 A bigger, better design recipeo
16.6 Review« . o e
16.7 Reference

17 Animations that make decisions
17.1 String decisions
17.2 Numeric decisions
173 Review e
17.4 Reference

18 Of Mice and Keys
18.1 Mouse handlers L L
18.2 Key handlers e
18.3 Key release L
184 Review o L o e

xi

185
185
185
187
190
191
191
192
196
196
197

199
199
202
203
205

207
207
210
211
214
217
219
221
225
228
229

231
231
231
235
236
236
236
238

239
239
245
246
246

xii CONTENTS
18.5 Reference 254

19 Handling errors 255
19.1 Error messageso e e 255
19.2 Testing for errorso 256
19.3 Writing user-proof functions L. 257
19.4 Review o e 257
19.5 Reference L 258
PART III Definition by Parts 259
20 Using Structures 261
20.1 The posn data type 261
20.2 Definition by parts 263
20.3 Designrecipe 263
20.4 Writing functions on posns 264
20.5 Functions that return posns Lo 268
20.6 Writing animations involving posns 270
20.7 Colors 275
20.7.1 The color data type 275

20.7.2 Building images pixel by pixel o000 276

20.7.3 Building images pixel by pixel from other images 276

20.8 Review L 277
20.9 Reference 277
21 Inventing new structures 279
21.1 Why and how 279
21.2 Design recipeo e e 282
21.3 Exercises on Defining Structs 284
21.4 Writing functions on user-defined structs 285
21.5 Functions returning user-defined structs 287
21.6 Animations using user-defined structs 289
21.7 Structs containing other structs o oL 295
21.8 Decisions on types, revisitedo Lo 297
21.9 Review o o o e 302
21.10Reference 303
PART IV Definition by Self-reference 305
22 Lists 307
22.1 Limitations of structs 307
22.2 What is a list? 307
22.3 Defining lists in Racket o oo 308
22.3.1 Data definitions. Lo o 309

22.3.2 Examples of the los data type 311

22.3.3 Writing a functiononlos L. 314

22.3.4 Collapsing two functions intoone 316

22.4 The way wereally dolists 317

CONTENTS

22.4.1 Data definitionso
22.4.2 Examples of the los data type
22.4.3 Writing a functiononlos oL
22.4.4 Collapsing two functions intoone
22.5 Lots of functions to write on lists
22.6 Listsof structs L
22.7 Strings as lists
22.8 Arbitrarily nested lists oL oo

22.9 Review . .

22.10Reference

23 Functions that return lists

23.1 Doing something to each element
23.2 Making decisions on each element L.
23.3 A shorter notation for lists. L

23.3.1 The list function oL

23.3.2 List abbreviations for display
23.4 Animations with lists L
23.5 Strings as lists
23.6 More complex functions involving lists,

23.7 Review . .

23.8 Reference

24 Whole numbers

24.1 What is a whole number? oL oL
24.1.1 Defining wholes from structs
24.1.2 Wholes, the way we really doit

24.2 Different base cases, different directions

24.3 Peano arithmetic

24.4 The wholes in binary
24.4.1 Defining binary wholes from structs
24.4.2 Binary whole numbers, the way we really doit

24.5 Review o L e

24.6 Reference

25 Multiple recursive data
25.1 Separable parameters. o
25.2 Synchronized parameters. oL o
25.3 Interacting parameters Lo s

25.4 Exercises

25.5 Review . .

25.6 Reference

PART V Miscellaneous topics

26 Efficiency of programs
26.1 Timing function calls

26.2 Review . .

26.3 Reference

xiii

317
319
321
323
325
332
337
339
340
341

343
343
345
347
347
347
349
349
351
352
353

355
355
355
358
362
364
367
367
370
373
373

375
375
376
378
382
386
387

xiv CONTENTS
27 Local definitions 395
27.1 Using locals for efficiency 395
27.2 Using locals for clarity L o 398
27.3 Using locals for information-hiding 399
27.4 Using locals to insert parameters into functions 402
27.5 Review e 405
27.6 Reference e 405
28 Functions as objects 407
28.1 Adding parameters 407
28.2 Functions as parameterso e 408
28.3 Functions returning listso oo oo 413
28.4 Choosing a winner e 415
28.5 Accumulating over a list L 416
28.6 Anonymous functions L 0oL 417
28.7 Functions in variables oo oo 418
28.8 Functions returning functions Lo 419
28.9 Sequences and seriesol 422
28.10RevIew L e 425
28.11Reference 425

29 Input, output, and sequence 427
29.1 The symbol data type 428
29.2 Console output 429
29.3 Sequential programmingo 432
29.4 Console input 436
29.4.1 The read functiono 436

29.4.2 Testing with input 0oL 436

29.4.3 EXerciseso 438

29.5 Input streams L oL e 438
29.6 Files e 442
29.7 The World Wide Web oo 443
20.8 Review e e 443
29.9 Reference e 444
30 Mutation 445
30.1 Remembering changes Lo L. 445
30.2 Mutating variable values L 446
30.3 Memoization Lo 449
30.4 Static and dynamic scope L. 452
30.5 Encapsulating state. L L Lo Lo 453
30.6 Mutating structures L 456
30.7 Review o L 459
30.8 Reference L 459

31 Next Steps 461

Chapter 0

Introduction

0.1 Languages and dialects

Computers don’t naturally understand human languages such as English. Instead, we
invent artificial languages to communicate with them. These artificial languages are
typically much simpler than any human language, so it’s easier to learn them than for,
say, an English speaker to learn Chinese. But it’s still hard work. As with any language,
you’ll need to learn the spelling, punctuation, grammar, vocabulary, and idioms' of the
new language.

Among the artificial languages people use to communicate with computers (and com-
puters use to communicate with one another) are HTML, XML, SQL, Javascript, Java,
C++, Python, Scheme, PHP, Ruby, sh, awk, Racket, and hundreds more. Some of these
languages are called programming languages because they are used mostly to write pro-
grams — that is, to teach a computer new tricks by combining the tricks it already
knows.

This is a book about how to write computer programs. Pretty much every such book
chooses one particular programming language. I've chosen to use a new language called
Racket (which is based on a 30-year-old language named Scheme, which is based on a
50-year-old language named Lisp, which is based on an 80-year-old mathematical theory
named lambda-calculus. ..). But it’s not a Racket book; the Racket language is not the
goal, but only a means towards the goal of knowing how to program.

Here’s why: throughout the history of computers, the dominant languages have
changed every five to ten years. (Fortran, Cobol, BASIC, PL/I, Pascal, C++, Java,
Python, ...) No matter which of these languages you learn, it will probably become
obsolete in a few years. If you plan to get a job as a computer programmer next month,
then by all means study the language(s) used in industry right now. But if you plan to
get a job programming several years from now, you’ll have to learn a new language then
anyway. The current school term will be better spent learning more long-lasting skills,
habits, and principles: how to structure a program, what steps to take in developing a
program, how to manage your time so you finish the program on time, etc. And if you

L«Idiom” means the way a particular language is typically used by those who use it heavily. For
example, if I said “This book is more good than any other programming book,” you would know what
I meant, but you would also know I wasn’t a native English-speaker; a native English speaker would
say “This book is better than any other programming book.” Every language, including computer
programming languages, has its own idioms.

2 CHAPTER 0. INTRODUCTION

don’t plan to be a professional programmer at all, then you don’t need to learn this year’s
“hot” language at all; you need to learn the important principles of programming, in
whatever language will “get out of the way” and let you learn them.

In fact, we won’t even be using very much of the Racket language. The software
we use, a program named DrRacket, provides several dialects of Racket, intended for
different kinds of users. (By way of analogy, the United States and England use different
dialects of English: most of the words are the same, but sometimes the same words mean
completely different things in different countries. Furthermore, an elementary school
student, an economist, and a sculptor may all use English, but they use it differently, and
they may use the same word to mean different things.) The “Beginning Student” dialect,
in which we’ll start, doesn’t allow you to do some things that are technically legal Racket,
but which tend to confuse beginning programmers. If you really need to do these things,
you can switch to a larger dialect with a few mouse-clicks.

In this book, there will be no “black magic”: nothing that you need to memorize
on faith that you'll eventually understand it. On the first day, you will see just enough
language to do what you need on the first day. By the end of the term, you will see just
enough language to do what you need in one term. Any language feature that doesn’t
help to teach an important programming principle doesn’t belong in this book. Most
programming languages, frankly, don’t allow me to do that: in C++ or Java, for example,
the very first program you write requires knowing dozens of language features that won’t
be fully explained for months. Racket allows me to postpone irrelevant language features,
and concentrate on the important stuff.

Racket is also a much simpler, more consistent language than C++, Java, or Python,
so it takes much less time to learn. This, too, allows you to concentrate on the important
stuff, which is how to write a program.

Again, Racket is only a means to an end. If six months after taking this course
you don’t remember any Racket at all but can follow the steps of solving a problem, as
explained in this book, the course has been a success.

0.2 Problems, programs, and program testing

A computer program that answered only one specific question, like
add 3 and 4

wouldn’t be very useful. Most computer programs are written to be general, in that a
single program can answer any one of many similar questions:

e add 3 and 4
e add 19 and -5
e add 102379 and -897250987

etc. Somebody writes the program to add two numbers once and for all; later on, when
you run the program, you provide specific values like 3 and 4, and the program produces
the right answer for those values. Run it again with different values, and it should produce
the right answer for the new values instead.

To take a more realistic example, a word processor program is written to handle
whatever words you choose to write. When you run the program, you provide specific
words — a grocery list, a letter to your grandmother, the next best-selling novel — and

0.3. USING DRRACKET 3

the program responds by doing things like formatting them to fit on a page. Likewise,
when you run a Web browser, you provide a specific URL for a page you want to look at;
the browser program uses the network to retrieve specific words and pictures from that
Web page, and then arranges these words and pictures on the screen. If you've done a lot
of Web surfing, you've probably found an occasional page that showed up on the screen
as nonsense; this probably means the page had some weird information that the browser
wasn’t written to handle correctly.

For a computer program to be considered “correct”, it has to produce the right answer
for all possible values it might be given to work on — even the weird ones. One of the
important steps in writing a computer program is testing it to make sure it works correctly.
However, since there are usually far too many possible values to test them all, we have
to choose test cases, being careful to pick not only the easy cases but also the weird ones,
so that if there’s something our program doesn’t handle correctly, we find out as soon as
possible so we can fix it.

A program that hasn’t been tested convincingly is worthless: nobody will (or should!)
trust the answers it produces. Indeed, if you tell me you've tested the program, but don’t
provide me with what I need in order to test it myself, I may not trust either you or the
program.

So one of the themes of this book will be “how to tell whether your program is correct.”
We'll discuss how and when to choose good test cases, as well as how to interpret patterns
of correct and incorrect test cases to track down the source of the error.

0.3 Using DrRacket

This section doesn’t cover any “big ideas”, only the details of how to get DrRacket to
work the way you need it to in this book. If you've already got DrRacket and the
picturing-programs library installed, you can skip this section.

0.3.1 Getting DrRacket

If you haven’t got the DrRacket program installed on your computer already (it usu-
ally has a red-white-and-blue icon, a circle with the Greek letter A on it), you’ll need
to get it. You can download it for free, for Windows, Macintosh, and Linux, from
http://www.racket-lang.org. This textbook assumes you have a version of DrRacket
numbered 5.0.1 or higher.

0.3.2 Starting DrRacket

Once you've got DrRacket downloaded and installed, you should be able to run it by
double-clicking the icon. It should open a window with a few buttons across the top, and
two large panes. In the lower pane (the “Interactions Pane”, where we’ll be working at
first) should be a welcome message like

Welcome to DrRacket, version 5.1.
Language: Beginning Student.
>

(Your version number and language may be different.)
The “> 7 prompt is where you’ll type things.

4 CHAPTER 0. INTRODUCTION

0.3.3 Choosing languages

DrRacket provides a number of different computer languages, most of which are dialects
of Racket. For now, we want to be working in the “Beginning Student” language. If the
welcome message says something other than “Beginning Student” (or perhaps “Beginning
Student custom”) after the word “Language:”, do the following;:

1. Pull down the “Language” menu and select “Choose Language...”
2. Find the group of languages named “How to Design Programs”

3. If necessary, click the triangle to the left of “How to Design Programs” to show its
sub-headings

4. Select “Beginning Student”
5. Click “OK”

6. Quit DrRacket and start it again, and it should now say “Language: Beginning
Student”.

(You don’t really have to quit and re-start DrRacket; you can get the same effect by
clicking the “Run” button. However, quitting and restarting demonstrates that DrRacket
remembers your choice of language from one time you use it to the next.)

0.3.4 Installing libraries

A “library”, or “teachpack”, is a collection of optional tools that can be added into
DrRacket. For most of this book, we’ll need one named picturing-programs.

Skip this section if you have DrRacket version 5.1 or later: picturing-programs
is already installed on your computer.

If you don’t already have the picturing-programs library, here’s how to get it. You’ll
only have to do this once on any given computer.

1. Make sure your computer is connected to the Internet.
2. Start DrRacket.

3. From the “Language” menu, “Choose Language”, then select “Use the language
declared in the source”.

4. Click “Run”.

5. At the “> 7 prompt in the bottom half of the screen, type
(require (planet sbloch/picturing-programs:2))

exactly like that, with the parentheses and the slash and all. It may take a few

seconds to a few minutes (most of which is updating the help system to include
information on this library), but eventually you should see the message “Wrote file
“picturing-programs.ss” to installed-teachpacks directory.”

6. From the “Language” menu, “Choose Language”, then click on to “How to Design
Programs”; then select “Beginning Student”. Hit “Run” again.

0.4. TEXTBOOK WEB SITE 5

0.3.5 Getting help

If you want to look up reference information about this library (or anything else in the
language),

1. from the “Help” menu, choose “Help Desk”.

2. find the search box at the top of the screen and type the name of a library or
function you want to learn about. Then hit ENTER.

3. If the name is found, you’ll get a list of places it appeared in the documentation.
Click one of them (probably one that says it’s from the “picturing-programs” li-
brary).

4. Documentation for that library or function should appear on the screen.

0.4 Textbook web site

In order to keep the cost of this book down, we’ve put all the illustrations in black and
white. You can find colored versions of many of them, as well as corrections, updates,
additions, image files, and downloadable versions of worked exercises (so you don’t have
to type them in by hand), etc. at http://www.picturingprograms.com.

PART 1

Running and writing programs

Chapter 1

Picture this! Drawing pictures
in DrRacket

As you probably know, computers are very good at doing arithmetic. But frankly, arith-
metic is pretty boring. So to get our first taste of computer programming, we’ll work with
pictures instead. (Behind the scenes, the computer is really using arithmetic to control
these pictures, but we don’t need to worry about that for now.)

Before trying anything in this chapter, make sure you've installed DrRacket and the
picturing-programs teachpack, as described in section 0.3.

1.1 Working with pictures

1.1.1 TImporting pictures into DrRacket

The easiest ways to get a picture to work with is to copy it from somewhere: a Web page,
or a file that’s already on your computer. Here’s how.

Without quitting DrRacket, open a Web browser and find a Web page that has pictures
on it. For example, many of the pictures used in this textbook are on the book Web
site at http://www.picturingprograms.com/pictures/. And you can find lots of good
examples on Google Image Search (http://images.google.com); for purposes of this
chapter I recommend restricting your search to “small” images.

Right-click (or control-click) on a picture, and choose “Copy image”. Now switch back
to DrRacket, click in the Interactions pane (the lower half of the window) to the right of
the “> 7 prompt, and paste. You should see the same image in the DrRacket window.

That’s fine for pictures on Web pages. If you have picture files (GIF, JPEG, TIFF, etc.)
already on the computer you’re using, there’s another way to get them into DrRacket.
Click in the Interactions pane (to the right of the “> ” prompt), then pull down the
“Insert” menu and select “Insert image....” Find your way to the image file you want and
select it; the image will appear in the DrRacket window.

1.1.2 The Interactions and Definitions panes

When you type anything into the Interactions pane and hit RETURN/ENTER, DrRacket
shows you the “value” of what you typed. In many cases, that’ll be exactly the same thing
as you typed in. For example, if you import an image into DrRacket in either of the above

10 CHAPTER 1. DRAWING PICTURES

ways, and then hit the RETURN or ENTER key on the keyboard, you'll see it again.
Try this.
When you start manipulating pictures in section 1.2, things will get more interesting.
The upper half of the window is called the “Definitions pane”. We’ll get to it shortly,
but for now, especially if you're using large pictures, you may want to hide it. Pull down
the “View” menu and select “Hide Definitions”; now the Interactions pane takes up the
whole window, and you can see more of your pictures.

1.1.3 Choosing libraries

Once you've installed a library such as picturing-programs, you still have to decide
whether you need it for a particular problem. For everything in the rest of this chapter,
and most of this book, you’ll need picturing-programs . To tell DrRacket that you
want to use that library, type

(require picturing-programs)
in the Interactions Pane and hit RETURN/ENTER.
(If your DrRacket is older than version 5.1, use

(require installed-teachpacks/picturing-programs)

instead.)

Any time you re-start DrRacket, or hit the “Run” button at the top of the window,
DrRacket will erase everything that was in the Interactions pane, so you'll need to type
this require line again before you can do anything else with pictures. We’ll see a way to
avoid repeating this in section 1.6.

1.2 Manipulating pictures

Now we’ll learn to do some more interesting things with pictures: move them around,

combine them into larger pictures, and so on.
For the examples in this section, I suggest copying a reasonably small, W
LcEr

but interesting, picture from the web, such as this “calendar” picture from
http://www.picturingprograms.com/pictures . —

Click to the right of the “> ” prompt and type

(flip-vertical

then paste or insert an image as above. Then type a right-parenthesis to match the left-
parenthesis at the beginning of what you typed, and hit ENTER/RETURN. You should
see the image upside-down:

s

> (flip-vertical &=)

Practice Exercise 1.2.1 Try the same thing, with flip-horizontal in place of
flip-vertical, and the image will be reflected left-to-right.

1.2. MANIPULATING PICTURES 11

Practice Exercise 1.2.2 Try rotate-cw, which rotates clockwise; rotate-ccw, which
rotates counterclockwise; and rotate-180, which rotates by 180 degrees. See if you can
predict (e.g. by drawing a rough sketch on paper) what each result will look like before
you hit ENTER/RETURN.

By the way, at the end of this chapter is a list of the picture-manipulating functions
covered in the chapter.

1.2.1 Terminology

All the stuff you've typed (from the left parenthesis through the matching right paren-
thesis) is called an ezpression.

rotate-cw, rotate-ccw, and rotate-180 are all functions (also called operations or
procedures) which, given a picture, produce a different picture.

The picture you give them to work on is called an argument to the function.

The new picture you see as a result of applying the function to the argument is called
the value of the expression.

By way of analogy, consider an English sentence like “Eat the banana.” It contains
a verb, “eat”, which tells what to do, and an object, “the banana”, which tells what to
do it to. In computer programming, we use the words function and argument instead of
verb and object, but the idea is similar.

A picture by itself, without parentheses or a function name, can also be thought of
as an expression. It’s an extremely simple expression in which there is nothing to “do”;
the value of the expression is the expression itself. Such expressions (whose values are
themselves) are called literals.

1.2.2 Combining pictures

Pick two different images of similar size and shape, both reasonably small. Click to the
right of the “> 7 prompt and type (above, then an image, then another image, then a
right-parenthesis. Hit ENTER/RETURN, and you should see one image stacked above
the other. Try it again with the images in the opposite order. Note that whichever image
you put in first ends up above the one you put in second.

12 CHAPTER 1. DRAWING PICTURES

Practice Exercise 1.2.3 Try the same experiment, but using the same image twice
rather than two different images.

Practice Exercise 1.2.4 Try the same experiment with beside, which puts one image
next to the other.

Worked Exercise 1.2.5 Try the same experiment with overlay, which draws two im-
ages in the same place, the first one overwriting part of the second. (If the first is larger
than the second, you may not see any of the second at all.)

Be sure to try overlay with two different images in both possible orders.

Solution:

Exercise 1.2.6

Now try the above, beside, and overlay operations with three or more pictures. (For
overlay, you’'ll want to pick a small picture as the first one, then larger and larger
pictures, so you can see all of the results.)

1.2.3 A Syntax Rule, Sorta

We can summarize what we've learned so far as follows:

1.3. MAKING MISTAKES 13

Syntax Rule 0 To do something to one or more images, type a left-parenthesis, the
name of the operation you want to do, then the image(s) you want to do it to, then a
right-parenthesis.

Note that beside, above, and overlay are functions too, just like flip-vertical,
rotate-ccw, etc., but they work on two or more arguments rather than one; they wouldn’t
make sense applied to only one picture.

1.3 Making mistakes

In the course of typing the examples so far, you’ve probably made some mistakes. Perhaps
you left out a left-parenthesis, or a right-parenthesis, or misspelled one of the operation
names. This is nothing to be ashamed of: every programmer in the world makes mistakes
like this every day. In fact, being a programmer is largely about mistakes: making them,
recognizing them, figuring out how to fix them, figuring out how to avoid making the
same mistake next time, making a different mistake instead.

In many math classes, you're given a large number of exercises to do, of which the
odd-numbered ones have solutions given in the back of the book. What happens if you
work out an exercise and your solution doesn’t match the one in the back of the book?
In many cases, all you can do is go on to the next problem and “hope and pray” that you
get that one right.

Hope and prayer are not particularly effective in computer programming. Almost no
computer program is exactly right on the first try. Rather than “hoping and praying”
that the program will work, you need to develop the skills of identifying and categorizing
mistakes, so that when you see a similar mistake in the future, you can recognize it as
similar to this one, and fix it in the same way.

DrRacket provides a variety of useful error messages. Let’s look at several of the most
likely mistakes you might have made up to this point, make them on purpose, and see
what message we get. That way, when you make similar mistakes by accident in the
future, you’ll recognize the messages.

1.3.1 Leaving out the beginning left-parenthesis

Ordinarily, when you type a right-parenthesis, DrRacket helpfully shades everything be-
tween it and the matching left-parenthesis.

> (flip-vertical

Your first sign that you’ve left out a left-parenthesis is that when you type the right-
parenthesis, it’ll be highlighted in RED because DrRacket can’t find “the matching left-
parenthesis”. To see this, try typing flip-vertical, then pasting a picture, and typing
a right parenthesis.

> flip-vertical

If you go ahead and hit RETURN/ENTER anyway, one of several things will happen.
Some versions of DrScheme/DrRacket will treat flip-vertical and the picture as two

14 CHAPTER 1. DRAWING PICTURES

separate expressions: you’ll see the word flip-vertical; then on the next line, the
picture you pasted in; and on the next line, the error message

read: unexpected ’)’.

In other versions, it just waits for you to type something reasonable. But nothing you
can add after the right-parenthesis will make it reasonable. There are several things you
can do: you can move (with the arrow keys or the mouse) to where the left parenthesis
should have been, put it in, then move to the end and hit ENTER again; or you can
hit BACKSPACE or DELETE until the right-parenthesis is gone (at which point you've
simply typed two expressions on one line, and it’ll give you the values of both).

1.3.2 Leaving out the ending right-parenthesis

Sometimes what you need to type between parentheses is longer than will fit on one typed
line, e.g. several large pictures. So DrRacket allows you to hit ENTER/RETURN in the
middle, and type or paste the next thing on the next line.

ez

> [(beside =

Note also that DrRacket will automatically indent the next line to line up nicely
with the previous line. This is another clue that DrRacket thinks you're still inside an
expression. If you don’t want the line indented, you can hit DELETE/BACKSPACE a
few times, but that doesn’t change the fact that you're still inside an expression.

If you leave out the ending right-parenthesis, DrRacket thinks you’ve just gone to the
next line and still want to type some more, so it’ll quietly wait for you to finish. There is
no error message, because DrRacket doesn’t know that you’ve done anything wrong.

(flip-vertical

Fortunately, this is easy to fix, even if you've already hit ENTER/RETURN: just
type the missing right-parenthesis, DrRacket will shade back to the left-parenthesis on
the previous line, and you can hit ENTER/RETURN again to apply the operation.

(flaip-vertical

1.3. MAKING MISTAKES 15

1.3.3 Misspelling the operation name

Suppose you mistyped flip-vertical as flip-verticle. Any human would realize what
was wrong, and guess that you actually meant flip-vertical. But computers aren’t
particularly good at “common sense” or guessing what you meant, so instead DrRacket
produces the error message

reference to an identifier before its definition: flip-verticle

What does this mean? “Identifier” simply means “name”; all the operations like
flip-vertical, above, overlay, etc. are referred to by their names, but the name
flip-verticle hasn’t been defined. However, DrRacket leaves open the possibility that
it might be defined in the future.

By the way, you might wonder why DrRacket isn’t programmed to recognize that
flip-verticle was probably supposed to be flip-vertical. This could be done, but
if DrRacket had this “guessing” capability, it would eventually guess wrong without even
telling you it was making a guess at all, and that kind of mistake is incredibly difficult
to track down. The authors of DrRacket decided it was better to be picky than to try to
guess what you meant. For the same reason, DrRacket is case-sensitive, that is, it doesn’t
recognize FLIP-VERTICAL or Flip-Vertical.

Likewise, DrRacket doesn’t recognize names that have spaces in the middle, such
as flip - vertical: it thinks you're calling a function named flip with - as its first
argument and vertical as the second, which doesn’t make sense.

1.3.4 Too few or too many arguments

Try typing (flip-vertical) and hitting ENTER/RETURN. You’ll see the error message
procedure flip-vertical: expects 1 argument, given 0.

This is a more helpful message, telling you precisely what went wrong: the flip-vertical
operation (or “procedure”) expects to work on an image, and you haven’t given it one to
work on.

Try typing (flip-vertical, then pasting in two images (or the same one twice), then
typing a right-parenthesis. Again, the error message is fairly helpful:

procedure flip-vertical: expects 1 argument, given 2:...
The rest of the error message tells what the arguments were, which isn’t very helpful

for images, but will be very helpful when we start working with numbers, names, etc.

1.3.5 Putting the operation and arguments in the wrong order

Suppose you wanted to put two pictures side by side, but had forgotten that the operation
goes before the arguments; you might type something like

(== beside

You would get the error message

16 CHAPTER 1. DRAWING PICTURES

function call: expected a defined name or a primitive operation after an open
parenthesis, but found something else

Again, this is a fairly specific and helpful message: the only things that can legally come
after a left-parenthesis (for now) are function names, and a picture of a calendar is not a
function name.

1.3.6 Doing something different from what you meant

All these error messages can get really annoying, but they’re really your friends. Another
kind of mistake is much harder to figure out and fix because there is no error message.

Suppose you wanted a left-to-right reflection of a particular picture, and you typed
(flip-vertical, then pasted in the picture, and typed a right-parenthesis. You wouldn’t
get an error message, because what you've typed is perfectly legal. You would, however,
get a wrong answer because what you've typed isn’t what you meant. DrRacket can’t
read your mind, so it doesn’t know what you meant; it can only do what you said. (This
is one of the most frustrating things about computers, so much so that computer science
students sometimes joke about a newly-defined function named dwim, for “Do What I
Mean”.) Of course, typing flip-vertical when you mean flip-horizontal is a fairly
simple mistake, but in general these “wrong answer” errors are among the hardest ones
to find and fix, because the computer can’t give useful error messages to help you.

1.4 Getting Help

You've seen a number of builtin functions above, and you’ll see many more in future
chapters. Nobody can remember all of these, so (as mentioned in section 0.3.5) DrRacket
has a “Help Desk” feature that allows you to look up a function by name. From the
Help menu, choose “Help Desk”; it should open a Web browser window with a search
box near the top. (By the way, this works even if you don’t have a net connection at
the moment.) Type the name of a function you want to know about, like rotate-cw or
above, and it’ll show you links to all the pages it knows about that function. (If there
are more than one, look for one that’s “provided from picturing-programs” or “provided
from 2htdp/image”.)

You can also type picturing-programs into the search box, and it’ll show you a link
to documentation about the whole teachpack.

1.5 More complex manipulations

Worked Exercise 1.5.1 What would you do if you wanted to see a picture, beside its
left-to-right reflection?

Solution: You know how to get a reflection using flip-horizontal, and you know how
to put one image next to another using beside, but how do you do both? You really want
to put one image beside another, one of which is a reflection of the other.

Very simply, instead of pasting an image as one of the operands of the beside function,
type in an expression involving flip-horizontal:

1.5. MORE COMPLEX MANIPULATIONS 17

g izg

> (beside &=# (flip-horizontal &F))

[

Since (flip-horizontal &=) would be a perfectly good expression in its own
right, but it’s also a part of a larger expression, we call it a sub-expression.

Exercise 1.5.2

Write an expression which displays a picture beside its Q 0

top-to-bottom reflection.

Exercise 1.5.3

Write an expression which displays a picture beside its
180-degree rotation.

Exercise 1.5.4

Write an expression which displays four copies of a pic-
ture arranged in a two-by-two square.

Hint: There are at least two different ways to do this, using what you’ve seen so far.
Either one is acceptable, as long as you type an expression that uses the smaller picture,
and its value is the correct larger picture.

Exercise 1.5.5

Write an expression which displays four copies of a picture in a two-by-
two square, each rotated differently: the top-right one should be rotated
90 degrees clockwise, the bottom-left one 90 degrees counter-clockwise,
and the bottom-right one 180 degrees.

18 CHAPTER 1. DRAWING PICTURES

Hint: This expression will be fairly long and complicated; feel free to break it up over
several lines. In particular, if you hit ENTER/RETURN after each right-parenthesis,
DrRacket will automatically indent the next line in a way that indicates the structure of
the expression: things inside more layers of parentheses are indented farther.

Hint: If you solve this problem the way I expect, it’ll work well with square or nearly-
square pictures, but won’t look so good with long skinny pictures. We’ll see how to
improve it later.

1.6 Saving Your Work: the Definitions pane

When you type an expression in the Interactions pane and hit RETURN/ENTER, you
immediately see the value of that expression. But as soon as you quit DrRacket, all your
work is lost. Furthermore, even if you're not quitting DrRacket yet, sometimes you want
to write expressions now and see the results later.

If you've hidden the Definitions pane earlier, show it again: pull down the “View”
menu and choose “Show Definitions”.

Click the mouse in the Definitions pane and type in the line

(require picturing-programs)
or, if you have an older version of DrRacket,
(require installed-teachpacks/picturing-programs)

as the first line of the Definitions pane. (Now that it’s in the Definitions pane, you won’t
have to keep typing it again and again in the Interactions pane.) Hit RETURN/ENTER,
and nothing will happen (except that the cursor will move to the next line). From now
on, almost every Definitions Pane should start with that line.

On the next line of the Definitions pane, type in one of the expressions you've already
worked with. Hit RETURN/ENTER. Type in another expression, and another. (These
don’t have to be on separate lines, but it’s easier to keep track of what you're doing if
they are. In fact, if they’re long, complicated expressions, you might want to put a blank
line or two in between them so you can easily see where one ends and the other begins.)

Now, to see how these expressions work, click the “Run” button just above the Def-
initions pane. Anything that was in the Interactions pane before will disappear and be
replaced by the values of the expressions in the Definitions pane, in order. If any of them
were illegal (e.g. mismatched parentheses, misspelled function names, etc.) it’ll show an
error message in the Interactions pane, and won’t go on to the next expression.

If you’ve worked out a big, complicated expression (or several), and want to save it to
use again tomorrow,

1. type the expression(s) into the Definitions window,

2. pull down the “File” menu,

3. choose “Save Definitions”,

4. navigate to the appropriate folder on your computer,

5. type a suitable filename (I recommend a name ending with “.rkt”), and

6. click “Save” or “OK” or whatever it is on your computer.

1.7. THE STEPPER 19

Now you can quit DrRacket, double-click the new file, and it should start DrRacket
again with those expressions in the Definitions window. Or you can double-click DrRacket,
pull down the “File” menu, choose “Open...”, and find the desired file to bring it into the
Definitions window.

1.7 Working through nested expressions: the Stepper

When you develop a big, complicated expression and it doesn’t work the way you expected
it to, you need a way to see what it’s doing along the way. The Stepper feature of DrRacket
allows you to see the values of sub-expressions, one at a time, until you get to the whole
expression.

For example, suppose you were working on exercise 1.5.2, and your (incorrect) attempt
at the answer was

5 5
(beside & (flip-horizontal &F))

If you type this into Interactions and hit RETURN/ENTER, or type it into Definitions
and click the “Run” button, you'll get an answer, but not the right answer. To see what’s
going wrong, type the expression into the Definitions pane and, instead of clicking the
“Run” button, click the “Step” button. You should see a new window, showing you
the original expression on the left, and a slightly modified version of it on the right. In

[

particular, the sub-ezpression (flip-horizontal &=#) on the left will be highlighted
in green, while its wvalue, another picture, will be highlighted in purple on the right.
Everything else about the two expressions should be identical.

Worked Exercise 1.7.1 Show the sequence of steps the Stepper would take in eval-
uating the expression

:.'-:_&5.}"
(beside i))

At each step, underline the sub-expression that’s about to be replaced.

(flip-horizontal

Solution:

Step 1: (beside

Step 2: (beside

Step 3:

20 CHAPTER 1. DRAWING PICTURES

Exercise 1.7.2 Show the sequence of steps the Stepper would take in evaluating the
expression

(beside (rotate-ccw) (rotate-cw

1.8 Syntax and box diagrams

Recall rule 0: To do something to one or more images, type a left-parenthesis, the
name of the operation you want to do, then the image(s) you want to do it to, then a
right-parenthesis.

In fact, as we’ve seen, things are a little more general and flexible than that: instead
of putting images inside the parentheses, we can also put sub-ezpressions whose values
are images. Indeed, these sub-expressions may in turn contain sub-expressions of their
own, and so on.

At the same time, we’ve seen that certain attempts at expressions aren’t grammatically
legal. Computer scientists often explain both of these issues — how do you perform an
operation, and what is or isn’t a legal expression — at the same time, by means of syntaz
rules, and we now rephrase things in that style.

Syntax Rule 1 Any picture is a legal expression; its value is itself.

Syntax Rule 2 A left-parenthesis followed by a function name, one or more legal expres-
stons, and a right parenthesis, is a legal expression. Its value is what you get by applying
the named function to the values of the smaller expressions inside it.

Note that we can understand all the expressions we’ve seen so far by using a combi-
nation of these two rules, even the ones with several levels of nested parentheses, because
rule 2 allows any legal expressions to appear as arguments to the function, even expres-
sions constructed using rule 2 itself.

Let’s illustrate this using “box diagrams”. We’ll start with an expression, then put
a box around a sub-expression of it. Over the box we’ll write a 1 or a 2 depending on
which rule justifies saying that it is an expression.

i

Worked Exercise 1.8.1 Draw a box diagram to prove that the picture s a legal

expression.

Solution: Rule 1 tells us that any picture is a legal expression, so we put a box around
1

it with the number 1 over it: — |

Worked Exercise 1.8.2 Draw a box diagram to prove that

=
(rotate-180 &=)

18 a legal expression.

1.8. SYNTAX AND BOX DIAGRAMS 21

Solution: We’ll start from the inside out. The picture of the calendar is a legal expression

by rule 1, so we have (rotate-180)
Now that we know that the inner part is a legal expression, we can use Rule 2 (which
requires a left-parenthesis, a function name, an expression, and a right-parenthesis) to
show that the whole thing is a legal expression:

(rotate-180

(rotate-cw
s a legal expression.

Worked Exercise 1.8.4 Draw a box diagram to prove that

(beside
18 a legal expression.

Solution: We need t? use rule 1 twice:

(beside]
Once we're convinced that both pictures are legal expressions, we need to use rule 2 to
show that the whole thing is a legal expression:

(beside
|

Worked Exercise 1.8.5 Draw a box diagram to prove that

!-1 =

(=

beside
1$ a legal expression.

22 CHAPTER 1. DRAWING PICTURES

Solution: We can use rule 1 twice to convince ourselves that the two pictures are legal
expressions:

(# | peside : ez)
But now we're stuck: there is no rule in which an expression can appear between a
left parenthesis and a function name. Since we are unable to prove that this is a legal
expression, we conclude that it is not a legal expression. Indeed, if you typed it into
DrRacket, you would get an error message:

function call: expected a defined name or a primitive operation name after an
open parenthesis, but found something else.

Whenever you type a left-parenthesis, Scheme expects the next things to be the name of
an operation, and the calendar picture is not the name of an operation. |

Exercise 1.8.6 Draw a box diagram to prove that

i

(rotate-cu &=
s a legal expression.

Hint: This should be impossible; it isn’t a legal expression. But how far can you get?
Why is it not a legal expression?

Exercise 1.8.7 Draw a box diagram to prove that

=
(rotate 5 =)

18 a legal expression.

Hint: This too should be impossible. In fact, it is a legal expression, but not using the
two rules you've seen so far; we’ll add some more syntax rules later.

Worked Exercise 1.8.8 Draw a box diagram to prove that

Wz s,

(beside == (flip-horizontal &))
1$ a legal expression.

Solution: As usual, we’ll work from the inside out. Each of the two pictures is obviously
a legal expression by rule 1:
1

.

(beside (flip-horizontal = 1))
Next, we can apply rule 2 to the part of the expression starting with the inner left-

1.9. REVIEW 23

parenthesis:

1 1

5

5

(beside (flip-horizontal D
Finally, we can apply rule 2 to the whole expression:
2
1 1
g e
(beside | = (flip-horizontal | &)]
|

Exercise 1.8.9 Draw a box diagram to prove that your solution to Fxercise 1.5.2 or 1.5.4
s a legal expression.

At this point you may be wondering how these “box diagrams” are supposed to help
you write programs. The box diagram for a really simple expression (as in exercises 1.8.1
or 1.8.2), frankly, isn’t very interesting or useful. But as the expressions become more
complicated, the box diagrams become more and more valuable in understanding what’s
going on in your expression. Furthermore, every time you type an expression, DrRacket
actually goes through a process (behind the scenes) very similar to these box diagrams,
so by understanding them you can better understand DrRacket.

Ultimately, you should be able to avoid most syntax error messages by never typing
in any expression that isn’t grammatically legal; you’ll know which ones are legal because
you can draw box diagrams for them yourself.

1.9 Review of important words and concepts

Regardless of which pane you're typing into, you type expressions and (immediately or
eventually) see their values.

A literal is an expression whose value is itself; the only examples you’ve seen so far are
pictures copied-and-pasted into DrRacket, but there will be other kinds of literals in later
shapters. More complicated expressions are built by applying a function or operation
to one or more arguments, as in

e
(rotate-cw)

In this example, rotate-cw is the name of a predefined function, and the literal picture
is its argument. The parentheses around the whole expression let DrRacket know which
function is being applied to which arguments. Note that different functions make sense for
different numbers of arguments: rotate-cw only makes sense applied to one argument,
while beside only makes sense for two or more. Other expressions can be even more
complicated, containing smaller expressions in place of some of the pictures; these smaller
expressions are called sub-expressions.

24 CHAPTER 1. DRAWING PICTURES

DrRacket has many built-in functions, and they each have to be called in a specific
way with a specific number of arguments. Nobody memorizes all of them, so DrRacket’s
“Help Desk” feature allows you to look up a function by name.

1.10 Reference: functions that work on images

We’ve seen a number of built-in Scheme functions that work with images. These aren’t
really “important concepts”, but here’s a list of them that you can refer to later:

e flip-vertical

e flip-horizontal
e rotate-cw

e rotate-ccw

e rotate-180

e above

e beside

e overlay

We’ve also seen a special function named require, which is used to tell DrRacket that
you need a particular library.

Chapter 2

Shorthand for values: variables

2.1 Defining a variable

You've typed a lot of expressions into the computer involving pictures, but every time you
need a different picture, you've needed to find it (e.g. in a Web browser) and copy-and-
paste it into DrRacket. This is repetitive and a pain. It would be much more convenient
if you could give each picture a name and refer to it that way.

To do this, DrRacket provides a built-in function named define. To see how it works,
type (in the Interactions pane) the line

i

> (define calendar ¥)

and hit ENTER/RETURN. You won’t see any “result”, but now you can use the word
calendar any time you want that picture:

> calendar

(Note that if you leave out the space between define and calendar, or between
beside and calendar, or between any two typed words, Racket won’t know where one
word ends and the next begins, and you’ll get an error message like reference to undefined
identifier: definecalendar.) There’s nothing magical about the name calendar — you
could have named it anything else, like fred or antidisestablishmentarianism, but
since it stands for a picture of a calendar, the name calendar is a lot easier to remember.

Practice Exercise 2.1.1 Define another variable to hold another picture you’ve found

25

26 CHAPTER 2. VARIABLES

on the Web. Write some expressions using each of the two wvariables, and some using

both.

You can also define a variable to hold the result of another expression, e.g.
(define two-calendars (beside calendar calendar))

Practice Exercise 2.1.2 Define a variable siz-calendars whose value is a siz-pack
of calendars: two wide and three high. Test your definition by typing the name of the
variable, all by itself, in the Interactions pane and hitting ENTER/RETURN; you should
see the picture of six calendars. If not, you’ve done something wrong.

Hint: This is simpler if you use the already-defined the variable two-calendars.

Practice Exercise 2.1.3 Choose a reasonably small picture from this book or the Web,
and store it in a variable. Then define another variable named two-copies whose value
1s two copies of that picture, side by side, by using the previous variable. Then define a
third variable named siz-copies whose value is a siz-pack of the picture, two wide by
three high, by using two-copies.

Practice Exercise 2.1.4 Construct another interesting picture from pieces in this book
or on the Web, and store it in a variable with an appropriate name. Test it as before. If
you use a particular piece more than once, you may want to give that piece a name of its
own, $o0 you can use its name in constructing the whole picture.

Common beginner mistakes
Recall from Chapter 1 that a literal is a simple expression that doesn’t “stand for”
anything else; if you type it into the Interactions window, the value you get back is the
same thing you typed in. By contrast, a variable does “stand for” something else: if you
type in the name of a variable, you get back a picture rather than the variable name you
typed.

You can only define a variable; you cannot define a literal. Furthermore, (in Beginner
DrRacket) you cannot define a variable more than once: once you've decided what value
it “stands for”, that’s its value until the next time you click “Run”.

Practice Exercise 2.1.5 Type each of the following expressions into a newly-opened
interactions pane, one by one. For each one, predict what you think it will do, then
hit ENTER and see whether you were right. Explain the results. Several of them will
produce error messages: in each such case, read and understand the error message.

(define == calendar)

(define calendar calendar)

e (define calendar

2.2. THE DEFINITIONS PANE 27

e calendar

(define other-pic book)
e (define other-pic calendar)

e (define calendar)
e other-pic

Note that when you type an expression to be evaluated, all variables in it must already
be defined, or you get the error message reference to an identifier before its definition

On the other hand, when you define a variable, it must not already be defined, or you
get the error message define: cannot redefine name
And of course, when you define a variable, it must be an identifier rather than a literal

o

like = , or you get the error message define: expected a function name, constant
name, or function header for ‘define’, but found ...

2.2 Defining variables and the Definitions pane

As its name suggests, the Definitions pane (normally the top half of the DrRacket window)
is intended to hold definitions. Try typing several variable definitions into the Definitions
pane, then click the “Run” button. Everything you’ve typed in the Interactions pane
will disappear, but the variable definitions are available so you can use them as much
as you wish in the Interactions pane. One benefit of this is that, once you’ve found or
constructed several interesting pictures, you can save them all to a file so you can easily
work with the same named pictures again the next time you start DrRacket.

Practice Exercise 2.2.1 Type the (legal) definitions from Section 2.1 into the Defini-
tions pane, save it to a file, quit DrRacket, double-click the file, and hit the “Run” button.
Type some expressions involving those variables (calendar, two-calendars, etc.) into
the Interactions pane and check that they do what you expect.

2.3 What’s in a name?

We’ve been using the names of functions for some time already, and now we’re making up
new names for things. So what qualifies as a “name”? (The technical term in computer
science is identifier.) The rules differ slightly from one programming language to another,
but

in Racket, an identifier can be made up of letters, numerals, and punctuation marks.
It may not contain spaces, commas, # signs, parentheses, square brackets, curly braces,
quotation marks, apostrophes, or vertical bars.

28 CHAPTER 2. VARIABLES

An identifier may contain upper- and/or lower-case letters, and it makes a difference
which one you use (e.g. calendar is different from Calendar or CALENDAR). An identifier
may not consist entirely of numerals (if you type such a thing, DrRacket treats it as a
number instead; we’ll learn more about this in Chapter 3.)

For example, rotate-cw is a legal identifier, which happens to represent a predefined
function. rotate$cw would also be a legal identifier, although it doesn’t already stand
for anything. rotate cw contains a space, so DrRacket would treat it as two identifiers,
not one.

2.4 More syntax rules

Why are these new expressions, involving define and defined variables, legal? Based on
the grammar rules you've seen so far (Syntax Rules 1 and 2 from Section 1.8), they’re
not. So we need some more syntax rules (for easy reference, we repeat the first two):

Syntax Rule 1 Any literal picture is a legal expression; its value is itself.

Syntax Rule 2 A left-parenthesis followed by a function name, one or more legal expres-
stons, and a right parenthesis, is a legal expression. Its value is what you get by applying
the named function to the values of the smaller expressions inside it.

Syntax Rule 3 Any identifier, if already defined, is a legal expression. Its value is what
it was defined to stand for.

Syntax Rule 4 A left-parenthesis followed by the word define, a previously-undefined
identifier, a legal expression, and a right-parenthesis is a legal expression. Think of it as
anything matching the pattern
(define new-identifier expression)

It has no “value”, but the side effect of defining the variable to stand for the value of
the expression.

Worked Exercise 2.4.1 Draw a box diagram to prove that

(define calendar
is a legal expression. Assume that calendar is not already defined.

Solution: The picture is obviously a legal expression, by rule 1:

~

(define calendar

The word calendar is a legal identifier. It does not qualify as a legal expression in its
own right, since it isn’t already defined; however, by rule 4 an undefined identifier can be

combined with define and the picture to make a legal expression.
4

=

[]

(define calendar

2.5. VARIABLES AND THE STEPPER 29

Exercise 2.4.2 Draw a box diagram to prove that
(rotate-cw calendar)
18 a legal expression. Assume that calendar is already defined.

Exercise 2.4.3 Draw a box diagram to prove that your solution to Exercise 2.1.2 or 2.1.3
18 a legal expression.

Exercise 2.4.4 Draw a box diagram for

(define snark boojum calendar)

Assume that calendar is already defined, and snark and boojum are not. The whole
thing is not a legal expression; why not?

2.5 Variables and the Stepper

Variable definitions provide another opportunity to see what’s going on “behind the
scenes” by using the Stepper. Make sure you've got some variable definitions in the
Definitions pane, then add some expressions at the end like

(beside (flip-vertical calendar) calendar)

Click the “Step” button. It’ll skip over all the simple definitions, until you get to an
expression involving Syntax Rule 2 (applying a function to something) or 3 (getting the
value of a variable). Any variable names in the original expression will be replaced (one
by one) with the values of those variables, and then the function (if any) can be applied
as usual.

Practice Exercise 2.5.1 Make up some expressions involving variables, type them into
the Definitions window, and step through them. At each step, make sure you understand
what’s being replaced with what, and why.

2.6 Review of important words and concepts

A variable is a word that “stands for” some other value. An identifier is any word; it
may contain some punctuation marks, but it cannot contain spaces, parentheses, quota-
tion marks, or commas.

Every variable is an identifier, but not every identifier is a variable. For example,
define, rotate-180, beside, etc. are identifiers but not variables: they stand for op-
erations rather than values. A variable can be defined by using Syntax Rule 4 on a
previously-undefined identifier. After that, you can use it anywhere that you could use
any other expression, according to Syntax Rule 2. By chaining a sequence of variable
definitions, you can build complex pictures without getting nearly as confused as you
might if you tried to write the whole thing as one big expression.

2.7 Reference: functions for defining variables

The only new function introduced in this chapter is define.

30

CHAPTER 2. VARIABLES

Chapter 3

Building more interesting
pictures

3.1 Other kinds of arguments

3.1.1 Strings as arguments

You may have noticed that if you put two images of different height beside one another,
or two images of different width above one another, their centers are usually lined up:

Now let’s try something slightly different. Type each of the following three expressions
and observe the results:

(beside/align "top"

31

32 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

(beside/align "bottom"

(beside/align "middle"

Try using above with two or more pictures of different widths; then try each of the
following three expressions.

(above/align "right")
Vs

(above/align "left")

(above/align "middle")

You’ve just seen two new functions, beside/align and above/align, each of which
expects an eztra argument to indicate how you want things lined up. This extra argument
isn’t an image, it’s a different kind of information called a string — a sequence of letters
enclosed in double-quote marks. (We’ll go into more detail on this in Section 3.4.) If you
leave out the quotation marks, e.g.

(above/align -

then DrRacket will think right is an undefined variable, and will give you an error
message.

3.1. OTHER KINDS OF ARGUMENTS 33

There’s also an overlay/align function with two string arguments: it expects the
first argument to be either "left", "right", or "middle", and the second to be either
"top", "bottom", or "middle". The third, fourth, etc. arguments should be images. Play
with these functions.

3.1.2 Numbers as arguments

Next, try

o

(rotate 15)

which rotates the image by 15 degrees instead of 90. Play with this.
Now, try

(scale 2

(scale 2/3

(scale 1.41

which makes an image larger or smaller. Play with this.

Note that the rotate and scale functions expect an extra argument that is neither
an image nor a string — it’s a number. Numbers can be written in several ways, as you
saw above, but they cannot contain spaces (so, for example,

(scale -

wouldn’t work). We’ll learn more about numbers in Racket in Chapter 7.

(There’s also a scale/xy function that allows you to stretch or squash a picture by
one factor vertically and a different factor horizontally. Look it up in the Help Desk.)

34 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

3.2 More mistakes

Now that we’ve seen functions that expect different types of arguments, there’s a whole
new world of things that can go wrong, with a whole new set of error messages to tell
you about them. As before, let’s make some of these mistakes on purpose so that when
we make them by accident later, we’ll recognize what’s going on.

Try typing

(beside/align == "top"
g p

You would get the error message
beside/align: expected <y-place> as first argument, given: ...
because beside/align expects its first argument to be the string (specifically, a “y-place”,

i.e. one of the strings "top", "middle", or "bottom").

Likewise,

(overlay/align "top" "right"

produces an error message because it expects an z-place (i.e. either "left", "right", or
"middle") as its first argument, and "top" is none of those.

3.3 Creating simple shapes

So far, all your pictures have either been copied-and-pasted from other programs, or con-
structed from copied-and-pasted pictures using beside, rotate-cw, etc. In this section
we’ll learn to build simple geometric shapes from scratch. (As in the rest of the book,
we’ve put the pictures in black and white to save on printing. If some of them don’t make
sense, try looking at the textbook Web site, where a lot of this stuff appears in color.)

One of the simplest geometric shapes is a rectangle. But there are lots of different
possible rectangles, of different sizes, shapes, and colors. In addition, DrRacket allows

you to draw both solid rectangles - and outline rectangles . When we

create a rectangle, we need to make all these decisions and tell DrRacket exactly what
kind of rectangle we want.

DrRacket has a built-in function named rectangle that creates such pictures. It
needs to be told the width and height of the rectangle (in pixels on the screen), whether
it’s solid or outline, and what color it should be, in that order:

3.3. CREATING SIMPLE SHAPES 35

> (rectangle 34 21 "solid" "green")

> (rectangle 15 36 "outline" "purple")

Practice Exercise 3.3.1 Make up several examples of rectangles by plugging in different
values for width, height, solid vs. outline, and color.

If you try a color DrRacket doesn’t recognize, you’ll get an error message, but it won’t
hurt anything. Likewise, if you put anything other than "solid" or "outline" in the
third argument position, you’ll get an error message, but it won’t hurt anything.

SIDEBAR:

The complete list of known color names is in the Help Desk; look up
color-database<’>.

Practice Exercise 3.3.2 What do you think would happen if you left out the color, e.g.
(rectangle 34 21 "solid")? Type it in and find out whether you were right.

What happens if you put the color first, e.g. (rectangle "green" 34 21 "solid")?
Try various other mistakes, read the error messages, and make sure you understand them.

Practice Exercise 3.3.3 Define a variable named solid-green-box whose value is a
solid green rectangle, and another named outline-blue-box which is what it sounds like.
Combine these in various ways using above, beside, overlay, elc.

Another built-in function, circle, does exactly what you expect: it creates circles.
Circles, like rectangles, can be either solid or outline, and of various colors, but rather
than having a separate width and height, they have only a radius: for example, (circle
10 "solid" "orange") produces a solid orange circle of radius 10.

Practice Exercise 3.3.4 Make up several examples of circles. Use above, beside, and
overlay to compare a circle of radius 10 with a square whose width and height are both
10. How would you build a picture of a solid orange circle just fitting inside a solid blue

=
square, b4 ?
Yet another built-in function, ellipse, has arguments similar to those of rectangle:
width, height, solid or outline, and color. Try it.

Practice Exercise 3.3.5 Make up several examples of ellipses. Show another way to

e
construct a picture like b .

The triangle built-in function has arguments similar to those of circle: a number
representing the length of each edge of the triangle, the word "outline" or "solid", and
a color name. It builds an equilateral triangle pointing up.

There are lots of other built-in functions like these. Look up the following in the Help
Desk:

36 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

e right-triangle
e isosceles-triangle
e rhombus
e regular-polygon
e star
e star-polygon
e line
e add-line
Practice Exercise 3.3.6 Make up several examples using these functions.

Of course, nobody actually memorizes all these functions — I certainly haven’t! You
should know that these functions exist, and how to look them up when you need them.

Exercise 3.3.7 How would you construct a picture like ¢ (Note that the top
edge of the triangle matches exactly the top edge of the square, and the bottom point of
the triangle is exactly in the middle of the bottom edge of the square.)

Hint: It is possible to do this, using what you’ve seen so far, with no math beyond
elementary school.

3.4 Data types and contracts

In the previous chapter, you asked Racket to operate on images and produce images. In
this chapter we’ve seen two additional kinds of information, or data types: numbers and
strings.

You already have a pretty good idea of what numbers are, but strings may be new to
you. In Racket (and C, and C++, and Java, and most other programming languages), a
string is a sequence of letters, numbers, punctuation marks, spaces, etc. surrounded by
double quote marks. The rules for what makes a string are similar to, but not quite the
same as, those for what makes an identifier: an identifier can’t contain spaces, or certain
punctuation marks, while almost any key you can type on the keyboard can go inside a
string. (The main exception is the double-quote mark itself, as this indicates the end of
the string. If you really want to put a double-quote mark inside a string, there is a way
to do it, but we won’t go into that here.)

3.4.1 String literals and identifiers

When you type a string, enclosed in quotation marks, it’s a literal — that is, its value
is just itself. By contrast, when you type a word that isn’t enclosed in quotation marks,
DrRacket thinks of it as an identifier: if there’s a function or a variable by that name,
that’s what it “stands for”, and if there isn’t, it doesn’t “stand for” anything.

A variable in Racket may “stand for” any type of information — a picture, a number,
a string, or other types we’ll learn about later.

3.4. DATA TYPES AND CONTRACTS 37

Practice Exercise 3.4.1 Type each of the following expressions into a newly-opened
interactions pane, one by one. For each one, predict what you think it will do, then hit
ENTER and see whether you were right. Explain the results. If you get an error message
(as you should for some of them), read and understand the error message.

e "hello"

e hello

e (define "author" "Bloch")
e (define author Bloch)

e (define author "Bloch")

e "aquthor"

e author

e (define author "Bloch")

o

e (define calendar ==)
e (define age 19)

e "calendar"”

e calendar

e "agge"

e age

e "Bloch"

e Bloch

o (beside calendar calendar)

" r"eglendar”)

o (beside "calendar
e (define age 20)

e (define 20 age)

38 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

3.4.2 Function contracts

As you’ve already seen if you tried exercise 3.3.2, each built-in function “knows” how many
pieces of information, of what kinds, in what order, it should be given, and will reject
other kinds of information. For example, flip-vertical, rotate-cw, etc. all expect to
be given a single image, and will produce an error message if you give them no image,
or more than one image, or a non-image such as a number or a string. (Try each of
these mistakes and see what message you get.) This kind of pickiness may sometimes
feel as though it’s intended to annoy you, but really, what would it mean to “rotate” two
pictures, or a number? The designers of DrRacket didn’t see any obvious answer to these
questions, so they simply made it illegal to do those things.

Similarly, beside, above, and overlay each expect to be given two or more images;
they produce an error message if you give them too few images, or anything other than
an image. The beside/align and above/align functions each expect a string and two
or more images, while overlay/align expects two strings and two or more images.

Practice Exercise 3.4.2 See what happens if you break these rules.

The rectangle and ellipse functions expect to be given two numbers and two
strings, in that order; furthermore, the first string must be either "solid" or "outline",
and the second must be a color name. If you give either of these functions the wrong
number of things, or the wrong types of things, or the right types in the wrong order, it’ll
produce an error message.

Practice Exercise 3.4.3 Try these various mistakes and see what different messages
you can get.

Obviously, you can’t properly use any function unless you know how many arguments,
of what types, in what order, it expects to be given. You also need to know what type of
result it produces (so far, all our functions produce images, but that will change soon!).
All of this information together is called a function contract: think of it as the function
making a “promise” that “if you give me two numbers and two strings, in that order,
T’ll give you back an image.” A function contract can be described in words, as in the
previous three paragraphs, but we’ll have a lot of functions to deal with in this course,
and that gets tiresome. Instead, we’ll adopt a shorter convention for writing function
contracts:

flip-vertical : image -> image

beside : image image ... -> image
above/align : string image image ... -> image
rotate : number image -> image

In this convention, we write the name of the function, then a colon (:), then the type(s)
of the arguments, then an arrow (I usually use a minus sign and a greater-than sign,
which together look sorta like an arrow), then the type of the result. We use ellipses (...)
to indicate that there may be an indefinite number of additional arguments.

When a function takes several arguments of the same type, it often helps to say
something about what each one means, so you remember to use them in the right order.
I do this with parentheses:

rectangle: number(width) number(height)
string("outline" or "solid") string(color) -> image

By reading this one contract, you can immediately tell that to create, say, an outlined blue

rectangle 30 wide by 17 high, you should type (rectangle 30 17 "outline" "blue")

3.4. DATA TYPES AND CONTRACTS 39

Practice Exercise 3.4.4 Write the function contracts for ellipse, circle, triangle,
and star-polygon, using the standard convention.

There’s nothing magical about this convention for writing function contracts, but fol-
lowing a common convention makes it easier for programmers to understand one another.

3.4.3 Comments

If you try to type function contracts into the DrRacket window, you’ll get an error message
because they’re not legal expressions (according to rules 1-4). However, people frequently
want to include function contracts in a Racket program, so they use comments to indicate
something intended for the human reader, not for Racket.

Different programming languages specify comments in different ways, but every pro-
gramming language I know of has some way to write comments. Here are three common
ways it’s done in Racket:

End-of-line comments

The most common way of making something a comment in Racket is to put a semicolon
at the beginning of the line; everything else on that line will be ignored completely. You
can write anything in a comment, including a letter to your grandmother:

[

(define calendar &=)

; Dear Grandma,

; I am learning to program, using the Racket language. So far
; I’ve learned to rotate and scale pictures, put pictures

; together in various ways, and make rectangles, circles,

; ellipses, triangles, and stars, and I can keep these pictures
; in variables to use later. However, this letter is in

; English, not in Racket, so I’ve "commented it out" to keep

; DrRacket from complaining about it. That’s all for now!

; Love,

; Joe Student

(beside calendar calendar)

Of course, that’s not a realistic use of DrRacket: there are much better programs
around for writing letters to your grandmother! More likely, if you were using several
built-in functions, you would write down their contracts in comments for easy reference:
; beside : 1image image ...-> image
; rectangle : number (width) number (height)

; string ("outline" or "solid") string (color) -> image
; rotate-cw : 1image -> image

Multi-line comments

If you want to write several lines of comments in a row, it may be more convenient to use
another kind of comment: type #| (the number sign and the vertical bar), and everything
after that (even onto later lines) will be ignored, until you type |#.

40 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

i

(define calendar &=#)

#1

Here are several lines of commented-out contracts.
beside : image image ...-> image

rectangle : number (width) number (height)
string ("outline" or "solid") string (color) -> image
rotate-cw : 1image -> image
[#
(beside calendar calendar)

Practice Exercise 3.4.5 Write six different expressions on separate lines of the Defi-
nitions pane. “Comment out” the second one with a semicolon, and the fourth and fifth
with #[...[#. Hit “Check Syntaz”, and the commented parts should turn brown. Hit
“Run”, and you should see the results of the first, third, and sizth expressions.

Expression comments

Yet a third kind of comment allows you to “comment out” exactly one expression, re-
gardless of whether it’s a single line, part of a line, or multiple lines.

Practice Exercise 3.4.6 Type the following lines into the Definitions pane (assuming
you've already got definitions of the variables calendar, hacker, and solid-green-boz):

#; calendar hacker
#; (beside calendar hacker)
#; (beside
hacker
calendar
) solid-green-box
(beside calendar #; hacker solid-green-box)

On the first line, calend