
Picturing Programs

An introduction to computer programming

Stephen Bloch1

1Math/CS Department, Adelphi University. Supported in part by NSF grant 0618543. Any
opinions, findings and conclusions or recommendations expressed in this material are those of
the author and do not necessarily reflect the views of the National Science Foundation (NSF).

Dedicated to my wife Deborah, with whom I would have done more fun things in the
past year if I hadn’t been busy writing a book.

vi

Contents

0 Introduction 1

0.1 Languages and dialects . 1
0.2 Problems, programs, and program testing 2
0.3 Using DrRacket . 3

0.3.1 Getting DrRacket . 3
0.3.2 Starting DrRacket . 3
0.3.3 Choosing languages . 4
0.3.4 Installing libraries . 4
0.3.5 Getting help . 5

0.4 Textbook web site . 5

PART I Running and writing programs 7

1 Drawing pictures 9

1.1 Working with pictures . 9
1.1.1 Importing pictures into DrRacket 9
1.1.2 The Interactions and Definitions panes 9
1.1.3 Choosing libraries . 10

1.2 Manipulating pictures . 10
1.2.1 Terminology . 11
1.2.2 Combining pictures . 11
1.2.3 A Syntax Rule, Sorta . 12

1.3 Making mistakes . 13
1.3.1 Leaving out the beginning left-parenthesis 13
1.3.2 Leaving out the ending right-parenthesis 14
1.3.3 Misspelling the operation name . 15
1.3.4 Too few or too many arguments 15
1.3.5 Putting the operation and arguments in the wrong order 15
1.3.6 Doing something different from what you meant 16

1.4 Getting Help . 16
1.5 More complex manipulations . 16
1.6 Saving Your Work: the Definitions pane 18
1.7 The Stepper . 19
1.8 Syntax and box diagrams . 20
1.9 Review . 23
1.10 Reference . 24

vii

viii CONTENTS

2 Variables 25

2.1 Defining a variable . 25
2.2 The Definitions pane . 27
2.3 What’s in a name? . 27
2.4 More syntax rules . 28
2.5 Variables and the Stepper . 29
2.6 Review . 29
2.7 Reference . 29

3 Building more interesting pictures 31

3.1 Other kinds of arguments . 31
3.1.1 Strings as arguments . 31
3.1.2 Numbers as arguments . 33

3.2 More mistakes . 34
3.3 Creating simple shapes . 34
3.4 Data types and contracts . 36

3.4.1 String literals and identifiers . 36
3.4.2 Function contracts . 38
3.4.3 Comments . 39
3.4.4 Comments in Practice . 40

3.5 More functions on pictures . 41
3.5.1 Cutting up pictures . 41
3.5.2 Measuring pictures . 42
3.5.3 Placing images precisely . 43
3.5.4 Text . 44
3.5.5 For further reading... 45
3.5.6 Playing with colors . 45

3.6 Specifying results and checking your work 46
3.7 Reading and writing images . 47
3.8 Expanding the syntax rules . 48
3.9 Review . 48
3.10 Reference . 49

4 Writing functions 51

4.1 Defining your own functions . 51
4.2 What’s in a definition? . 53

4.2.1 Terminology . 53
4.2.2 Lines and white space . 53

4.3 Parameters and arguments . 55
4.4 Parameters, arguments, and the Stepper 56
4.5 Testing a Function Definition . 58

4.5.1 Testing with string descriptions . 58
4.5.2 Common beginner mistakes . 60
4.5.3 The check-expect function . 61

4.6 A new syntax rule . 62
4.7 Scope and visibility . 64
4.8 An analogy from English . 65

4.8.1 Proper nouns and literals . 65
4.8.2 Pronouns and variables . 65
4.8.3 Improper nouns and data types . 66

CONTENTS ix

4.8.4 Verbs and functions . 66
4.8.5 Noun phrases and expressions . 66

4.9 Review . 67
4.10 Reference . 68

5 A recipe for defining functions 69

5.1 Step-by-step recipes . 69
5.2 A more detailed recipe . 69
5.3 Function contracts and purpose statements 70
5.4 Examples (also known as Test Cases) . 73
5.5 The function skeleton . 75
5.6 Common beginner mistakes . 75
5.7 Checking syntax . 78
5.8 Exercises on writing skeletons . 79
5.9 The inventory . 79
5.10 Inventories with values . 82
5.11 The function body . 83
5.12 Testing . 86
5.13 Using the function . 86
5.14 Putting it all together . 87
5.15 Review . 88
5.16 Reference . 89

6 Animations in DrRacket 91

6.1 Preliminaries . 91
6.2 Tick handlers . 92
6.3 Common beginner mistakes . 93
6.4 Writing tick handlers . 95
6.5 Writing draw handlers . 97
6.6 Other kinds of event handlers . 99
6.7 Design recipe . 105
6.8 A note on syntax . 106
6.9 Recording . 107
6.10 Review . 107
6.11 Reference . 108

7 Working with numbers 109

7.1 Arithmetic syntax . 109
7.2 Variables and numbers . 110
7.3 Prefix notation . 112
7.4 A recipe for converting from infix to prefix 113
7.5 Kinds of numbers . 115

7.5.1 Integers . 115
7.5.2 Fractions . 115
7.5.3 Inexact numbers . 116

7.6 Contracts for built-in arithmetic functions 116
7.7 Writing numeric functions . 117
7.8 Manipulating colors in images . 125

7.8.1 Images, pixels, and colors . 125
7.8.2 Building images pixel by pixel . 125

x CONTENTS

7.8.3 Error-proofing . 127

7.8.4 Building images from other images 129

7.8.5 A sneak preview . 131

7.8.6 A problem with bit-maps . 131

7.9 Randomness . 131

7.9.1 Testing random functions . 132

7.9.2 Exercises on randomness . 133

7.10 Review . 134

7.11 Reference . 134

8 Animations involving numbers 137

8.1 Model and view . 137

8.2 Design recipe . 139

8.3 Animations using add1 . 141

8.4 Animations with other numeric functions 143

8.5 Randomness in animations . 146

8.6 Review . 147

8.7 Reference . 147

9 Working with strings 149

9.1 Operations . 149

9.2 String variables and functions . 150

9.3 Review . 151

9.4 Reference . 151

10 Animations with arbitrary models 153

10.1 Model and view . 153

10.2 Design recipe . 153

10.3 Review . 156

10.4 Reference . 156

11 Reduce, re-use, recycle 157

11.1 Planning for modification and extension 157

11.2 Re-using variables . 157

11.3 Composing functions . 161

11.4 Designing for re-use . 163

11.5 Designing multi-function programs: a case study 164

11.6 Practicalities of multi-function programs 175

11.7 Re-using definitions from other files . 176

11.7.1 require and provide . 177

11.7.2 provide-ing everything . 178

11.8 Review . 178

11.9 Reference . 179

PART II Definition by Choices 181

12 Defining types 183

CONTENTS xi

13 Booleans 185

13.1 A new data type . 185
13.2 Comparing strings . 185
13.3 Comparing numbers . 187
13.4 Designing functions involving booleans . 190
13.5 Comparing images . 191
13.6 Testing types . 191
13.7 Boolean operators . 192
13.8 Short-circuit evaluation . 196
13.9 Review . 196
13.10Reference . 197

14 Animations with Booleans 199

14.1 Stopping animations . 199
14.2 Stopping in response to events . 202
14.3 Review . 203
14.4 Reference . 205

15 Conditionals 207

15.1 Making decisions . 207
15.2 Else and error-handling . 210
15.3 Design recipe . 211
15.4 Case study: bank interest . 214
15.5 Ordering cases in a conditional . 217
15.6 Unnecessary conditionals . 219
15.7 Nested conditionals . 221
15.8 Decisions among data types . 225
15.9 Review . 228
15.10Reference . 229

16 New types and templates 231

16.1 Definition by choices . 231
16.2 Inventories and templates . 231
16.3 Outventories and templates . 235
16.4 Else and definition by choices . 236
16.5 A bigger, better design recipe . 236
16.6 Review . 236
16.7 Reference . 238

17 Animations that make decisions 239

17.1 String decisions . 239
17.2 Numeric decisions . 245
17.3 Review . 246
17.4 Reference . 246

18 Of Mice and Keys 247

18.1 Mouse handlers . 247
18.2 Key handlers . 250
18.3 Key release . 253
18.4 Review . 254

xii CONTENTS

18.5 Reference . 254

19 Handling errors 255

19.1 Error messages . 255
19.2 Testing for errors . 256
19.3 Writing user-proof functions . 257
19.4 Review . 257
19.5 Reference . 258

PART III Definition by Parts 259

20 Using Structures 261

20.1 The posn data type . 261
20.2 Definition by parts . 263
20.3 Design recipe . 263
20.4 Writing functions on posns . 264
20.5 Functions that return posns . 268
20.6 Writing animations involving posns . 270
20.7 Colors . 275

20.7.1 The color data type . 275
20.7.2 Building images pixel by pixel . 276
20.7.3 Building images pixel by pixel from other images 276

20.8 Review . 277
20.9 Reference . 277

21 Inventing new structures 279

21.1 Why and how . 279
21.2 Design recipe . 282
21.3 Exercises on Defining Structs . 284
21.4 Writing functions on user-defined structs 285
21.5 Functions returning user-defined structs 287
21.6 Animations using user-defined structs . 289
21.7 Structs containing other structs . 295
21.8 Decisions on types, revisited . 297
21.9 Review . 302
21.10Reference . 303

PART IV Definition by Self-reference 305

22 Lists 307

22.1 Limitations of structs . 307
22.2 What is a list? . 307
22.3 Defining lists in Racket . 308

22.3.1 Data definitions . 309
22.3.2 Examples of the los data type . 311
22.3.3 Writing a function on los . 314
22.3.4 Collapsing two functions into one 316

22.4 The way we really do lists . 317

CONTENTS xiii

22.4.1 Data definitions . 317
22.4.2 Examples of the los data type . 319
22.4.3 Writing a function on los . 321
22.4.4 Collapsing two functions into one 323

22.5 Lots of functions to write on lists . 325
22.6 Lists of structs . 332
22.7 Strings as lists . 337
22.8 Arbitrarily nested lists . 339
22.9 Review . 340
22.10Reference . 341

23 Functions that return lists 343

23.1 Doing something to each element . 343
23.2 Making decisions on each element . 345
23.3 A shorter notation for lists . 347

23.3.1 The list function . 347
23.3.2 List abbreviations for display . 347

23.4 Animations with lists . 349
23.5 Strings as lists . 349
23.6 More complex functions involving lists . 351
23.7 Review . 352
23.8 Reference . 353

24 Whole numbers 355

24.1 What is a whole number? . 355
24.1.1 Defining wholes from structs . 355
24.1.2 Wholes, the way we really do it . 358

24.2 Different base cases, different directions 362
24.3 Peano arithmetic . 364
24.4 The wholes in binary . 367

24.4.1 Defining binary wholes from structs 367
24.4.2 Binary whole numbers, the way we really do it 370

24.5 Review . 373
24.6 Reference . 373

25 Multiple recursive data 375

25.1 Separable parameters . 375
25.2 Synchronized parameters . 376
25.3 Interacting parameters . 378
25.4 Exercises . 382
25.5 Review . 386
25.6 Reference . 387

PART V Miscellaneous topics 389

26 Efficiency of programs 391

26.1 Timing function calls . 391
26.2 Review . 392
26.3 Reference . 393

xiv CONTENTS

27 Local definitions 395

27.1 Using locals for efficiency . 395
27.2 Using locals for clarity . 398
27.3 Using locals for information-hiding . 399
27.4 Using locals to insert parameters into functions 402
27.5 Review . 405
27.6 Reference . 405

28 Functions as objects 407

28.1 Adding parameters . 407
28.2 Functions as parameters . 408
28.3 Functions returning lists . 413
28.4 Choosing a winner . 415
28.5 Accumulating over a list . 416
28.6 Anonymous functions . 417
28.7 Functions in variables . 418
28.8 Functions returning functions . 419
28.9 Sequences and series . 422
28.10Review . 425
28.11Reference . 425

29 Input, output, and sequence 427

29.1 The symbol data type . 428
29.2 Console output . 429
29.3 Sequential programming . 432
29.4 Console input . 436

29.4.1 The read function . 436
29.4.2 Testing with input . 436
29.4.3 Exercises . 438

29.5 Input streams . 438
29.6 Files . 442
29.7 The World Wide Web . 443
29.8 Review . 443
29.9 Reference . 444

30 Mutation 445

30.1 Remembering changes . 445
30.2 Mutating variable values . 446
30.3 Memoization . 449
30.4 Static and dynamic scope . 452
30.5 Encapsulating state . 453
30.6 Mutating structures . 456
30.7 Review . 459
30.8 Reference . 459

31 Next Steps 461

Chapter 0

Introduction

0.1 Languages and dialects

Computers don’t naturally understand human languages such as English. Instead, we
invent artificial languages to communicate with them. These artificial languages are
typically much simpler than any human language, so it’s easier to learn them than for,
say, an English speaker to learn Chinese. But it’s still hard work. As with any language,
you’ll need to learn the spelling, punctuation, grammar, vocabulary, and idioms1 of the
new language.

Among the artificial languages people use to communicate with computers (and com-
puters use to communicate with one another) are HTML, XML, SQL, Javascript, Java,
C++, Python, Scheme, PHP, Ruby, sh, awk, Racket, and hundreds more. Some of these
languages are called programming languages because they are used mostly to write pro-
grams — that is, to teach a computer new tricks by combining the tricks it already
knows.

This is a book about how to write computer programs. Pretty much every such book
chooses one particular programming language. I’ve chosen to use a new language called
Racket (which is based on a 30-year-old language named Scheme, which is based on a
50-year-old language named Lisp, which is based on an 80-year-old mathematical theory
named lambda-calculus. . .). But it’s not a Racket book; the Racket language is not the
goal, but only a means towards the goal of knowing how to program.

Here’s why: throughout the history of computers, the dominant languages have
changed every five to ten years. (Fortran, Cobol, BASIC, PL/I, Pascal, C++, Java,
Python, . . .) No matter which of these languages you learn, it will probably become
obsolete in a few years. If you plan to get a job as a computer programmer next month,
then by all means study the language(s) used in industry right now. But if you plan to
get a job programming several years from now, you’ll have to learn a new language then
anyway. The current school term will be better spent learning more long-lasting skills,
habits, and principles: how to structure a program, what steps to take in developing a
program, how to manage your time so you finish the program on time, etc. And if you

1“Idiom” means the way a particular language is typically used by those who use it heavily. For
example, if I said “This book is more good than any other programming book,” you would know what
I meant, but you would also know I wasn’t a native English-speaker; a native English speaker would
say “This book is better than any other programming book.” Every language, including computer
programming languages, has its own idioms.

1

2 CHAPTER 0. INTRODUCTION

don’t plan to be a professional programmer at all, then you don’t need to learn this year’s
“hot” language at all; you need to learn the important principles of programming, in
whatever language will “get out of the way” and let you learn them.

In fact, we won’t even be using very much of the Racket language. The software
we use, a program named DrRacket, provides several dialects of Racket, intended for
different kinds of users. (By way of analogy, the United States and England use different
dialects of English: most of the words are the same, but sometimes the same words mean
completely different things in different countries. Furthermore, an elementary school
student, an economist, and a sculptor may all use English, but they use it differently, and
they may use the same word to mean different things.) The “Beginning Student” dialect,
in which we’ll start, doesn’t allow you to do some things that are technically legal Racket,
but which tend to confuse beginning programmers. If you really need to do these things,
you can switch to a larger dialect with a few mouse-clicks.

In this book, there will be no “black magic”: nothing that you need to memorize
on faith that you’ll eventually understand it. On the first day, you will see just enough
language to do what you need on the first day. By the end of the term, you will see just
enough language to do what you need in one term. Any language feature that doesn’t
help to teach an important programming principle doesn’t belong in this book. Most
programming languages, frankly, don’t allow me to do that: in C++ or Java, for example,
the very first program you write requires knowing dozens of language features that won’t
be fully explained for months. Racket allows me to postpone irrelevant language features,
and concentrate on the important stuff.

Racket is also a much simpler, more consistent language than C++, Java, or Python,
so it takes much less time to learn. This, too, allows you to concentrate on the important
stuff, which is how to write a program.

Again, Racket is only a means to an end. If six months after taking this course
you don’t remember any Racket at all but can follow the steps of solving a problem, as
explained in this book, the course has been a success.

0.2 Problems, programs, and program testing

A computer program that answered only one specific question, like

add 3 and 4

wouldn’t be very useful. Most computer programs are written to be general, in that a
single program can answer any one of many similar questions :

• add 3 and 4

• add 19 and -5

• add 102379 and -897250987

etc. Somebody writes the program to add two numbers once and for all; later on, when
you run the program, you provide specific values like 3 and 4, and the program produces
the right answer for those values. Run it again with different values, and it should produce
the right answer for the new values instead.

To take a more realistic example, a word processor program is written to handle
whatever words you choose to write. When you run the program, you provide specific
words — a grocery list, a letter to your grandmother, the next best-selling novel — and

0.3. USING DRRACKET 3

the program responds by doing things like formatting them to fit on a page. Likewise,
when you run a Web browser, you provide a specific URL for a page you want to look at;
the browser program uses the network to retrieve specific words and pictures from that
Web page, and then arranges these words and pictures on the screen. If you’ve done a lot
of Web surfing, you’ve probably found an occasional page that showed up on the screen
as nonsense; this probably means the page had some weird information that the browser
wasn’t written to handle correctly.

For a computer program to be considered “correct”, it has to produce the right answer
for all possible values it might be given to work on — even the weird ones. One of the
important steps in writing a computer program is testing it to make sure it works correctly.
However, since there are usually far too many possible values to test them all, we have
to choose test cases, being careful to pick not only the easy cases but also the weird ones,
so that if there’s something our program doesn’t handle correctly, we find out as soon as
possible so we can fix it.

A program that hasn’t been tested convincingly is worthless: nobody will (or should!)
trust the answers it produces. Indeed, if you tell me you’ve tested the program, but don’t
provide me with what I need in order to test it myself, I may not trust either you or the
program.

So one of the themes of this book will be “how to tell whether your program is correct.”
We’ll discuss how and when to choose good test cases, as well as how to interpret patterns
of correct and incorrect test cases to track down the source of the error.

0.3 Using DrRacket

This section doesn’t cover any “big ideas”, only the details of how to get DrRacket to
work the way you need it to in this book. If you’ve already got DrRacket and the
picturing-programs library installed, you can skip this section.

0.3.1 Getting DrRacket

If you haven’t got the DrRacket program installed on your computer already (it usu-
ally has a red-white-and-blue icon, a circle with the Greek letter λ on it), you’ll need
to get it. You can download it for free, for Windows, Macintosh, and Linux, from
http://www.racket-lang.org. This textbook assumes you have a version of DrRacket
numbered 5.0.1 or higher.

0.3.2 Starting DrRacket

Once you’ve got DrRacket downloaded and installed, you should be able to run it by
double-clicking the icon. It should open a window with a few buttons across the top, and
two large panes. In the lower pane (the “Interactions Pane”, where we’ll be working at
first) should be a welcome message like

Welcome to DrRacket, version 5.1.
Language: Beginning Student.
>

(Your version number and language may be different.)
The “> ” prompt is where you’ll type things.

4 CHAPTER 0. INTRODUCTION

0.3.3 Choosing languages

DrRacket provides a number of different computer languages, most of which are dialects
of Racket. For now, we want to be working in the “Beginning Student” language. If the
welcome message says something other than “Beginning Student” (or perhaps “Beginning
Student custom”) after the word “Language:”, do the following:

1. Pull down the “Language” menu and select “Choose Language...”

2. Find the group of languages named “How to Design Programs”

3. If necessary, click the triangle to the left of “How to Design Programs” to show its
sub-headings

4. Select “Beginning Student”

5. Click “OK”

6. Quit DrRacket and start it again, and it should now say “Language: Beginning
Student”.

(You don’t really have to quit and re-start DrRacket; you can get the same effect by
clicking the “Run” button. However, quitting and restarting demonstrates that DrRacket
remembers your choice of language from one time you use it to the next.)

0.3.4 Installing libraries

A “library”, or “teachpack”, is a collection of optional tools that can be added into
DrRacket. For most of this book, we’ll need one named picturing-programs.

Skip this section if you have DrRacket version 5.1 or later: picturing-programs
is already installed on your computer.

If you don’t already have the picturing-programs library, here’s how to get it. You’ll
only have to do this once on any given computer.

1. Make sure your computer is connected to the Internet.

2. Start DrRacket.

3. From the “Language” menu, “Choose Language”, then select “Use the language
declared in the source”.

4. Click “Run”.

5. At the “> ” prompt in the bottom half of the screen, type

(require (planet sbloch/picturing-programs:2))

exactly like that, with the parentheses and the slash and all. It may take a few
seconds to a few minutes (most of which is updating the help system to include
information on this library), but eventually you should see the message “Wrote file
“picturing-programs.ss” to installed-teachpacks directory.”

6. From the “Language” menu, “Choose Language”, then click on to “How to Design
Programs”, then select “Beginning Student”. Hit “Run” again.

0.4. TEXTBOOK WEB SITE 5

0.3.5 Getting help

If you want to look up reference information about this library (or anything else in the
language),

1. from the “Help” menu, choose “Help Desk”.

2. find the search box at the top of the screen and type the name of a library or
function you want to learn about. Then hit ENTER.

3. If the name is found, you’ll get a list of places it appeared in the documentation.
Click one of them (probably one that says it’s from the “picturing-programs” li-
brary).

4. Documentation for that library or function should appear on the screen.

0.4 Textbook web site

In order to keep the cost of this book down, we’ve put all the illustrations in black and
white. You can find colored versions of many of them, as well as corrections, updates,
additions, image files, and downloadable versions of worked exercises (so you don’t have
to type them in by hand), etc. at http://www.picturingprograms.com.

PART I

Running and writing programs

Chapter 1

Picture this! Drawing pictures
in DrRacket

As you probably know, computers are very good at doing arithmetic. But frankly, arith-
metic is pretty boring. So to get our first taste of computer programming, we’ll work with
pictures instead. (Behind the scenes, the computer is really using arithmetic to control
these pictures, but we don’t need to worry about that for now.)

Before trying anything in this chapter, make sure you’ve installed DrRacket and the
picturing-programs teachpack, as described in section 0.3.

1.1 Working with pictures

1.1.1 Importing pictures into DrRacket

The easiest ways to get a picture to work with is to copy it from somewhere: a Web page,
or a file that’s already on your computer. Here’s how.

Without quitting DrRacket, open a Web browser and find a Web page that has pictures
on it. For example, many of the pictures used in this textbook are on the book Web
site at http://www.picturingprograms.com/pictures/. And you can find lots of good
examples on Google Image Search (http://images.google.com); for purposes of this
chapter I recommend restricting your search to “small” images.

Right-click (or control-click) on a picture, and choose “Copy image”. Now switch back
to DrRacket, click in the Interactions pane (the lower half of the window) to the right of
the “> ” prompt, and paste. You should see the same image in the DrRacket window.

That’s fine for pictures on Web pages. If you have picture files (GIF, JPEG, TIFF, etc.)
already on the computer you’re using, there’s another way to get them into DrRacket.
Click in the Interactions pane (to the right of the “> ” prompt), then pull down the
“Insert” menu and select “Insert image....” Find your way to the image file you want and
select it; the image will appear in the DrRacket window.

1.1.2 The Interactions and Definitions panes

When you type anything into the Interactions pane and hit RETURN/ENTER, DrRacket
shows you the “value” of what you typed. In many cases, that’ll be exactly the same thing
as you typed in. For example, if you import an image into DrRacket in either of the above

9

10 CHAPTER 1. DRAWING PICTURES

ways, and then hit the RETURN or ENTER key on the keyboard, you’ll see it again.
Try this.

When you start manipulating pictures in section 1.2, things will get more interesting.
The upper half of the window is called the “Definitions pane”. We’ll get to it shortly,

but for now, especially if you’re using large pictures, you may want to hide it. Pull down
the “View” menu and select “Hide Definitions”; now the Interactions pane takes up the
whole window, and you can see more of your pictures.

1.1.3 Choosing libraries

Once you’ve installed a library such as picturing-programs, you still have to decide
whether you need it for a particular problem. For everything in the rest of this chapter,
and most of this book, you’ll need picturing-programs . To tell DrRacket that you
want to use that library, type

(require picturing-programs)

in the Interactions Pane and hit RETURN/ENTER.
(If your DrRacket is older than version 5.1, use

(require installed-teachpacks/picturing-programs)

instead.)
Any time you re-start DrRacket, or hit the “Run” button at the top of the window,

DrRacket will erase everything that was in the Interactions pane, so you’ll need to type
this require line again before you can do anything else with pictures. We’ll see a way to
avoid repeating this in section 1.6.

1.2 Manipulating pictures

Now we’ll learn to do some more interesting things with pictures: move them around,
combine them into larger pictures, and so on.
For the examples in this section, I suggest copying a reasonably small,
but interesting, picture from the web, such as this “calendar” picture from
http://www.picturingprograms.com/pictures .

Click to the right of the “> ” prompt and type

(flip-vertical

then paste or insert an image as above. Then type a right-parenthesis to match the left-
parenthesis at the beginning of what you typed, and hit ENTER/RETURN. You should
see the image upside-down:

> (flip-vertical)

Practice Exercise 1.2.1 Try the same thing, with flip-horizontal in place of
flip-vertical, and the image will be reflected left-to-right.

1.2. MANIPULATING PICTURES 11

Practice Exercise 1.2.2 Try rotate-cw, which rotates clockwise; rotate-ccw, which
rotates counterclockwise; and rotate-180, which rotates by 180 degrees. See if you can
predict (e.g. by drawing a rough sketch on paper) what each result will look like before
you hit ENTER/RETURN.

By the way, at the end of this chapter is a list of the picture-manipulating functions
covered in the chapter.

1.2.1 Terminology

All the stuff you’ve typed (from the left parenthesis through the matching right paren-
thesis) is called an expression.

rotate-cw, rotate-ccw, and rotate-180 are all functions (also called operations or
procedures) which, given a picture, produce a different picture.

The picture you give them to work on is called an argument to the function.

The new picture you see as a result of applying the function to the argument is called
the value of the expression.

By way of analogy, consider an English sentence like “Eat the banana.” It contains
a verb, “eat”, which tells what to do, and an object, “the banana”, which tells what to
do it to. In computer programming, we use the words function and argument instead of
verb and object, but the idea is similar.

A picture by itself, without parentheses or a function name, can also be thought of
as an expression. It’s an extremely simple expression in which there is nothing to “do”;
the value of the expression is the expression itself. Such expressions (whose values are
themselves) are called literals.

1.2.2 Combining pictures

Pick two different images of similar size and shape, both reasonably small. Click to the
right of the “> ” prompt and type (above, then an image, then another image, then a
right-parenthesis. Hit ENTER/RETURN, and you should see one image stacked above
the other. Try it again with the images in the opposite order. Note that whichever image
you put in first ends up above the one you put in second.

> (above)

12 CHAPTER 1. DRAWING PICTURES

Practice Exercise 1.2.3 Try the same experiment, but using the same image twice
rather than two different images.

Practice Exercise 1.2.4 Try the same experiment with beside, which puts one image
next to the other.

Worked Exercise 1.2.5 Try the same experiment with overlay, which draws two im-
ages in the same place, the first one overwriting part of the second. (If the first is larger
than the second, you may not see any of the second at all.)

Be sure to try overlay with two different images in both possible orders.

Solution:

> (overlay)

> (overlay)

Exercise 1.2.6

Now try the above, beside, and overlay operations with three or more pictures. (For
overlay, you’ll want to pick a small picture as the first one, then larger and larger
pictures, so you can see all of the results.)

1.2.3 A Syntax Rule, Sorta

We can summarize what we’ve learned so far as follows:

1.3. MAKING MISTAKES 13

Syntax Rule 0 To do something to one or more images, type a left-parenthesis, the
name of the operation you want to do, then the image(s) you want to do it to, then a
right-parenthesis.

Note that beside, above, and overlay are functions too, just like flip-vertical,
rotate-ccw, etc., but they work on two or more arguments rather than one; they wouldn’t
make sense applied to only one picture.

1.3 Making mistakes

In the course of typing the examples so far, you’ve probably made some mistakes. Perhaps
you left out a left-parenthesis, or a right-parenthesis, or misspelled one of the operation
names. This is nothing to be ashamed of: every programmer in the world makes mistakes
like this every day. In fact, being a programmer is largely about mistakes: making them,
recognizing them, figuring out how to fix them, figuring out how to avoid making the
same mistake next time, making a different mistake instead.

In many math classes, you’re given a large number of exercises to do, of which the
odd-numbered ones have solutions given in the back of the book. What happens if you
work out an exercise and your solution doesn’t match the one in the back of the book?
In many cases, all you can do is go on to the next problem and “hope and pray” that you
get that one right.

Hope and prayer are not particularly effective in computer programming. Almost no
computer program is exactly right on the first try. Rather than “hoping and praying”
that the program will work, you need to develop the skills of identifying and categorizing
mistakes, so that when you see a similar mistake in the future, you can recognize it as
similar to this one, and fix it in the same way.

DrRacket provides a variety of useful error messages. Let’s look at several of the most
likely mistakes you might have made up to this point, make them on purpose, and see
what message we get. That way, when you make similar mistakes by accident in the
future, you’ll recognize the messages.

1.3.1 Leaving out the beginning left-parenthesis

Ordinarily, when you type a right-parenthesis, DrRacket helpfully shades everything be-
tween it and the matching left-parenthesis.

> (flip-vertical)

Your first sign that you’ve left out a left-parenthesis is that when you type the right-
parenthesis, it’ll be highlighted in RED because DrRacket can’t find “the matching left-
parenthesis”. To see this, try typing flip-vertical, then pasting a picture, and typing
a right parenthesis.

> flip-vertical)

If you go ahead and hit RETURN/ENTER anyway, one of several things will happen.
Some versions of DrScheme/DrRacket will treat flip-vertical and the picture as two

14 CHAPTER 1. DRAWING PICTURES

separate expressions: you’ll see the word flip-vertical; then on the next line, the
picture you pasted in; and on the next line, the error message

read: unexpected ’)’.

In other versions, it just waits for you to type something reasonable. But nothing you
can add after the right-parenthesis will make it reasonable. There are several things you
can do: you can move (with the arrow keys or the mouse) to where the left parenthesis
should have been, put it in, then move to the end and hit ENTER again; or you can
hit BACKSPACE or DELETE until the right-parenthesis is gone (at which point you’ve
simply typed two expressions on one line, and it’ll give you the values of both).

1.3.2 Leaving out the ending right-parenthesis

Sometimes what you need to type between parentheses is longer than will fit on one typed
line, e.g. several large pictures. So DrRacket allows you to hit ENTER/RETURN in the
middle, and type or paste the next thing on the next line.

Note also that DrRacket will automatically indent the next line to line up nicely
with the previous line. This is another clue that DrRacket thinks you’re still inside an
expression. If you don’t want the line indented, you can hit DELETE/BACKSPACE a
few times, but that doesn’t change the fact that you’re still inside an expression.

If you leave out the ending right-parenthesis, DrRacket thinks you’ve just gone to the
next line and still want to type some more, so it’ll quietly wait for you to finish. There is
no error message, because DrRacket doesn’t know that you’ve done anything wrong.

Fortunately, this is easy to fix, even if you’ve already hit ENTER/RETURN: just
type the missing right-parenthesis, DrRacket will shade back to the left-parenthesis on
the previous line, and you can hit ENTER/RETURN again to apply the operation.

1.3. MAKING MISTAKES 15

1.3.3 Misspelling the operation name

Suppose you mistyped flip-vertical as flip-verticle. Any human would realize what
was wrong, and guess that you actually meant flip-vertical. But computers aren’t
particularly good at “common sense” or guessing what you meant, so instead DrRacket
produces the error message

reference to an identifier before its definition: flip-verticle

What does this mean? “Identifier” simply means “name”; all the operations like
flip-vertical, above, overlay, etc. are referred to by their names, but the name
flip-verticle hasn’t been defined. However, DrRacket leaves open the possibility that
it might be defined in the future.

By the way, you might wonder why DrRacket isn’t programmed to recognize that
flip-verticle was probably supposed to be flip-vertical. This could be done, but
if DrRacket had this “guessing” capability, it would eventually guess wrong without even
telling you it was making a guess at all, and that kind of mistake is incredibly difficult
to track down. The authors of DrRacket decided it was better to be picky than to try to
guess what you meant. For the same reason, DrRacket is case-sensitive, that is, it doesn’t
recognize FLIP-VERTICAL or Flip-Vertical.

Likewise, DrRacket doesn’t recognize names that have spaces in the middle, such
as flip - vertical: it thinks you’re calling a function named flip with - as its first
argument and vertical as the second, which doesn’t make sense.

1.3.4 Too few or too many arguments

Try typing (flip-vertical) and hitting ENTER/RETURN. You’ll see the error message

procedure flip-vertical: expects 1 argument, given 0.

This is a more helpful message, telling you precisely what went wrong: the flip-vertical
operation (or “procedure”) expects to work on an image, and you haven’t given it one to
work on.

Try typing (flip-vertical, then pasting in two images (or the same one twice), then
typing a right-parenthesis. Again, the error message is fairly helpful:

procedure flip-vertical: expects 1 argument, given 2:...

The rest of the error message tells what the arguments were, which isn’t very helpful
for images, but will be very helpful when we start working with numbers, names, etc.

1.3.5 Putting the operation and arguments in the wrong order

Suppose you wanted to put two pictures side by side, but had forgotten that the operation
goes before the arguments; you might type something like

(beside)

You would get the error message

16 CHAPTER 1. DRAWING PICTURES

function call: expected a defined name or a primitive operation after an open
parenthesis, but found something else

Again, this is a fairly specific and helpful message: the only things that can legally come
after a left-parenthesis (for now) are function names, and a picture of a calendar is not a
function name.

1.3.6 Doing something different from what you meant

All these error messages can get really annoying, but they’re really your friends. Another
kind of mistake is much harder to figure out and fix because there is no error message.

Suppose you wanted a left-to-right reflection of a particular picture, and you typed
(flip-vertical, then pasted in the picture, and typed a right-parenthesis. You wouldn’t
get an error message, because what you’ve typed is perfectly legal. You would, however,
get a wrong answer because what you’ve typed isn’t what you meant. DrRacket can’t
read your mind, so it doesn’t know what you meant ; it can only do what you said. (This
is one of the most frustrating things about computers, so much so that computer science
students sometimes joke about a newly-defined function named dwim, for “Do What I
Mean”.) Of course, typing flip-vertical when you mean flip-horizontal is a fairly
simple mistake, but in general these “wrong answer” errors are among the hardest ones
to find and fix, because the computer can’t give useful error messages to help you.

1.4 Getting Help

You’ve seen a number of builtin functions above, and you’ll see many more in future
chapters. Nobody can remember all of these, so (as mentioned in section 0.3.5) DrRacket
has a “Help Desk” feature that allows you to look up a function by name. From the
Help menu, choose “Help Desk”; it should open a Web browser window with a search
box near the top. (By the way, this works even if you don’t have a net connection at
the moment.) Type the name of a function you want to know about, like rotate-cw or
above, and it’ll show you links to all the pages it knows about that function. (If there
are more than one, look for one that’s “provided from picturing-programs” or “provided
from 2htdp/image”.)

You can also type picturing-programs into the search box, and it’ll show you a link
to documentation about the whole teachpack.

1.5 More complex manipulations

Worked Exercise 1.5.1 What would you do if you wanted to see a picture, beside its
left-to-right reflection?

Solution: You know how to get a reflection using flip-horizontal, and you know how
to put one image next to another using beside, but how do you do both? You really want
to put one image beside another, one of which is a reflection of the other.

Very simply, instead of pasting an image as one of the operands of the beside function,
type in an expression involving flip-horizontal:

1.5. MORE COMPLEX MANIPULATIONS 17

> (beside (flip-horizontal))

Since (flip-horizontal) would be a perfectly good expression in its own
right, but it’s also a part of a larger expression, we call it a sub-expression.

Exercise 1.5.2

Write an expression which displays a picture beside its
top-to-bottom reflection.

Exercise 1.5.3

Write an expression which displays a picture beside its
180-degree rotation.

Exercise 1.5.4

Write an expression which displays four copies of a pic-
ture arranged in a two-by-two square.

Hint: There are at least two different ways to do this, using what you’ve seen so far.
Either one is acceptable, as long as you type an expression that uses the smaller picture,
and its value is the correct larger picture.

Exercise 1.5.5

Write an expression which displays four copies of a picture in a two-by-
two square, each rotated differently: the top-right one should be rotated
90 degrees clockwise, the bottom-left one 90 degrees counter-clockwise,
and the bottom-right one 180 degrees.

18 CHAPTER 1. DRAWING PICTURES

Hint: This expression will be fairly long and complicated; feel free to break it up over
several lines. In particular, if you hit ENTER/RETURN after each right-parenthesis,
DrRacket will automatically indent the next line in a way that indicates the structure of
the expression: things inside more layers of parentheses are indented farther.

Hint: If you solve this problem the way I expect, it’ll work well with square or nearly-
square pictures, but won’t look so good with long skinny pictures. We’ll see how to
improve it later.

1.6 Saving Your Work: the Definitions pane

When you type an expression in the Interactions pane and hit RETURN/ENTER, you
immediately see the value of that expression. But as soon as you quit DrRacket, all your
work is lost. Furthermore, even if you’re not quitting DrRacket yet, sometimes you want
to write expressions now and see the results later.

If you’ve hidden the Definitions pane earlier, show it again: pull down the “View”
menu and choose “Show Definitions”.

Click the mouse in the Definitions pane and type in the line

(require picturing-programs)

or, if you have an older version of DrRacket,

(require installed-teachpacks/picturing-programs)

as the first line of the Definitions pane. (Now that it’s in the Definitions pane, you won’t
have to keep typing it again and again in the Interactions pane.) Hit RETURN/ENTER,
and nothing will happen (except that the cursor will move to the next line). From now
on, almost every Definitions Pane should start with that line.

On the next line of the Definitions pane, type in one of the expressions you’ve already
worked with. Hit RETURN/ENTER. Type in another expression, and another. (These
don’t have to be on separate lines, but it’s easier to keep track of what you’re doing if
they are. In fact, if they’re long, complicated expressions, you might want to put a blank
line or two in between them so you can easily see where one ends and the other begins.)

Now, to see how these expressions work, click the “Run” button just above the Def-
initions pane. Anything that was in the Interactions pane before will disappear and be
replaced by the values of the expressions in the Definitions pane, in order. If any of them
were illegal (e.g. mismatched parentheses, misspelled function names, etc.) it’ll show an
error message in the Interactions pane, and won’t go on to the next expression.

If you’ve worked out a big, complicated expression (or several), and want to save it to
use again tomorrow,

1. type the expression(s) into the Definitions window,

2. pull down the “File” menu,

3. choose “Save Definitions”,

4. navigate to the appropriate folder on your computer,

5. type a suitable filename (I recommend a name ending with “.rkt”), and

6. click “Save” or “OK” or whatever it is on your computer.

1.7. THE STEPPER 19

Now you can quit DrRacket, double-click the new file, and it should start DrRacket
again with those expressions in the Definitions window. Or you can double-click DrRacket,
pull down the “File” menu, choose “Open...”, and find the desired file to bring it into the
Definitions window.

1.7 Working through nested expressions: the Stepper

When you develop a big, complicated expression and it doesn’t work the way you expected
it to, you need a way to see what it’s doing along the way. The Stepper feature of DrRacket
allows you to see the values of sub-expressions, one at a time, until you get to the whole
expression.

For example, suppose you were working on exercise 1.5.2, and your (incorrect) attempt
at the answer was

(beside (flip-horizontal))

If you type this into Interactions and hit RETURN/ENTER, or type it into Definitions
and click the “Run” button, you’ll get an answer, but not the right answer. To see what’s
going wrong, type the expression into the Definitions pane and, instead of clicking the
“Run” button, click the “Step” button. You should see a new window, showing you
the original expression on the left, and a slightly modified version of it on the right. In

particular, the sub-expression (flip-horizontal) on the left will be highlighted
in green, while its value, another picture, will be highlighted in purple on the right.
Everything else about the two expressions should be identical.

Worked Exercise 1.7.1 Show the sequence of steps the Stepper would take in eval-
uating the expression

(beside (flip-horizontal))

At each step, underline the sub-expression that’s about to be replaced.

Solution:

Step 1: (beside (flip-horizontal))

Step 2: (beside)

Step 3:

20 CHAPTER 1. DRAWING PICTURES

Exercise 1.7.2 Show the sequence of steps the Stepper would take in evaluating the
expression

(beside (rotate-ccw) (rotate-cw))

1.8 Syntax and box diagrams

Recall rule 0: To do something to one or more images, type a left-parenthesis, the
name of the operation you want to do, then the image(s) you want to do it to, then a
right-parenthesis.

In fact, as we’ve seen, things are a little more general and flexible than that: instead
of putting images inside the parentheses, we can also put sub-expressions whose values
are images. Indeed, these sub-expressions may in turn contain sub-expressions of their
own, and so on.

At the same time, we’ve seen that certain attempts at expressions aren’t grammatically
legal. Computer scientists often explain both of these issues — how do you perform an
operation, and what is or isn’t a legal expression — at the same time, by means of syntax
rules, and we now rephrase things in that style.

Syntax Rule 1 Any picture is a legal expression; its value is itself.

Syntax Rule 2 A left-parenthesis followed by a function name, one or more legal expres-
sions, and a right parenthesis, is a legal expression. Its value is what you get by applying
the named function to the values of the smaller expressions inside it.

Note that we can understand all the expressions we’ve seen so far by using a combi-
nation of these two rules, even the ones with several levels of nested parentheses, because
rule 2 allows any legal expressions to appear as arguments to the function, even expres-
sions constructed using rule 2 itself.

Let’s illustrate this using “box diagrams”. We’ll start with an expression, then put
a box around a sub-expression of it. Over the box we’ll write a 1 or a 2 depending on
which rule justifies saying that it is an expression.

Worked Exercise 1.8.1 Draw a box diagram to prove that the picture is a legal
expression.

Solution: Rule 1 tells us that any picture is a legal expression, so we put a box around

it with the number 1 over it:

1

Worked Exercise 1.8.2 Draw a box diagram to prove that

(rotate-180)

is a legal expression.

1.8. SYNTAX AND BOX DIAGRAMS 21

Solution: We’ll start from the inside out. The picture of the calendar is a legal expression

by rule 1, so we have (rotate-180

1

)

Now that we know that the inner part is a legal expression, we can use Rule 2 (which
requires a left-parenthesis, a function name, an expression, and a right-parenthesis) to
show that the whole thing is a legal expression:
2

(rotate-180

1

)

Exercise 1.8.3 Draw a box diagram to prove that

(rotate-cw)

is a legal expression.

Worked Exercise 1.8.4 Draw a box diagram to prove that

(beside)

is a legal expression.

Solution: We need to use rule 1 twice:

(beside

1

1

)

Once we’re convinced that both pictures are legal expressions, we need to use rule 2 to
show that the whole thing is a legal expression:
2

(beside

1

1

)

Worked Exercise 1.8.5 Draw a box diagram to prove that

(beside)

is a legal expression.

22 CHAPTER 1. DRAWING PICTURES

Solution: We can use rule 1 twice to convince ourselves that the two pictures are legal
expressions:

(

1

beside

1

)

But now we’re stuck: there is no rule in which an expression can appear between a
left parenthesis and a function name. Since we are unable to prove that this is a legal
expression, we conclude that it is not a legal expression. Indeed, if you typed it into
DrRacket, you would get an error message:

function call: expected a defined name or a primitive operation name after an
open parenthesis, but found something else.

Whenever you type a left-parenthesis, Scheme expects the next things to be the name of
an operation, and the calendar picture is not the name of an operation.

Exercise 1.8.6 Draw a box diagram to prove that

(rotate-cw

is a legal expression.

Hint: This should be impossible; it isn’t a legal expression. But how far can you get?
Why is it not a legal expression?

Exercise 1.8.7 Draw a box diagram to prove that

(rotate 5)

is a legal expression.

Hint: This too should be impossible. In fact, it is a legal expression, but not using the
two rules you’ve seen so far; we’ll add some more syntax rules later.

Worked Exercise 1.8.8 Draw a box diagram to prove that

(beside (flip-horizontal))

is a legal expression.

Solution: As usual, we’ll work from the inside out. Each of the two pictures is obviously
a legal expression by rule 1:

(beside

1

(flip-horizontal

1

))

Next, we can apply rule 2 to the part of the expression starting with the inner left-

1.9. REVIEW 23

parenthesis:

(beside

1
2

(flip-horizontal

1

))

Finally, we can apply rule 2 to the whole expression:
2

(beside

1
2

(flip-horizontal

1

))

Exercise 1.8.9 Draw a box diagram to prove that your solution to Exercise 1.5.2 or 1.5.4
is a legal expression.

At this point you may be wondering how these “box diagrams” are supposed to help
you write programs. The box diagram for a really simple expression (as in exercises 1.8.1
or 1.8.2), frankly, isn’t very interesting or useful. But as the expressions become more
complicated, the box diagrams become more and more valuable in understanding what’s
going on in your expression. Furthermore, every time you type an expression, DrRacket
actually goes through a process (behind the scenes) very similar to these box diagrams,
so by understanding them you can better understand DrRacket.

Ultimately, you should be able to avoid most syntax error messages by never typing
in any expression that isn’t grammatically legal; you’ll know which ones are legal because
you can draw box diagrams for them yourself.

1.9 Review of important words and concepts

Regardless of which pane you’re typing into, you type expressions and (immediately or
eventually) see their values.

A literal is an expression whose value is itself; the only examples you’ve seen so far are
pictures copied-and-pasted into DrRacket, but there will be other kinds of literals in later
shapters. More complicated expressions are built by applying a function or operation

to one or more arguments, as in

(rotate-cw)

In this example, rotate-cw is the name of a predefined function, and the literal picture
is its argument. The parentheses around the whole expression let DrRacket know which
function is being applied to which arguments. Note that different functions make sense for
different numbers of arguments: rotate-cw only makes sense applied to one argument,
while beside only makes sense for two or more. Other expressions can be even more
complicated, containing smaller expressions in place of some of the pictures; these smaller
expressions are called sub-expressions.

24 CHAPTER 1. DRAWING PICTURES

DrRacket has many built-in functions, and they each have to be called in a specific
way with a specific number of arguments. Nobody memorizes all of them, so DrRacket’s
“Help Desk” feature allows you to look up a function by name.

1.10 Reference: functions that work on images

We’ve seen a number of built-in Scheme functions that work with images. These aren’t
really “important concepts”, but here’s a list of them that you can refer to later:

• flip-vertical

• flip-horizontal

• rotate-cw

• rotate-ccw

• rotate-180

• above

• beside

• overlay

We’ve also seen a special function named require, which is used to tell DrRacket that
you need a particular library.

Chapter 2

Shorthand for values: variables

2.1 Defining a variable

You’ve typed a lot of expressions into the computer involving pictures, but every time you
need a different picture, you’ve needed to find it (e.g. in a Web browser) and copy-and-
paste it into DrRacket. This is repetitive and a pain. It would be much more convenient
if you could give each picture a name and refer to it that way.

To do this, DrRacket provides a built-in function named define. To see how it works,
type (in the Interactions pane) the line

> (define calendar)

and hit ENTER/RETURN. You won’t see any “result”, but now you can use the word
calendar any time you want that picture:

> calendar

> (beside calendar calendar)

> (flip-vertical calendar)

(Note that if you leave out the space between define and calendar, or between
beside and calendar, or between any two typed words, Racket won’t know where one
word ends and the next begins, and you’ll get an error message like reference to undefined
identifier: definecalendar .) There’s nothing magical about the name calendar — you
could have named it anything else, like fred or antidisestablishmentarianism, but
since it stands for a picture of a calendar, the name calendar is a lot easier to remember.

Practice Exercise 2.1.1 Define another variable to hold another picture you’ve found

25

26 CHAPTER 2. VARIABLES

on the Web. Write some expressions using each of the two variables, and some using
both.

You can also define a variable to hold the result of another expression, e.g.

(define two-calendars (beside calendar calendar))

Practice Exercise 2.1.2 Define a variable six-calendars whose value is a six-pack
of calendars: two wide and three high. Test your definition by typing the name of the
variable, all by itself, in the Interactions pane and hitting ENTER/RETURN; you should
see the picture of six calendars. If not, you’ve done something wrong.

Hint: This is simpler if you use the already-defined the variable two-calendars.

Practice Exercise 2.1.3 Choose a reasonably small picture from this book or the Web,
and store it in a variable. Then define another variable named two-copies whose value
is two copies of that picture, side by side, by using the previous variable. Then define a
third variable named six-copies whose value is a six-pack of the picture, two wide by
three high, by using two-copies.

Practice Exercise 2.1.4 Construct another interesting picture from pieces in this book
or on the Web, and store it in a variable with an appropriate name. Test it as before. If
you use a particular piece more than once, you may want to give that piece a name of its
own, so you can use its name in constructing the whole picture.

Common beginner mistakes

Recall from Chapter 1 that a literal is a simple expression that doesn’t “stand for”
anything else; if you type it into the Interactions window, the value you get back is the
same thing you typed in. By contrast, a variable does “stand for” something else: if you
type in the name of a variable, you get back a picture rather than the variable name you
typed.

You can only define a variable; you cannot define a literal. Furthermore, (in Beginner
DrRacket) you cannot define a variable more than once: once you’ve decided what value
it “stands for”, that’s its value until the next time you click “Run”.

Practice Exercise 2.1.5 Type each of the following expressions into a newly-opened
interactions pane, one by one. For each one, predict what you think it will do, then
hit ENTER and see whether you were right. Explain the results. Several of them will
produce error messages: in each such case, read and understand the error message.

•
• calendar

• (define calendar)

• (define calendar calendar)

• (define calendar)

2.2. THE DEFINITIONS PANE 27

•

• calendar

• (define other-pic book)

• (define other-pic calendar)

• (define calendar)

• other-pic

Note that when you type an expression to be evaluated, all variables in it must already
be defined, or you get the error message reference to an identifier before its definition
. . . .
On the other hand, when you define a variable, it must not already be defined, or you
get the error message define: cannot redefine name
And of course, when you define a variable, it must be an identifier rather than a literal

like , or you get the error message define: expected a function name, constant
name, or function header for ‘define’, but found . . .

2.2 Defining variables and the Definitions pane

As its name suggests, the Definitions pane (normally the top half of the DrRacket window)
is intended to hold definitions. Try typing several variable definitions into the Definitions
pane, then click the “Run” button. Everything you’ve typed in the Interactions pane
will disappear, but the variable definitions are available so you can use them as much
as you wish in the Interactions pane. One benefit of this is that, once you’ve found or
constructed several interesting pictures, you can save them all to a file so you can easily
work with the same named pictures again the next time you start DrRacket.

Practice Exercise 2.2.1 Type the (legal) definitions from Section 2.1 into the Defini-
tions pane, save it to a file, quit DrRacket, double-click the file, and hit the “Run” button.
Type some expressions involving those variables (calendar, two-calendars, etc.) into
the Interactions pane and check that they do what you expect.

2.3 What’s in a name?

We’ve been using the names of functions for some time already, and now we’re making up
new names for things. So what qualifies as a “name”? (The technical term in computer
science is identifier.) The rules differ slightly from one programming language to another,
but
in Racket, an identifier can be made up of letters, numerals, and punctuation marks.
It may not contain spaces, commas, # signs, parentheses, square brackets, curly braces,
quotation marks, apostrophes, or vertical bars.

28 CHAPTER 2. VARIABLES

An identifier may contain upper- and/or lower-case letters, and it makes a difference
which one you use (e.g. calendar is different from Calendar or CALENDAR). An identifier
may not consist entirely of numerals (if you type such a thing, DrRacket treats it as a
number instead; we’ll learn more about this in Chapter 3.)

For example, rotate-cw is a legal identifier, which happens to represent a predefined
function. rotate$cw would also be a legal identifier, although it doesn’t already stand
for anything. rotate cw contains a space, so DrRacket would treat it as two identifiers,
not one.

2.4 More syntax rules

Why are these new expressions, involving define and defined variables, legal? Based on
the grammar rules you’ve seen so far (Syntax Rules 1 and 2 from Section 1.8), they’re
not. So we need some more syntax rules (for easy reference, we repeat the first two):

Syntax Rule 1 Any literal picture is a legal expression; its value is itself.

Syntax Rule 2 A left-parenthesis followed by a function name, one or more legal expres-
sions, and a right parenthesis, is a legal expression. Its value is what you get by applying
the named function to the values of the smaller expressions inside it.

Syntax Rule 3 Any identifier, if already defined, is a legal expression. Its value is what
it was defined to stand for.

Syntax Rule 4 A left-parenthesis followed by the word define, a previously-undefined
identifier, a legal expression, and a right-parenthesis is a legal expression. Think of it as
anything matching the pattern
(define new-identifier expression)

It has no “value”, but the side effect of defining the variable to stand for the value of
the expression.

Worked Exercise 2.4.1 Draw a box diagram to prove that

(define calendar)

is a legal expression. Assume that calendar is not already defined.

Solution: The picture is obviously a legal expression, by rule 1:

(define calendar

1

)

The word calendar is a legal identifier. It does not qualify as a legal expression in its
own right, since it isn’t already defined; however, by rule 4 an undefined identifier can be
combined with define and the picture to make a legal expression.
4

(define calendar

1

)

2.5. VARIABLES AND THE STEPPER 29

Exercise 2.4.2 Draw a box diagram to prove that
(rotate-cw calendar)

is a legal expression. Assume that calendar is already defined.

Exercise 2.4.3 Draw a box diagram to prove that your solution to Exercise 2.1.2 or 2.1.3
is a legal expression.

Exercise 2.4.4 Draw a box diagram for
(define snark boojum calendar)

Assume that calendar is already defined, and snark and boojum are not. The whole
thing is not a legal expression; why not?

2.5 Variables and the Stepper

Variable definitions provide another opportunity to see what’s going on “behind the
scenes” by using the Stepper. Make sure you’ve got some variable definitions in the
Definitions pane, then add some expressions at the end like

(beside (flip-vertical calendar) calendar)

Click the “Step” button. It’ll skip over all the simple definitions, until you get to an
expression involving Syntax Rule 2 (applying a function to something) or 3 (getting the
value of a variable). Any variable names in the original expression will be replaced (one
by one) with the values of those variables, and then the function (if any) can be applied
as usual.

Practice Exercise 2.5.1 Make up some expressions involving variables, type them into
the Definitions window, and step through them. At each step, make sure you understand
what’s being replaced with what, and why.

2.6 Review of important words and concepts

A variable is a word that “stands for” some other value. An identifier is any word; it
may contain some punctuation marks, but it cannot contain spaces, parentheses, quota-
tion marks, or commas.

Every variable is an identifier, but not every identifier is a variable. For example,
define, rotate-180, beside, etc. are identifiers but not variables: they stand for op-
erations rather than values. A variable can be defined by using Syntax Rule 4 on a
previously-undefined identifier. After that, you can use it anywhere that you could use
any other expression, according to Syntax Rule 2. By chaining a sequence of variable
definitions, you can build complex pictures without getting nearly as confused as you
might if you tried to write the whole thing as one big expression.

2.7 Reference: functions for defining variables

The only new function introduced in this chapter is define.

30 CHAPTER 2. VARIABLES

Chapter 3

Building more interesting
pictures

3.1 Other kinds of arguments

3.1.1 Strings as arguments

You may have noticed that if you put two images of different height beside one another,
or two images of different width above one another, their centers are usually lined up:

> (beside)

Now let’s try something slightly different. Type each of the following three expressions
and observe the results:

(beside/align "top")

31

32 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

(beside/align "bottom")

(beside/align "middle")

Try using above with two or more pictures of different widths; then try each of the
following three expressions.

(above/align "right")

(above/align "left")

(above/align "middle")

You’ve just seen two new functions, beside/align and above/align, each of which
expects an extra argument to indicate how you want things lined up. This extra argument
isn’t an image, it’s a different kind of information called a string — a sequence of letters
enclosed in double-quote marks. (We’ll go into more detail on this in Section 3.4.) If you
leave out the quotation marks, e.g.

(above/align right)

then DrRacket will think right is an undefined variable, and will give you an error
message.

3.1. OTHER KINDS OF ARGUMENTS 33

There’s also an overlay/align function with two string arguments: it expects the
first argument to be either "left", "right", or "middle", and the second to be either
"top", "bottom", or "middle". The third, fourth, etc. arguments should be images. Play

with these functions.

3.1.2 Numbers as arguments

Next, try

(rotate 15)

which rotates the image by 15 degrees instead of 90. Play with this.

Now, try

(scale 2)

(scale 2/3)

(scale 1.41)

which makes an image larger or smaller. Play with this.

Note that the rotate and scale functions expect an extra argument that is neither
an image nor a string — it’s a number. Numbers can be written in several ways, as you
saw above, but they cannot contain spaces (so, for example,

(scale 2 / 3)

wouldn’t work). We’ll learn more about numbers in Racket in Chapter 7.

(There’s also a scale/xy function that allows you to stretch or squash a picture by
one factor vertically and a different factor horizontally. Look it up in the Help Desk.)

34 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

3.2 More mistakes

Now that we’ve seen functions that expect different types of arguments, there’s a whole
new world of things that can go wrong, with a whole new set of error messages to tell
you about them. As before, let’s make some of these mistakes on purpose so that when
we make them by accident later, we’ll recognize what’s going on.

Try typing

(beside/align "top")

You would get the error message

beside/align: expected <y-place> as first argument, given: . . .

because beside/align expects its first argument to be the string (specifically, a “y-place”,
i.e. one of the strings "top", "middle", or "bottom").

Likewise,

(overlay/align "top" "right")

produces an error message because it expects an x-place (i.e. either "left", "right", or
"middle") as its first argument, and "top" is none of those.

3.3 Creating simple shapes

So far, all your pictures have either been copied-and-pasted from other programs, or con-
structed from copied-and-pasted pictures using beside, rotate-cw, etc. In this section
we’ll learn to build simple geometric shapes from scratch. (As in the rest of the book,
we’ve put the pictures in black and white to save on printing. If some of them don’t make
sense, try looking at the textbook Web site, where a lot of this stuff appears in color.)

One of the simplest geometric shapes is a rectangle. But there are lots of different
possible rectangles, of different sizes, shapes, and colors. In addition, DrRacket allows

you to draw both solid rectangles and outline rectangles . When we
create a rectangle, we need to make all these decisions and tell DrRacket exactly what
kind of rectangle we want.

DrRacket has a built-in function named rectangle that creates such pictures. It
needs to be told the width and height of the rectangle (in pixels on the screen), whether
it’s solid or outline, and what color it should be, in that order:

3.3. CREATING SIMPLE SHAPES 35

> (rectangle 34 21 "solid" "green")

> (rectangle 15 36 "outline" "purple")

Practice Exercise 3.3.1 Make up several examples of rectangles by plugging in different
values for width, height, solid vs. outline, and color.

If you try a color DrRacket doesn’t recognize, you’ll get an error message, but it won’t
hurt anything. Likewise, if you put anything other than "solid" or "outline" in the
third argument position, you’ll get an error message, but it won’t hurt anything.

SIDEBAR:

The complete list of known color names is in the Help Desk; look up
color-database<%>.

Practice Exercise 3.3.2 What do you think would happen if you left out the color, e.g.
(rectangle 34 21 "solid")? Type it in and find out whether you were right.

What happens if you put the color first, e.g. (rectangle "green" 34 21 "solid")?
Try various other mistakes, read the error messages, and make sure you understand them.

Practice Exercise 3.3.3 Define a variable named solid-green-box whose value is a
solid green rectangle, and another named outline-blue-box which is what it sounds like.
Combine these in various ways using above, beside, overlay, etc.

Another built-in function, circle, does exactly what you expect: it creates circles.
Circles, like rectangles, can be either solid or outline, and of various colors, but rather
than having a separate width and height, they have only a radius: for example, (circle
10 "solid" "orange") produces a solid orange circle of radius 10.

Practice Exercise 3.3.4 Make up several examples of circles. Use above, beside, and
overlay to compare a circle of radius 10 with a square whose width and height are both
10. How would you build a picture of a solid orange circle just fitting inside a solid blue

square, ?

Yet another built-in function, ellipse, has arguments similar to those of rectangle:
width, height, solid or outline, and color. Try it.

Practice Exercise 3.3.5 Make up several examples of ellipses. Show another way to

construct a picture like .

The triangle built-in function has arguments similar to those of circle: a number
representing the length of each edge of the triangle, the word "outline" or "solid", and
a color name. It builds an equilateral triangle pointing up.

There are lots of other built-in functions like these. Look up the following in the Help
Desk:

36 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

• right-triangle

• isosceles-triangle

• rhombus

• regular-polygon

• star

• star-polygon

• line

• add-line

Practice Exercise 3.3.6 Make up several examples using these functions.

Of course, nobody actually memorizes all these functions — I certainly haven’t! You
should know that these functions exist, and how to look them up when you need them.

Exercise 3.3.7 How would you construct a picture like ? (Note that the top
edge of the triangle matches exactly the top edge of the square, and the bottom point of
the triangle is exactly in the middle of the bottom edge of the square.)

Hint: It is possible to do this, using what you’ve seen so far, with no math beyond
elementary school.

3.4 Data types and contracts

In the previous chapter, you asked Racket to operate on images and produce images. In
this chapter we’ve seen two additional kinds of information, or data types : numbers and
strings.

You already have a pretty good idea of what numbers are, but strings may be new to
you. In Racket (and C, and C++, and Java, and most other programming languages), a
string is a sequence of letters, numbers, punctuation marks, spaces, etc. surrounded by
double quote marks. The rules for what makes a string are similar to, but not quite the
same as, those for what makes an identifier: an identifier can’t contain spaces, or certain
punctuation marks, while almost any key you can type on the keyboard can go inside a
string. (The main exception is the double-quote mark itself, as this indicates the end of
the string. If you really want to put a double-quote mark inside a string, there is a way
to do it, but we won’t go into that here.)

3.4.1 String literals and identifiers

When you type a string, enclosed in quotation marks, it’s a literal — that is, its value
is just itself. By contrast, when you type a word that isn’t enclosed in quotation marks,
DrRacket thinks of it as an identifier : if there’s a function or a variable by that name,
that’s what it “stands for”, and if there isn’t, it doesn’t “stand for” anything.

A variable in Racket may “stand for” any type of information — a picture, a number,
a string, or other types we’ll learn about later.

3.4. DATA TYPES AND CONTRACTS 37

Practice Exercise 3.4.1 Type each of the following expressions into a newly-opened
interactions pane, one by one. For each one, predict what you think it will do, then hit
ENTER and see whether you were right. Explain the results. If you get an error message
(as you should for some of them), read and understand the error message.

• "hello"

• hello

• (define "author" "Bloch")

• (define author Bloch)

• (define author "Bloch")

• "author"

• author

• (define author "Bloch")

• (define calendar)

• (define age 19)

• "calendar"

• calendar

• "age"

• age

• "Bloch"

• Bloch

• (beside calendar calendar)

• (beside "calendar" "calendar")

• (define age 20)

• (define 20 age)

38 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

3.4.2 Function contracts

As you’ve already seen if you tried exercise 3.3.2, each built-in function “knows” how many
pieces of information, of what kinds, in what order, it should be given, and will reject
other kinds of information. For example, flip-vertical, rotate-cw, etc. all expect to
be given a single image, and will produce an error message if you give them no image,
or more than one image, or a non-image such as a number or a string. (Try each of
these mistakes and see what message you get.) This kind of pickiness may sometimes
feel as though it’s intended to annoy you, but really, what would it mean to “rotate” two
pictures, or a number? The designers of DrRacket didn’t see any obvious answer to these
questions, so they simply made it illegal to do those things.

Similarly, beside, above, and overlay each expect to be given two or more images;
they produce an error message if you give them too few images, or anything other than
an image. The beside/align and above/align functions each expect a string and two
or more images, while overlay/align expects two strings and two or more images.

Practice Exercise 3.4.2 See what happens if you break these rules.

The rectangle and ellipse functions expect to be given two numbers and two
strings, in that order; furthermore, the first string must be either "solid" or "outline",
and the second must be a color name. If you give either of these functions the wrong
number of things, or the wrong types of things, or the right types in the wrong order, it’ll
produce an error message.

Practice Exercise 3.4.3 Try these various mistakes and see what different messages
you can get.

Obviously, you can’t properly use any function unless you know how many arguments,
of what types, in what order, it expects to be given. You also need to know what type of
result it produces (so far, all our functions produce images, but that will change soon!).
All of this information together is called a function contract : think of it as the function
making a “promise” that “if you give me two numbers and two strings, in that order,
I’ll give you back an image.” A function contract can be described in words, as in the
previous three paragraphs, but we’ll have a lot of functions to deal with in this course,
and that gets tiresome. Instead, we’ll adopt a shorter convention for writing function
contracts:
flip-vertical : image -> image

beside : image image ... -> image

above/align : string image image ... -> image

rotate : number image -> image

In this convention, we write the name of the function, then a colon (:), then the type(s)
of the arguments, then an arrow (I usually use a minus sign and a greater-than sign,
which together look sorta like an arrow), then the type of the result. We use ellipses (. . .)
to indicate that there may be an indefinite number of additional arguments.

When a function takes several arguments of the same type, it often helps to say
something about what each one means, so you remember to use them in the right order.
I do this with parentheses:

rectangle: number(width) number(height)

string("outline" or "solid") string(color) -> image

By reading this one contract, you can immediately tell that to create, say, an outlined blue
rectangle 30 wide by 17 high, you should type (rectangle 30 17 "outline" "blue")

3.4. DATA TYPES AND CONTRACTS 39

Practice Exercise 3.4.4 Write the function contracts for ellipse, circle, triangle,
and star-polygon, using the standard convention.

There’s nothing magical about this convention for writing function contracts, but fol-
lowing a common convention makes it easier for programmers to understand one another.

3.4.3 Comments

If you try to type function contracts into the DrRacket window, you’ll get an error message
because they’re not legal expressions (according to rules 1-4). However, people frequently
want to include function contracts in a Racket program, so they use comments to indicate
something intended for the human reader, not for Racket.

Different programming languages specify comments in different ways, but every pro-
gramming language I know of has some way to write comments. Here are three common
ways it’s done in Racket:

End-of-line comments

The most common way of making something a comment in Racket is to put a semicolon
at the beginning of the line; everything else on that line will be ignored completely. You
can write anything in a comment, including a letter to your grandmother:

(define calendar)

; Dear Grandma,

; I am learning to program, using the Racket language. So far

; I’ve learned to rotate and scale pictures, put pictures

; together in various ways, and make rectangles, circles,

; ellipses, triangles, and stars, and I can keep these pictures

; in variables to use later. However, this letter is in

; English, not in Racket, so I’ve "commented it out" to keep

; DrRacket from complaining about it. That’s all for now!

; Love,

; Joe Student

(beside calendar calendar)

Of course, that’s not a realistic use of DrRacket: there are much better programs
around for writing letters to your grandmother! More likely, if you were using several
built-in functions, you would write down their contracts in comments for easy reference:
; beside : image image ...-> image

; rectangle : number (width) number (height)

; string ("outline" or "solid") string (color) -> image

; rotate-cw : image -> image

Multi-line comments

If you want to write several lines of comments in a row, it may be more convenient to use
another kind of comment: type #| (the number sign and the vertical bar), and everything
after that (even onto later lines) will be ignored, until you type |#.

40 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

(define calendar)

#|

Here are several lines of commented-out contracts.

beside : image image ...-> image

rectangle : number (width) number (height)

string ("outline" or "solid") string (color) -> image

rotate-cw : image -> image

|#

(beside calendar calendar)

Practice Exercise 3.4.5 Write six different expressions on separate lines of the Defi-
nitions pane. “Comment out” the second one with a semicolon, and the fourth and fifth
with #|...|#. Hit “Check Syntax”, and the commented parts should turn brown. Hit
“Run”, and you should see the results of the first, third, and sixth expressions.

Expression comments

Yet a third kind of comment allows you to “comment out” exactly one expression, re-
gardless of whether it’s a single line, part of a line, or multiple lines.

Practice Exercise 3.4.6 Type the following lines into the Definitions pane (assuming
you’ve already got definitions of the variables calendar, hacker, and solid-green-box):

#; calendar hacker

#; (beside calendar hacker)

#; (beside

hacker

calendar

) solid-green-box

(beside calendar #; hacker solid-green-box)

On the first line, calendar is ignored, but hacker isn’t, so you get a picture of a hacker.
The entire next line is ignored. Of the next four lines, (beside hacker calendar) is
ignored, but the solid-green-box is not. And on the last line, the hacker is ignored and
you get a picture of a calendar next to a solid green box.

Regardless of which kind of comment you use, DrRacket will automatically color it
brown to show what parts it is ignoring.

3.4.4 Comments in Practice

There are two especially common reasons that we’ll use comments: to write down function
contracts, and to temporarily “hide” part of a program while working on another part.
For example,

3.5. MORE FUNCTIONS ON PICTURES 41

; beside : image image ... -> image

; flip-vertical : image -> image

; image-width : image -> number

; rotate-180 : image -> image

(define calendar)

; (define two-cals (beside calendar calendar))

; (above two-cals (rotate-180 two-cals))

(above calendar (flip-vertical (scale/xy 1 1/2 calendar)))

The first four lines specify the contracts of functions we may be using. The next defines
a variable. The next two are “commented out”: presumably either they already work,
and we don’t want to be bothered with them while working on something else, or they
don’t work as desired yet, and we’ll come back to them later.

SIDEBAR:

If you have a large section of program that you want to comment out temporarily,
select all the relevant lines and use the “Comment Out with Semicolons” command
on the Racket menu, and it’ll put a semicolon in front of each line. Likewise, the
“Uncomment” menu command allows you to remove the semicolons from a whole
bunch of lines at once.

3.5 More functions on pictures

3.5.1 Cutting up pictures

So you know how to get a picture of a circle:

(circle 30 "solid" "green")

How would you get a picture of the upper half of this circle? The
picturing-programs library includes a function named crop-bottom which helps with
this kind of problem. Its contract is

crop-bottom : image number -> image

It cuts off (or “crops”) the specified number of pixels from the bottom of a picture.

Worked Exercise 3.5.1 Write an expression which produces the upper half of a solid
green circle of radius 30.

Solution: We already know that (circle 30 "solid" "green") produces the whole
circle. How many pixels do we want to cut off the bottom? Well, the radius of a circle is
the distance from the center to any edge of the circle, in particular the bottom edge. So
if the radius is 30, then we want to cut off 30 pixels:

(crop-bottom (circle 30 "solid" "green") 30)

42 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

Exercise 3.5.2 Here’s a picture of me.
Write an expression that chops the bottom 25 pixels off this picture.

The picturing-programs library also contains functions named crop-top, crop-left,
and crop-right, which behave the same way but crop the top, left, or right edges re-
spectively. There’s also a crop function which allows you to pick any rectangular region
from a picture. As usual, in exchange for more power, it’s a bit harder to use. Look it up
in the Help Desk.

Practice Exercise 3.5.3 Play with these.

SIDEBAR:

Actually, you don’t need all four of these: any one would be enough, combined with
things you already know. Try writing an expression that chops the leftmost 25 pixels
off the picture of me, using crop-bottom but none of the other cropping functions.

The technique you probably used to do this is something mathematicians call
conjugation. It’s not difficult, and it’s worth knowing for future purposes, but for
the sake of convenience, we’ve given you all four cropping functions.

Exercise 3.5.4 Write an expression which produces the bottom 45 pixels of an out-

lined circle of radius 30.

Exercise 3.5.5 Write an expression which produces the top-right quarter of a solid

ellipse 50 wide by 30 high.

Exercise 3.5.6 Invent some other interesting pictures, using cropping together with the
other functions you’ve already seen. Go wild.

3.5.2 Measuring pictures

In order to know how many pixels to crop, it might be helpful to know how many pixels
there are. The library provides two functions to help with this:

; image-width : image -> number

; image-height : image -> number

Notice that these are the first functions we’ve seen yet that return a number as their
result, rather than an image. This will become more useful once we study arithmetic in
Chapter 7.

3.5. MORE FUNCTIONS ON PICTURES 43

Practice Exercise 3.5.7 Find the widths and heights of some of your favorite pic-
tures. Then write an expression to cut off the left one-third of a particular picture.

Note that numeric results appear in the Interactions window just as image results have
been appearing.

3.5.3 Placing images precisely

Here’s a picture of me.
Suppose you wanted to take revenge on me for writing this book by blotting out my eyes:

How would you do this? Obviously, you need a black rectangle, and after some trial and
error you might conclude that (rectangle 45 15 "solid" "black") is the right size
and shape.

But when you try to overlay it on the picture, you get this picture
instead: the blot is exactly centered in the picture, and my eyes aren’t. You could make
the blot bigger, but then it would blot out more of my nose and eyebrows. You could
move the blot all the way to the top, or the bottom, or the left, or the right, using
overlay/align, but none of those puts it exactly where you want it. To deal with this
sort of situation, DrRacket provides a function named place-image that superimposes
one picture at a specified location on another. Its contract is

44 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

place-image : image (foreground)

number (horizontal offset) number (vertical offset)

image (background) -> image

As with overlay, the second image is the “background”, and the first is superimposed
“on top” of it. Unlike overlay, it only accepts exactly two images. It places the center
of the foreground image horizontal-offset pixels from the left, and vertical-offset pixels
down from the top, of the background image.

Experiment by plugging in various horizontal and vertical offsets, both positive and
negative, to see what happens. What horizontal and vertical offsets do you need in order
to blot out my eyes as in the picture above?

Exercise 3.5.8 Write a Racket expression, using place-image, to produce a solid blue
rectangle 80x50 with a solid orange rectangle 30x20 whose bottom-left corner is at the

center of the blue box:

Recall that the place-image function places the center of the foreground image.
Sometimes it’s more natural to place the top-left corner, or the bottom-right corner, etc.
Look up the place-image/align function in the Help Desk.

In experimenting with place-image, you may have noticed that the result is always
the same size and shape as the background image. Even if the foreground image laps over
the edges of the background, the excess is cut off. This is often what you want, but not
always. Look up the overlay/xy function in the Help Desk, and play with it.

3.5.4 Text

Suppose you wanted to draw a picture with words in it. In theory, you could build
letters from tiny rectangles, circles, ellipses, lines, etc. and place them where you wanted
them with place-image, but that would be a Royal Pain. Instead, DrRacket provides a
function named text to do exactly this job. Its contract is

text : string (text to draw) number (font size)

string (color) -> image

For example, try (text "hello there" 12 "forest green") . Experiment with
different font sizes and colors.

Exercise 3.5.9 Write a Racket expression that produces my picture with the caption
“Wanted!” in red near the bottom:

3.5. MORE FUNCTIONS ON PICTURES 45

Exercise 3.5.10 Write a Racket expression placing a word (in blue) on a yellow back-

ground inside a purple border:

Exercise 3.5.11 Write a Racket expression for an interesting picture involving text, po-
sitioning, geometric shapes, rotation, scaling, etc. Go wild.

3.5.5 For further reading...

If you want to learn about other ways to manipulate pictures, go to the “Help” menu in
DrRacket, select “Help Desk”, search for “2htdp/image”, and read the documentation.
It’ll tell you about a number of other functions:

• square

• add-curve

• text/font

• underlay

• underlay/align

• underlay/xy

• empty-scene

• scene+line

• scene+curve

• scale/xy

• crop

• frame

Some of these may involve concepts — define-struct, Booleans, posns, and lists — that
you haven’t seen yet, so don’t worry about them. As for the rest, play with them and
have fun. Don’t worry about memorizing them all; just get a general idea of what’s there,
so you can look it up when you need it.

3.5.6 Playing with colors

We’ve built a lot of images using color names like "purple", "yellow", etc.. This is
great as long as the color you want happens to be one of the ones whose name DrRacket
recognizes. But what if you want just a little bit more blue in your purple, or a slightly
darker turquoise than "turquoise"?

The picturing-programs library, like most computer graphics systems, represents
colors as combinations of red, green, and blue, each of which (for historical reasons) can
be any whole number from 0 to 255. For example, black is made from 0 red, 0 green,
and 0 blue; white is 255 red, 255 green and 255 blue; pure blue is 0 red, 0 green, and 255
blue; yellow is 255 red, 255 green, and 0 blue; and so on. You can mix your own colors
by using the make-color function, and passing the result into a function like rectangle,

46 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

triangle, etc.in place of the color name:

This means the contracts for those functions are actually something like
; circle : number string("solid" or "outline") string-or-color -> image

Practice Exercise 3.5.12 Play with this. Make up a bunch of shapes in various colors
that you’ve mixed yourself, and compare them with shapes in predefined colors.

If you want to see the numeric value of one of the standard named colors, use

; name->color : string -> color or false

; returns false if color name isn’t recognized

For example,

> (name->color "white")

(make-color 255 255 255 255)

> (name->color "forest green")

(make-color 34 139 34 255)

Note that this returns a color with four parts, not three. The fourth is called “alpha”,
and it controls transparency: a color with an alpha of 255 is completely opaque, covering
whatever was behind it, while a color with an alpha of 0 is completely transparent. If you
call make-color with three arguments, it assumes you want the color to be opaque, so it
fills in 255 for the fourth argument automatically, but if you wish you can make shapes
that are “semi-transparent”.

Practice Exercise 3.5.13 Play with this. Make a shape whose color has an alpha com-
ponent of 120, and see what happens when you overlay or underlay it on another shape.

We’ll learn more about the “color” data type in Chapter 20.

3.6 Specifying results and checking your work

When you try to do one of these exercises, the odds are that your first attempt won’t
exactly work. How do you know? Well, you type the expression into the Interactions
pane, hit RETURN/ENTER, and you get either an error message or a picture that isn’t
what you were trying for. It may be interesting, it may be pretty, and often that’s how
creative work starts — as an unsuccessful attempt to do something else — but it doesn’t
fulfill the assignment. So you figure out what you did wrong, come up with something
that addresses the problem, and try that to see if it actually works.

What about the “near misses”, in which the picture is almost what you wanted? In
these cases, your mind may play tricks on you and pretend that what you got really is

3.7. READING AND WRITING IMAGES 47

what you wanted all along. (The first attempt at blotting out my eyes, in section 4.4,
almost does the job, and you could convince yourself that it was OK, but in your heart you
would know it wasn’t quite right.) To prevent these mind tricks and make sure you come
up with an expression that produces what you really wanted, I recommend describing

precisely, in writing what the result should look like, before you try anything to get
that result. This way if the result isn’t correct, it’s harder for your mind to fool itself into
accepting it as correct.

For example, consider exercise 3.5.9 above. It’s a reasonably precise description of
what the result should be, but it still has some ambiguity. I didn’t say specifically that
the word “Wanted!” had to be superimposed on the picture; it could have been below
the bottom of the picture. And I didn’t say exactly what font size the word should be.
To make this more precise, one might have written:

The word “Wanted!”, in black, should be superimposed on the picture so there
is little or no space between the bottoms of the letters and the bottom of the
picture. The word should not lap outside either side of the picture, nor cover
any part of Dr. Bloch’s mouth (not to mention nose, eyes, etc.); however, it
should be large enough to read easily.

Or one could go even farther and specify the font size of the word, the exact number of
pixels between it and the bottom of the picture, etc. This sort of precise description of
desired outcomes is easier when the result is a number, a string, or some other type that
we’ll see later in the course, but you can start developing the habit now.

3.7 Reading and writing images

If you’ve built a really cool picture, you may want to save it so you can use it outside
DrRacket (e.g. on a Web page, or in a slide presentation or word-processing document).
This is easy, using the save-image function, which takes in an image and a string, and
stores the image in the file with that name. It uses the PNG image format, so it’s a really
good idea to choose a filename that ends in “.png”. For example,

(save-image (triangle 40 "solid" "purple") "purple-triangle.png")

If you already have an image file, you can get it into DrRacket in any of several ways:

• As you already know, you can open it in a Web browser or other program, copy it,
and paste into DrRacket.

• As you may also already know, you can use the “Insert Image” command (on the
“Insert” menu of DrRacket).

• You can use the bitmap function, which takes in a string filename and returns the
image. If the file doesn’t exist, it’ll return an image of 0 width and 0 height. For
example,

(rotate-cw (bitmap "purple-triangle.png"))

By the way, although save-image always saves things in PNG format, bitmap can
read things in a variety of formats, including PNG, GIF, JPG, etc.

48 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

3.8 Expanding the syntax rules

Based on the syntax rules you’ve seen in Section 2.4, most of the examples in this chapter
aren’t legal Racket expressions, because Syntax Rule 1 allows pictures, but not strings or
numbers. A more accurate and inclusive version would say

Syntax Rule 1 Any picture, number, or string literal is a legal expression; its value is
itself.

Worked Exercise 3.8.1 Draw a box diagram to prove that

(circle 10 "solid" "green")

is a legal expression.

Solution: With the new and improved Rule 1, we can recognize 10, "solid", and
"green" each as legal expressions:

(circle
1
10

1
"solid"

1
"green")

The whole thing then follows by Rule 2:
2

(circle
1
10

1
"solid"

1
"green")

Exercise 3.8.2 Draw a box diagram to prove that

(define tri (triangle 15 "solid" "orange"))

is a legal expression (assuming tri isn’t already defined).

Exercise 3.8.3 Draw box diagrams to prove that
(rectangle 40 26 "solid" "dark blue")

and
(rotate-180 (scale 2 (rectangle 20 13 "solid" "dark blue")))

are both legal expressions.
Are they the same expression? Type each of them into the Definitions pane and click

“Run”. Now click “Step” instead. What does “the same expression” mean?

3.9 Review of important words and concepts

In this chapter, we’ve seen how to use additional built-in functions to create pictures “from
scratch”, rather than copying and pasting them from the Web or other files. To tell these
functions what we want them to do, we need to provide different kinds of information,
e.g. numbers and strings. The categories “number”, “string”, “image”, and many others
that we’ll see in later chapters are all called data types.

Each function “knows” how many arguments, of what types, in what order, it should
be given, and what type of information it will produce. We typically write down this
information, the function contract, in a standard format: the function name, a colon, the
types of its arguments, an arrow, and the type of its result. Where there are multiple
arguments of the same type, we may provide additional information about them in paren-
theses to keep track of which does what. However, this format is not Racket; it’s only
a convention among human programmers, so if you want to put function contracts into

3.10. REFERENCE 49

a DrRacket window, you need to “comment them out” with one of the several kinds of
Racket comments.

Since many of the functions in this chapter take in numbers or strings, we need to
modify our syntax rules so that literal numbers and strings, as well as literal pictures, are
treated as legal expressions, from which more complex expressions can be built. Hence-
forth we’ll use the expanded version of Syntax Rule 1, allowing not only images but
numbers and strings.

3.10 Reference: Built-in functions for images

In this chapter, we discussed the following functions:

• above/align

• beside/align

• overlay/align

• rotate

• scale

• rectangle

• circle

• ellipse

• triangle

• star

• crop-bottom

• crop-top

• crop-left

• crop-right

• place-image

• text

• image-width

• image-height

• make-color

• name->color

• save-image

• bitmap

and mentioned the following, which you are invited to look up in the built-in DrRacket
Help Desk:

50 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

• place-image/align

• overlay/xy

• right-triangle

• isosceles-triangle

• square

• rhombus

• regular-polygon

• star-polygon

• radial-star

• line

• add-line

• add-curve

• text/font

• underlay

• underlay/align

• underlay/xy

• empty-scene

• scene+line

• scene+curve

• scale/xy

• crop

• frame

Chapter 4

Shorthand for operations:
writing your own functions

As a general rule in computer science, if you write almost the exact same thing over and
over, you’re doing something wrong. For example, we’ve already seen how to define a
variable so we don’t have to keep finding or building the exact same image over and over.
In this chapter, we’ll learn to write programs as a way to avoid writing similar expressions
over and over.

4.1 Defining your own functions

Worked Exercise 4.1.1 Write a Racket expression that produces a picture of a textbook,
side by side with its right-to-left reflection:

And then a picture of a calendar, side by side with its right-to-left reflection:

And then a picture of me, side by side with my right-to-left reflection:

51

52 CHAPTER 4. WRITING FUNCTIONS

Solution: Each of these should be routine by now: you can get the results by typing

(beside (flip-horizontal))

(beside (flip-horizontal))

(beside bloch (flip-horizontal bloch))

(the last one assumes that you’ve defined a variable bloch to hold a picture of me).

Obviously, these are all very similar expressions: they all match the pattern

(beside something (flip-horizontal something))

with various different pictures plugged in as something. Now imagine you were working
on a project in which you needed a lot of different pictures, each side by side with its right-
to-left reflection. You could type basically this same expression over and over again, but
it would be tedious, repetitive, and error-prone. Frankly, human beings don’t do tedious,
repetitive jobs very well without making mistakes. But computers do! It makes sense,
therefore, to use the computer to automate this tedious, repetitive process, so we can
concentrate our human abilities on more interesting tasks like picking the right pictures
for our project.

The task can be broken down into two parts: the part that’s the same every time,
i.e.

(beside something (flip-horizontal something))

and the part that’s different every time, i.e. what specific picture is plugged in as
something. We’ll teach the computer that repeated pattern, and whenever we want to
use it, we’ll simply provide the right picture to plug in for something.

We need to provide a name for our new pattern, so we can refer to it by name
and the computer will know which pattern we’re talking about. Let’s use the name
mirror-image. Type the following in the Definitions pane (after the usual (require

picturing-programs)):

(define (mirror-image something)

(beside something (flip-horizontal something)))

and click the “Run” button.
Now to get a mirror-image effect on various pictures, we can just type

(mirror-image)

(mirror-image)

(mirror-image bloch)

(mirror-image (flip-vertical bloch))

etc.
We’ve defined a new function named mirror-image, and taught the computer that

whenever you call that function on an image, it should match up the image you provided
with the “place-holder”’ word something, and act as though you had typed (beside, the

4.2. WHAT’S IN A DEFINITION? 53

image, (flip-horizontal, the same image again, and two right-parentheses. From now
until you quit DrRacket, it will remember this pattern and use it whenever you call the
mirror-image function. Now that the computer “knows” how to do this, we never have
to worry about it again ourselves. We’ve taught the computer a new trick by combining
things it already “knows” how to do; in other words, we’ve written a program.

By the way, there’s nothing magical about the name something; we could equally well
have said x, or picture, or horse-chestnut, as long as we spell the name the exact same
way in all three places it appears. The name is just a “place-holder” (the technical word
is parameter), to be matched up with whatever specific picture is provided when a user
calls the function. The most sensible of these names would be picture, as that’s what it’s
supposed to represent, so a better definition would be

(define (mirror-image picture)

(beside picture (flip-horizontal picture)))

Practice Exercise 4.1.2 Type the above definition (the version with the parameter name
picture) into the Definitions pane of DrRacket, along with definitions of the variables
book, calendar, and bloch. Click “Run”, then type the examples

(mirror-image book)

(mirror-image calendar)

(mirror-image bloch)

(mirror-image (flip-vertical bloch))

into the Interactions pane. After each one, hit ENTER/RETURN and you should see
the correct result.

4.2 What’s in a definition?

4.2.1 Terminology

The definition above is actually made up of several parts. The

(define (mirror-image picture)

part, which I’ve put on the first line, is called the function header, while the

(beside picture (flip-horizontal picture)))

part, which I’ve put on the second line, is called the function body.
The function header is always made up of a left-parenthesis, the word define, a left-

parenthesis, a function name (which must be an identifier that’s not already defined,
just like when you define a variable), one or more parameter names (identifiers), and a
right-parenthesis.

The function body is simply an expression (plus a right-parenthesis at the end to match
the one at the beginning of the header), in which the parameter names may appear as
though they were defined variables. Indeed, if you have a parameter name in the header
that doesn’t appear inside the function body, you’re probably doing something wrong.

4.2.2 Lines and white space

In each of the above examples, I’ve written the definition over two lines. You could write
it all on one line:
(define(mirror-image picture)(beside picture(flip-horizontal picture)))

Or you could break it up over many lines, with as many extra blanks as you wish:

54 CHAPTER 4. WRITING FUNCTIONS

(

define (

mirror-image

picture

) (beside

picture (

flip-horizontal

picture)

)

)

Racket doesn’t care: both of these will work equally well. However, neither of them is
particularly easy for a human being to read. For the sake of human readers, most Racket
programmers put the function header on one line, then hit ENTER/RETURN and put
the function body on one more subsequent lines, depending on how long and complicated
it is:

(define (mirror-image picture)

(beside picture (flip-horizontal picture)))

or

(define (mirror-image picture)

(beside picture

(flip-horizontal picture)))

Also notice that if you write a definition over more than one line, DrRacket will auto-
matically indent each line depending on how many parentheses it’s inside; this makes it
easier for the human reader to understand what’s going on. If you have a badly-indented
definition (like the one above for mirror-image spread over eleven lines!), you can select
it all with your mouse, then choose “Reindent All” from the Racket menu in DrRacket,
and DrRacket will clean up the indentation (but not the line breaks or the extra spaces
in the middles of lines).

Exercise 4.2.1 Define a function named vert-mirror-image which, given an image,
produces that image above its top-to-bottom reflection. As before, type your definition into
the Definitions pane, after the definitions already there. Put the function header on one
line, and the function body on the next line or two.

Click “Run”, then test your function by trying it on various images, such as book,
calendar, and bloch, and checking that the results are what you expected.

Exercise 4.2.2 Define a function named four-square which, given an image, produces

a two-by-two square of copies of it, e.g. . Put the function
header on one line, and the function body on the next line or two. Test your function by
trying it on various images and checking that the results are what you expected.

4.3. PARAMETERS AND ARGUMENTS 55

Worked Exercise 4.2.3 Define a function named counterchange which, given two im-
ages, produces a two-by-two square with the first image in top-left and bottom-right posi-
tions, and the second image in top-right and bottom-left positions, e.g.

Solution: The only new feature of this problem is that the function takes in two images
rather than one. To keep them straight, we need to have two different parameter names,
e.g. image1 and image2. The definition then looks like

(define (counterchange image1 image2)

(above (beside image1 image2)

(beside image2 image1)))

Note that as usual, we’ve put the function header on one line and the function body on
another — except that this function body is long enough and complicated enough that
we split it across two lines. DrRacket’s automatic indentation lines up the two calls to
beside so the reader can easily see that they are both used as arguments to above.

Now we need to test the function. With the above definition in the Definitions pane,
we hit the “Run” button, then type (in the Interactions pane)

(counterchange)

and get the result above. For another example, try

(counterchange (flip-horizontal))

Is the result what you expected?

Exercise 4.2.4 Define a function named surround which, given two images, produces a
picture with the second, first, and second side by side, i.e. the first image is “surrounded”
on left and right by the second image. Follow the usual convention for code layout, and
test your function on at least two different examples.

4.3 Parameters and arguments

Some people use the words argument and parameter interchangeably. But there is a
subtle, yet important, difference. An argument is a specific value in a function call, while
a parameter is a “place-holder” introduced in the header part of a function definition. An
argument may look like a number, string, image, variable, or more complex expression,
while a parameter always looks like just a variable. For example,

56 CHAPTER 4. WRITING FUNCTIONS

(define (mirror-image
param of mirror-image
picture)

(beside
param of mirror-image
picture

(flip-horizontal
param of mirror-image
picture)))

(mirror-image
arg of mirror-image
book)

The name picture is introduced in the “header” part of the definition of mirror-image,
so it is a parameter of mirror-image. That same parameter is used two other times in
the definition of mirror-image. The name book is used as an argument in a call of
mirror-image.

For that matter, mirror-image is defined by calling two other functions, which have
arguments of their own:
(define (mirror-image picture)

(beside
arg of beside
picture

arg of beside

(flip-horizontal
arg of flip-horizontal
picture)))

(mirror-image
arg of mirror-image
book)

Note that inside the function definition, the word picture can be thought of both
as a parameter to mirror-image (because it appeared in the header of mirror-image’s
definition), and also as an argument to beside and flip-horizontal (because it appears
in calls to those functions).

To put it another way, an “argument” and a “parameter” both represent information
passed into a function from its caller, but the “argument” is that information as seen
from the caller’s point of view, and the “parameter” is the information as seen by the
function being called.

Exercise 4.3.1 Consider the following Racket code:

(define (mystery x y)

(above (flip-horizontal x) y))

(mystery calendar book)

(mystery book calendar)

What words are used as parameters to which functions? What words are used as argu-
ments to which functions?

Exercise 4.3.2 Consider your solution and test cases for Exercise 4.2.1, 4.2.2, or 4.2.4.
What words are used as parameters to which functions? What words (and expressions)
are used as arguments to which functions?

4.4 Parameters, arguments, and the Stepper

To get a clearer picture of what’s going on, type the definitions of bloch and mirror-image,
along with several examples of the latter, into the Definitions pane:

4.4. PARAMETERS, ARGUMENTS, AND THE STEPPER 57

(define bloch)

(define (mirror-image picture)

(beside picture (flip-horizontal picture)))

(mirror-image)

(mirror-image)

(mirror-image bloch)

(mirror-image (flip-vertical bloch))

Now, instead of clicking “Run”, click the “Step” button. It’ll skip through the definitions,
and start stepping at the expression

(mirror-image)

which expands to

(beside (flip-horizontal))

This is because Racket matched up the argument with the parameter
picture, and everywhere inside the function definition that the parameter picture ap-
peared, replaced it with that specific picture. The next few steps in the Stepper will
behave exactly as you expect them to: the innermost expression

(flip-horizontal)

is replaced by , and then the beside function combines this with the

original picture to produce the result .

58 CHAPTER 4. WRITING FUNCTIONS

Step through the remaining examples, and make sure you understand what is being
replaced with what, and why, at each step.

Practice Exercise 4.4.1 Consider the Racket code from Exercise 4.3.1:

(define (mystery x y)

(above (flip-horizontal x) y))

(mystery calendar book)

(mystery book calendar)

In each of the two calls to mystery, tell which argument is matched with which parameter,
and write down (without using DrRacket) the sequence of steps of expansion that the
Stepper would do. Type this code into DrRacket’s Definitions pane, hit “Step” several
times, and see whether you were right.

Practice Exercise 4.4.2 Repeat the previous exercise, replacing the mystery function
with your solution to Exercise 4.2.1, 4.2.2, or 4.2.4.

4.5 Testing a Function Definition

As this course goes on, you’ll need to define hundreds of functions; defining a new function
is one of the most common tasks for a programmer. But as you may have already found
out, it’s easy to make a mistake in defining a function. Before we can consider our task
finished, we need to test the function for correctness.

Program testing can be an unpleasant job, as it often gives you the bad news that
your program doesn’t work. But it’s much better for you to discover that your program
doesn’t work, than for your teacher or customer to make the discovery and penalize you
for it. The worst thing that can happen is that we think our program is correct, but fail
to spot an error that leads to somebody else getting wrong answers, which (in the real
world) can cause airplanes or spaceships to crash, bridges to fall down, medical equipment
to kill patients, etc.

So we owe it to ourselves to try to break our own programs. The harder we’ve tried
without managing to break a program, the more confidence we have in turning it over to
a teacher or customer. The more devious and malicious we are towards our own programs
before releasing them, the less likely they are to be released with errors.

Recall from Chapter 1 that a function is considered correct only if it produces correct
answers for all possible inputs. However, for a function like mirror-image, there are
infinitely many possible pictures we could call it on; we can’t possibly test it on every
one. Fortunately, the function is simple enough that picking two or three different pictures
is probably enough: it’s unlikely to get those right without also getting everything else
right.

4.5.1 Testing with string descriptions

One way I often test a program is by writing several calls to the function in the Definitions
pane, after the function definition itself. Each call is followed by a description, in quotation
marks, of what the answer should have been. This way, when I hit “Run”, DrRacket not
only learns the function definition but shows the results of each call, followed by what it
should have been. For example, the Definitions pane might look like (in part)

4.5. TESTING A FUNCTION DEFINITION 59

(define (mirror-image picture)

(beside picture (flip-horizontal picture)))

(mirror-image book)

"should be two mirror-image books side by side, the left one with

a question mark, the right one with a backwards question mark"

(mirror-image bloch)

"should be two mirror-image pictures of me side by side,

faces turned slightly away from one another"

Hit “Run”, and you’ll get an Interactions pane looking like

"should be two mirror-image books side by side, the left one with

a question mark, the right one with a backwards question mark"

"should be two mirror-image pictures of me side by side,

faces turned slightly away from one another"

Since both actual answers match the descriptions of what they should be, we would
tentatively conclude that the program works correctly.

Note that we’ve used strings to describe the “right answers”. This works because
when you type a quoted string by itself (not as an argument to a function), the value of
that expression is simply the string itself.

Now suppose we had written a program incorrectly, for example

(define (vert-mirror-image picture)

(above picture (flip-horizontal picture)))

(vert-mirror-image book)

"should be two books, one right side up with a question mark,

above another one upside down with an upside-down question mark"

Hit “Run”, and the result will be

"should be two books, one right side up with a question mark,

above another one upside down with an upside-down question mark"

60 CHAPTER 4. WRITING FUNCTIONS

The answer the function actually produced doesn’t match what we said it should pro-
duce, so something is wrong. Looking through the function definition (possibly with the
aid of the Stepper), we would soon realize that the picture was being reflected horizontally,
rather than vertically. We would correct this, hit “Run” again, and get

"should be two books, one right side up with a question mark,

above another one upside down with an upside-down question mark"

This time the actual answer does match the “right” answer, so things look good. One
test case, however, is almost never enough to build real confidence in a function; choose
at least two or three test cases.

Not all test cases are created equal. For example, if instead of using the picture of a
book, we had written

(vert-mirror-image (rectangle 30 20 "solid" "blue"))

"should be a 30x20 solid blue rectangle, above another one upside down"

and then clicked “Run”, the actual answer would have looked correct, even without
finding and fixing the error, because a rectangle flipped upside down looks just like a
rectangle flipped left-to-right (or not flipped at all). In other words, there would be an
error in the program, but we wouldn’t know about it because we weren’t nasty enough
to our program. Choose test cases that are likely to reveal errors.

Occasionally, you’ll get an actual result that doesn’t match what it “should be”, and
the function is actually right; your “should be” answer was wrong. For example, suppose
you had defined vert-mirror-image correctly but written the test case

(vert-mirror-image calendar)

"should be a calendar, above another calendar flipped left-to-right"

When you hit “Run”, you’ll get an image that doesn’t match the description of what
it “should be”, but this time it’s because your “right answer” was wrong. That doesn’t
mean everything is OK: a correct program which looks wrong is almost as bad as an
incorrect program which looks right. But this situation is at least easy to fix: once you’re
sure the program is right, just correct the “right answer”. This doesn’t happen often:
when the actual answer doesn’t match your “right answer”, it’s much more likely that
the program is wrong. But keep this other possibility in mind.

4.5.2 Common beginner mistakes

I’ve frequently had students write “test cases” like the following (I’ve highlighted them
for visibility):

4.5. TESTING A FUNCTION DEFINITION 61

(define (mirror-image picture)

(beside picture (flip-horizontal picture)))

book

"should be two mirror-image books side by side,

the left one with a question mark, the right one

with a backwards question mark"

bloch

"should be two mirror-image pictures of me side by side,

faces turned slightly away from one another"

What’s wrong with this? Well, when you type book or bloch by itself, DrRacket has
no idea what you want to do with that picture. DrRacket certainly can’t guess that you
want to look at its mirror image (as opposed to rotating it clockwise, or putting it above
itself, or thousands of other things DrRacket might be able to do with it). The fact that
you’ve recently defined the mirror-image function does not mean that the mirror-image
function will be called automatically; if you want to use a particular function, you have
to call it by name. Just saying book will give you a picture of a book, no matter what
functions you’ve defined.

Another common mistake in writing test cases:

(define (mirror-image picture)

(beside picture (flip-horizontal picture)))

(beside book (flip-horizontal book))

"should be two mirror-image books side by side,

the left one with a question mark, the right one

with a backwards question mark"

(beside bloch (flip-horizontal bloch))

"should be two mirror-image pictures of me side by side,

faces turned slightly away from one another"

There are two things wrong with this. First, it misses the point of defining a new
function: once you’ve defined a function, you shouldn’t have to think about (or repeat)
its body ever again. Second and more seriously, it doesn’t test the function you defined.
These examples test whether beside and flip-horizontal work correctly, but since they
never actually use mirror-image itself, they don’t tell whether or not it works correctly.
If the mirror-image function had been written incorrectly (e.g. using above rather than
beside), these test cases wouldn’t show us that anything was wrong.

Many of my students in the past have balked at describing “what the right answer
should be”; they would rather type in the test case, run it, see what the answer is, then
(since the mean old professor insists on test cases) describe this answer and say that’s
what it “should be”. Don’t do this! These students will never discover any errors in
their programs, because they’re assuming the program is correct. They have completely
missed the point of testing (and lost a lot of points on their homework grades, to boot!)

4.5.3 The check-expect function

If you’ve got a lot of test cases for a particular function, or if you have a lot of functions in
the Definitions pane, it can be a lot of work to look through all the answers and compare
them with their descriptions. DrRacket comes with a function named check-expect that
automates this process: no matter how many test cases you have in the Definitions pane,
it tells you instantly how many of the actual answers matched what you said they “should
be”, and which of them didn’t.

62 CHAPTER 4. WRITING FUNCTIONS

Unfortunately, check-expect isn’t smart enough to understand an English-language
description of the right answer, so to take advantage of it, you have to build the exact
right answer for each specific test case.

For example, consider the vert-mirror-image function from before. To test it using
check-expect, we would replace the test case

(vert-mirror-image book)

"should be two books, one right side up with a question mark,

above one upside down with an upside-down question mark"

with

(check-expect (vert-mirror-image book)

(above book (flip-vertical book)))

In addition, let’s use the “bad test case” from section 4.5.1:
(check-expect

(vert-mirror-image (rectangle 30 20 "solid" "blue"))

(above (rectangle 30 20 "solid" "blue")

(flip-vertical (rectangle 30 20 "solid" "blue")))

Practice Exercise 4.5.1 Type a correct definition of vert-mirror-image into the Dr-
Racket definitions pane, followed by the above check-expect lines. Click “Run” and see
what happens.

Now change the definition to be incorrect — for example, use flip-horizontal in-
stead of flip-vertical — but leave the check-expect the same. Click “Run” and see
what happens.

By the way, check-expect is “smart” in another way: you can put test cases using
check-expect ahead of the definition and DrRacket won’t complain that the function
isn’t defined yet. This doesn’t work with “should be”-style test cases.

4.6 A new syntax rule

Why is something like

(define (mirror-image picture)

(beside picture (flip-horizontal picture)))

legal Racket? Well, based on the syntax rules you’ve seen so far, it isn’t: there is no way
to draw a box diagram for it, justifying each box with one of the rules

Syntax Rule 1 Any picture, number, or string is a legal expression; its value is itself.

Syntax Rule 2 A left-parenthesis followed by a function name, one or more legal expres-
sions, and a right parenthesis, is a legal expression; its value is what you get by applying
the named function to the values of the smaller expressions inside it.

Syntax Rule 3 Any identifier, if already defined, is a legal expression.

Syntax Rule 4 A left-parenthesis followed by the word define, a previously-undefined
identifier, a legal expression, and a right-parenthesis is a legal expression. It has no
“value”, but the side effect of defining the variable to stand for the value of the expression.

To define new functions, as we’ve just done, we need a new syntax rule:

4.6. A NEW SYNTAX RULE 63

Syntax Rule 5 A left parenthesis followed by the word define, a left parenthesis, a
previously-undefined identifier, one or more identifiers, a right parenthesis, a legal ex-
pression, and another right parenthesis is a legal expression. Think of it as anything
matching the pattern

(define (new-identifier identifier ...) expression)

This sort of expression has no “value”, but the side effect of defining a new function
whose name is the new-identifier. Note that the parameter names from the function header
can appear inside the function body as though they were defined variables.

Notice the difference between Syntax Rules 4 and 5: a variable definition looks like

(define variable-name ...)

whereas a function definition looks like

(define (function-name parameter-names) ...)

Racket can tell which one you mean by whether there’s a left parenthesis after the define.

Worked Exercise 4.6.1 Draw a box diagram to prove that

(define (two-copies picture)

(beside picture picture))

is a legal expression. Assume that two-copies is not already defined.

Solution: Since picture is one of the identifiers in the function header, it can appear
inside the function body as if it were a defined variable. So the last two occurrences of
the word picture are legal expressions, by Rule 3:

(define (two-copies picture)

(beside
3
picture

3
picture))

Then the whole call to beside is a legal expression, by Rule 2:

(define (two-copies picture)
2

(beside
3
picture

3
picture))

Finally, by Rule 5, we can recognize the whole thing as a legal expression defining a new
function:
5
(define (two-copies picture)

2

(beside
3
picture

3
picture))

Exercise 4.6.2 Draw a box diagram to prove that

(define (mirror-image picture)

(beside picture (flip-horizontal picture)))

is a legal expression. Assume that mirror-image is not already defined.

Exercise 4.6.3 Draw a box diagram to prove that your solution to Exercise 4.2.1, 4.2.2,
or 4.2.4 is a legal expression.

64 CHAPTER 4. WRITING FUNCTIONS

4.7 Scope and visibility

You may have already noticed (perhaps by accident) that two different functions can have
parameters with the same name (which I’ve highlighted), e.g.

(define (horiz-mirror-image pic)

(beside pic (flip-horizontal pic)))

(define (vert-mirror-image pic)

(above pic (flip-vertical pic)))

In fact, there could even be a global variable by the same name:

(define pic)

(define (horiz-mirror-image pic)

(beside pic (flip-horizontal pic)))

(define (vert-mirror-image pic)

(above pic (flip-vertical pic)))

(rotate-cw pic)

(horiz-mirror-image pic)

(horiz-mirror-image (rotate-cw pic))

There’s nothing wrong with this: when a parameter name appears in a function header,
it “hides” any other definition of that name that might already exist, until the end of the
function definition.

By way of analogy, when I’m at home, the name “Deborah” always refers to my wife,
even though there are lots of other Deborahs in the world. If I meant one of the other Deb-
orahs, I’d have to specify a last name, e.g. the author Deborah Tannen; the name “Deb-
orah” by itself still means my wife. Similarly, inside the body of vert-mirror-image,
the word pic always refers to the parameter pic introduced in its header, regardless of
whether there are other things named pic defined elsewhere.

Furthermore, there is no way whatsoever to refer to that parameter from outside the
function; the parameter simply doesn’t exist outside the function. (I suppose the best
analogy to this would be if my wife never left the house, and I kept her existence a secret
from the rest of the world....) The world outside the definition of horiz-mirror-image

neither knows nor cares what parameter name it uses internally. Another result of this
is that you can call horiz-mirror-image with an argument that happens to be named
pic, or with some other argument; it makes no difference whatsoever.

Of course, if you prefer to use different parameter names in each function, there’s

4.8. AN ANALOGY FROM ENGLISH 65

nothing wrong with that either:

(define pic)

(define (horiz-mirror-image pic2)

(beside pic2 (flip-horizontal pic2)))

(define (vert-mirror-image pic3)

(above pic3 (flip-vertical pic3)))

(rotate-cw pic)

(horiz-mirror-image pic)

(horiz-mirror-image (rotate-cw pic))

but it’s an unnecessary complication. When choosing parameter names, I choose what-
ever makes the most sense inside this function, without worrying about whether there’s
something else with the same name somewhere else.

Computer scientists refer to the part of the program in which a variable is visible
as that variable’s scope. In the above example, the global variable pic’s scope is “ev-
erywhere, until you quit DrRacket”; the parameter pic2’s scope is “inside the definition
of horiz-mirror-image”, and the parameter pic3’s scope is “inside the definition of
vert-mirror-image”.

4.8 An analogy from English

We’ve encountered a number of new concepts in the past few chapters: expression, func-
tion, argument, variable, data type, etc. Some people may have an easier time understand-
ing these terms by analogy to English.

4.8.1 Proper nouns and literals

In English (and most other natural languages), one can name an individual person, place,
or thing with a proper noun, e.g. “Joe Smith”, “New York”, “Harvard University”,
“Rover”, etc. The analogous concept in Racket (and most other programming languages)

is a literal, e.g. a picture like , a number like 7, or a string like "hello there".
All of these represent specific pieces of information, which you can tell simply by looking
at them.

4.8.2 Pronouns and variables

English also has pronouns like “he”, “she”, “it”, etc.: words that represent an individual
person, place, or thing, but only in context. If I say “He is very tall,” you know that
I’m talking about a person, but you don’t know which person unless you’ve heard the
previous sentence or two.

Analogously, in Racket and other programming languages, we have variables that
represent an individual piece of information, but just by looking at the variable in isolation

66 CHAPTER 4. WRITING FUNCTIONS

you can’t tell which piece of information; you need to see the variable’s definition. For
example, if I said (beside image1 image2), you could tell that I was putting two images
side by side, but without seeing the definitions of the variables image1 and image2, you
would have no idea what images I was putting beside one another. Parameters inside a
function definition are just like variables in this sense.

4.8.3 Improper nouns and data types

English also has improper nouns : words describing a category of things rather than an
individual thing, like “person”, “state”, “school”, and “dog”. The analogous concept in
Racket and other programming languages is data type: the three data types we’ve seen
so far are “image”, “number”, and “string”.

4.8.4 Verbs and functions

English also has verbs : words that represent actions that take place, at a particular time,
often to one or more particular objects. For example, “Sam kissed Angela last night”
includes the verb “kissed”, involving the two objects “Sam” and “Angela” (both of which
are proper nouns, as discussed above), and the action took place at a particular time (last
night).

The closest analogue to verbs in Racket and other programming languages is func-
tions : when you call a function on particular arguments, it performs an action on those
arguments. (By contrast, literals, variables, and data types aren’t so bound to time: they
just are, rather than doing anything at a particular time.) For example, when you type
the expression

(above)

into the Interactions pane (or type it into Definitions and hit “Run”), the function above

operates on the two specified pictures at that particular time and creates a new picture
including both of them.

4.8.5 Noun phrases and expressions

In English, one can often string several words together into a noun phrase, like “my best
friend’s aunt’s house,” which represents a specific thing, like a proper noun or a pronoun
but which requires a little more work to identify. In this case, it takes three steps: Who
is my best friend? Who is that person’s aunt? Where is that person’s house?

The analogous concept in Racket and other programming languages is the expression,
which represents a specific piece of information that may be the result of calculation, e.g.

(beside (flip-vertical bloch) (circle 10 "solid" "green"))

whose evaluation requires four steps: What does the variable bloch refer to? What do
I get when I reflect that picture vertically? What does a solid green circle of radius 10
look like? What do I get when I combine those two images side by side?

We summarize this section in table 4.1.

4.9. REVIEW 67

Table 4.1: Analogy between English parts of speech and Racket
English

term

English ex-

amples

Racket

term

Racket

examples

What it

represents

Proper
noun

Joe, Har-
vard, Rover,
Chicago

Literal , 7, "hello" A single object,
which you can
tell just by look-
ing at it

Pronoun Him, her, it Variable,
para-
meter

calendar, picture,
image1

A single object,
but needs con-
text to tell which
one

Improper
noun

Person,
school, dog,
city

Data type image, number, string A category of
objects

Verb Eat, kiss,
study

Function flip-vertical,
mirror-image,
counterchange, define

An action ap-
plied to specific
objects at a spe-
cific time

Noun
phrase

“Jeff’s
house”, “the
tallest boy in
the class”

Expression (flip-vertical book),
(above bloch (circle

10 "solid" "red"))

A single object,
maybe the result
of computation

4.9 Review of important words and concepts

Instead of typing in a bunch of very similar expressions ourselves, we can use the computer
to automate the process by defining a function. This requires identifying which parts of
the expressions are always the same (these become the function body), and which parts
are different (which are referred to inside the function body as parameters, and which are
replaced with specific arguments when the function is called).

A function definition can be divided into a function header (specifying the name of
the function and of its parameters) and a function body (an expression that uses the
parameters as though they were defined variables). Ordinarily, the function header is
written on one line and the function body on the next one (or more, if it’s long and
complicated). Racket doesn’t actually care whether you define a function on one line
or a hundred, nor how you indent the various lines, but human readers (including you!)
will find it much easier to read and understand your programs if you follow standard
conventions for line breaks and indentation. DrRacket helps with the indentation: every
time you hit RETURN/ENTER, it automatically indents the next line as appropriate.

You can see what DrRacket is doing “behind the scenes” by using the Stepper : it
shows how the arguments in a function call are matched up with the parameters in the
function’s definition, and how the function call is then replaced by the function body,
with parameters replaced by the corresponding arguments.

Before a program can be turned over to a teacher or a customer, it must be carefully
tested. If there are errors in a program, it’s much better for us to discover them than for
the teacher or customer to discover them, so try to come up with weird, malicious test

68 CHAPTER 4. WRITING FUNCTIONS

cases that are likely to uncover errors.
One way to write test cases in DrRacket is to put them in the Definitions pane, after

the definition itself, each test case followed by a description in quotation marks of what
the right answer should be.

Another way is a little more work to write, but easier to use in the long run: the
check-expect function, which compares the actual answer with what you said it should
be, and gives you a report on how many and which of your test cases failed.

The act of defining a function requires a new syntax rule, Rule 5:

(define (new-identifier identifier ...) expression)

The parameter names introduced in the function header can be used inside the function
body, but are not visible outside the definition.

Many of the new concepts introduced in the programming-language setting so far
correspond to familiar notions from English grammar: literals are proper nouns, variables
are pronouns, data types are improper nouns, functions are verbs, and expressions are
noun phrases.

4.10 Reference: Built-in functions for defining and
testing functions

The only new built-in functions introduced in this chapter are define (used to define a
function rather than a variable) and check-expect.

Chapter 5

A recipe for defining functions

5.1 Step-by-step recipes

I will now give you a simple recipe to accomplish anything in the world. Ready?

Design recipe for anything, version 0

1. Decide what you want to do.

2. Do it.

3. Check that you did it right.

4. Keep doing it.

Okay, I admit that’s a little vague; you’d need to fill in a lot of details. But it’s
basically right. In fact, many of the bad inventions, bad laws, bad wars, bad teaching,
and bad computer programs in the world can be blamed on somebody skipping either
step 1 or step 3 (or both).

Skipping step 3 is understandable, since after you’ve done your great creative work,
checking it is boring and unrewarding. But, you may ask, how could anybody skip
step 1? In practice, people often charge into “doing it” before they’ve decided clearly,
unambiguously, and in detail what they want to do and how they’ll know when they’ve
done it. Since they have only a vague mental picture of what they want to accomplish,
what actually gets done is a hodgepodge of different goals. (This is especially bad when
the task is undertaken by a group of people, each of whom has a slightly different idea of
what they’re trying to do!)

5.2 A more detailed recipe

Here’s a version that’s more useful for actual programming.

69

70 CHAPTER 5. A RECIPE FOR DEFINING FUNCTIONS

Design recipe for functions, version 1

1. Write a function contract (and possibly a purpose statement) for the function
you want to write.

2. Write several examples of how the function will be used, with their correct
answers.

3. Write a skeleton of the function you want to write.

4. Add to the skeleton an inventory of what you have available to work with.

5. Add the body of the function definition.

6. Test your program on the examples you chose in step 2.

7. Use your program to solve other problems.

Steps 1 and 2 correspond to “decide what you want to do”; steps 3–5 to “do it”; and
step 6, obviously, to “check that you did it right.” Step 7 corresponds roughly to “keep
doing it”: in the real world, programs aren’t a goal in themselves, but are written in order
to get answers to questions. We’ll look at all these steps in more detail in a moment.

But first, why do we need a recipe like this? For very simple functions, frankly, we
don’t. But we won’t always be writing “very simple functions”. I want you to get into
the habit of following these steps now, so that by the time you really need them, they’ll
be second nature. So how does it help?

• Each step is small and manageable. Even if you have no idea how to solve the whole
problem, you can do one step of it and have a small feeling of accomplishment.

• You always know what to work on next, and what questions to ask yourself.

• The contract, purpose, and examples help you understand the question before you
start trying to solve it.

• In my class, you get partial credit for each step you solve correctly.

• In my class, the teacher stubbornly refuses to give you any help with a later step
until you’ve finished all the previous ones.

Now let’s look at the individual steps and see how to do them.

5.3 Function contracts and purpose statements

Before you can solve any programming problem, you have to understand the problem.
Sounds obvious, but I’ve had a lot of students over the years charge into writing the
program before they had finished reading the assignment. (They ended up writing the
wrong program and getting lousy grades.) In particular, you need to be able to write a
function contract (remember Section 4.2?) for the function you’re about to define.

What’s in a function contract? Three essential pieces of information: the name of
the function, the type(s) of the input(s), and the type of the result. (So far, the type of
the result has always been “image”, but that will change soon.) Once you’ve written this
down (in a comment, in the usual notation from Section 4.2), both you and any other
programmer who reads the contract will know how to use your function.

5.3. FUNCTION CONTRACTS AND PURPOSE STATEMENTS 71

Sometimes, if the program’s purpose isn’t obvious from its name, it’s useful to also
write a “purpose statement”: a brief sentence or two, also in Racket comments, explaining
what the program does. This does not substitute for a contract, but expands on the
contract.

Worked Exercise 5.3.1 Write a contract and purpose for the counterchange func-
tion of Exercise 4.2.3.

To remind you what Exercise 4.2.3 was, I’ll repeat it here:
Define a function named counterchange which, given two images, produces a two-by-two
square with the first image in top-left and bottom-right positions, and the second image

in top-right and bottom-left positions. The result should look like .
Solution: The function name is obviously counterchange. The assignment says it is
to be “given two images”, which tells us that it takes two parameters of type “image”.
It “produces a two-by-two square”, which must be an image. So we could write (in the
Definitions pane) something like

; counterchange : image image -> image

This technically answers all the questions, but it doesn’t really give a user all the necessary
information to use the function. Which of the two images is which? So a better contract
would be

; counterchange : image (top-left) image (top-right) -> image

If we think it’s necessary to add a purpose statement, we might write

; counterchange : image (top-left) image (top-right) -> image

; Produces a square arrangement with the top-left image also

; in the bottom right, and the top-right image also in the

; bottom left.

Exercise 5.3.2 Write a contract and purpose statement for a function named
copies-beside that takes in a number and an image, and produces that many copies of
the image side by side.

Exercise 5.3.3 Write a contract and purpose statement for a function named
pinwheel that takes in a picture and produces four copies of it in a square, differently
rotated: the original picture in the top left, rotated 90◦ clockwise in the top right, rotated
180◦ in the bottom right, and rotated 90◦ counterclockwise in the bottom left. The result

should look like .

72 CHAPTER 5. A RECIPE FOR DEFINING FUNCTIONS

Worked Exercise 5.3.4 Write a contract and purpose statement for a function
named checkerboard2 that produces a 2x2 square checkerboard in specified colors. Each
square should be 20 pixels on a side.

Solution: The function name is obviously checkerboard2. The result is an image. As
for the input, the assignment refers to “specified colors”, but doesn’t say what they are,
which implies that they can vary from one function call to the next — in other words,
they are inputs to the function. The only way we know to specify colors so far is by their
names, which are strings in Racket. There are two colors, and the assignment doesn’t
say which is which, so let’s decide arbitrarily that the first one will be in the top-left
corner of the checkerboard, and the second in the top-right corner. The “2x2” and “20
pixels on a side” don’t concern us yet. Furthermore, it doesn’t make sense to call the
function with strings that aren’t color-names, e.g. "screwdriver". So we might write (in
the Definitions pane)

; checkerboard2 : string (top-left-color)

; string (top-right-color) -> image

; Assumes that both strings are color names.

; Produces a 2x2 checkerboard, with each small square 20

; pixels on a side, with the top-left color in the top-left

; and bottom-right positions, and the top-right color in

; the other two positions.

Exercise 5.3.5 Write a contract and purpose statement for the following problem:
Design a program named bullseye which produces a “bull’s eye” style target with two
rings. It takes in two numbers indicating the radii of the outer ring and the inner disk,
and two strings representing the colors of the outer ring and the color of the inner disk.

Exercise 5.3.6 Write a contract and purpose statement for the following problem:
Design a program named dot-grid which expects two numbers (the width and height of
the grid, respectively) and produces a rectangular grid of radius-5 circular blue dots .

Exercise 5.3.7 Write a contract and purpose statement for the following problem:
Design a program named lollipop which produces a picture of a lollipop. It takes in
two numbers — the radius of the lollipop “head” and the length of the “stick” — and a

string, indicating the color of the lollipop. For the stick, use a rectangle of width 1.

5.4. EXAMPLES (ALSO KNOWN AS TEST CASES) 73

5.4 Examples (also known as Test Cases)

A function contract and purpose statement are big steps towards understanding what
the program needs to do, but they’re not specific enough. So for the next step, we’ll
write down several examples of how we would use the program if it were already written.
Next to each example, we’ll write down, as precisely as we can, the right answer to that
example (as in Chapter 4).

Why? Several reasons. Most obviously, it provides you with test cases that you can
use later in testing. Since testing can be the most frustrating part of programming, your
mind will take any excuse it can find to avoid testing. (After all, how often do you do
something for which the whole point is to get bad news? Do you look forward to doing
such things?) And since testing is also the last thing you do before turning in the program,
it tends to get skipped when you’re running behind schedule. Writing the test cases in
advance — before you write the program itself — means you have one less excuse for not
testing.

Your mind will try to trick you in another way, too: you’ll look at the results of a test
run and say to yourself “yes, that’s right; that’s what I expected,” when you really had
only a vague idea what to expect. This is why you must write down right answers next
to each test case: it’s much harder to fool yourself into thinking everything is fine when
a picture of a blue box is next to the words "should be a green circle". If you use
check-expect, it becomes even harder to fool yourself.

Another benefit: it makes you specify very precisely what the program is supposed to
produce. No room for vagueness here. Of course, we’ll have to be precise when we write
the program; this gives us a chance to “warm up” our precision muscles, and come up
with suitably nasty “special cases” that might possibly throw the program off, without
having to think about Racket syntax at the same time.

By the way, if you have friends who are professional programmers, you can tell them
you’re learning “test-driven development”. (There’s more to test-driven development than
this, but its most important feature is writing test cases before you write the program.)

Worked Exercise 5.4.1 Write several test cases for the counterchange function of
Exercise 5.3.1.

Solution: We’ve already identified the contract for this function, so we should be able
to call it with any two images. By Syntax Rules 1 and 2, an example would be

(counterchange)

What should this produce? Since the contract tells us the first parameter will go into
the top-left position and the second into the top-right, we could write

"should be a picture with a calendar in the top-left

and bottom-right corners, and a hacker in the top-right

and bottom-left"

If we wanted to give a more precise “right answer”, we could come up with an expression
that actually builds the right picture, e.g.

74 CHAPTER 5. A RECIPE FOR DEFINING FUNCTIONS

(check-expect (counterchange)

(above (beside)

(beside)))

This is, of course, more work, but it also brings two extra benefits: when we get to
writing the body, this example will help us do it, and “check-expect” style test cases are
much easier to check.

So far we’ve given only one test case, and it’s possible that the function might get
that case right even though it’s wrong in general. So let’s try another:

(check-expect (counterchange)

(above (beside)

(beside)))

Exercise 5.4.2 Write several test cases for the copies-beside function described
in Exercise 5.3.2.

Hint: the function takes in a “number”, but in fact it wouldn’t make sense to call this
function on a fraction, a negative number, or an irrational number. The only numbers
that make sense are whole numbers, also known as counting numbers : 0, 1, 2, 3,
In trying to break the program, think about whole numbers that might be considered
“special cases”. We’ll revisit whole numbers in Chapter 24.

Exercise 5.4.3 Write several test cases for the pinwheel function of Exercise 5.3.3.

Exercise 5.4.4 Write several test cases for the checkerboard2 function of Exer-
cise 5.3.4.

Hint: Technically, any two strings would satisfy the contract, but since the purpose
statement adds "Assumes that both strings are color names", you don’t need to
test it on strings that aren’t color names. Ideally, a program to be used by human beings
should be able to handle a wide variety of incorrect inputs, and we’ll learn techniques for
handling such situations in Chapter 19.

5.5. THE FUNCTION SKELETON 75

Exercise 5.4.5 Write several test cases for the bullseye function of Exercise 5.3.5.

Exercise 5.4.6 Write several test cases for the dot-grid function of Exercise 5.3.6.

Exercise 5.4.7 Write several test cases for the lollipop function of Exercise 5.3.7.

5.5 The function skeleton

A function skeleton is a “first draft” of the function definition, based only on Syntax
Rule 5 and the information in the contract (not what specific problem the function is
supposed to solve). As you recall from Chapter 4, every function definition follows a
simple pattern:

(define (function-name param-name param-name ...)

...)

Once you’ve written the contract, you already know the function name as well as the
number, types, order, and meanings of all the parameters. So it’s easy to write the header;
the only faintly creative part is choosing good, meaningful names for the parameters. We’ll
come back to this in a moment.

Worked Exercise 5.5.1 Write a function skeleton for the counterchange function
of Exercise 5.3.1.

Solution: Recall that the function takes in two images, which we referred to in the
contract as top-left and top-right. These are probably good choices for parameter
names: they make clear what each parameter is supposed to represent. Following Syntax
Rule 5, the function definition must look like

(define (counterchange top-left top-right)

...)

5.6 Common beginner mistakes

Here are some of the things I’ve seen a lot of students do wrong in writing examples and
skeletons.

Not calling the function by name

A student working on counterchange writes the example

(check-expect

(above (beside)

(beside)))

76 CHAPTER 5. A RECIPE FOR DEFINING FUNCTIONS

This “example” never actually mentions the counterchange function, so DrRacket
doesn’t know what to do with the two pictures. See Section 4.5.2.

The contract, examples, and skeleton must agree on the number, type, and

order of parameters.

For example, suppose I were writing a function that took in a string and two numbers,
and returned an image:

; do-it : string number number -> image

A student writes the example (check-expect (do-it "boojum") "fnord"). This
example violates the contract in at least two ways: it gives the function only a string
rather than a string and two numbers, and it expects the answer to be a string rather
than an image. A correct test case would have to call do-it on a string and two numbers,
and have an image as the “right answer”:

(check-expect (do-it "boojum" 0 3.14)

(circle 10 "outline" "green"))

(check-expect (do-it "blah" 7 32))

(check-expect (do-it "fnord" 5/3 -6)

(triangle 10 "solid" "blue"))

Another student writes the example

(check-expect (do-it 3 4 "boojum")). This has the right number of param-
eters, and the right return type, but the parameters are in a different order from what
the contract said: the string is third rather than first.

Next, a student writes the skeleton (define (do-it word) ...). Again, this vio-
lates the contract because do-it takes in three parameters, and this skeleton has only
one. A correct skeleton for this function would have to have three parameter names, the
first standing for a string and the second and third standing for numbers, for example

(define (do-it word num1 num2)

...)

Notice how the contract, examples, and skeleton must “match up”:
; do-it: string number number → image

(check-expect (do-it "blah" 7 32))
(define (do-it word num1 num2) ...)

The function name is the same in all three places. The number and order of parameters
in the contract are the same as the number and order of arguments in each test case,
which are the same as the number and order of parameters in the skeleton. The return
type in the contract is the same as the type of the “right answer” in each test case, which
is the same type as the “body” expression which will eventually replace the “. . . ” in the
skeleton.

5.6. COMMON BEGINNER MISTAKES 77

Misleading parameter names

In the above example skeleton, the parameter names word, num1, and num2 were chosen
to suggest to the reader that the first is a string and the other two are numbers. There’s
actually quite a bit of art to choosing good parameter names.

Remember that a parameter name is a place-holder ; you can’t assume that a particular
parameter will always be a picture of a book, or will always be the string "yellow", or will
always be the number 7. If the contract says that the first parameter is a picture, you can
assume that it’s a picture, but not what picture. I’ve seen students write a perfectly-good
example like

(counterchange)

but then write a function skeleton like
(define (counterchange calendar hacker) ...)

What’s wrong with this? It’s technically legal, but misleading: the parameter-name
calendar will stand for whatever first argument is provided when the function is called
(which may or may not be a calendar), and the parameter-name hacker will likewise
stand for the second argument (which may not be a hacker). For example, when you try
the second test case

(counterchange)

the parameter name calendar will stand for a stick figure, and the name hacker will
stand for a picture of a calendar! Remember that a function has to work on all possible
inputs, not only the ones you had in mind.

Duplicate parameter names

Another bad attempt at a skeleton for this function is
(define (counterchange picture picture) ...)

“picture” is a perfectly reasonable parameter name, but this student has used it twice
in the same function header. The purpose of parameter names is to allow you to refer
to them in the body of the function; if they both have the same name, how will Racket
know which one you mean? This is illegal in Racket, and it’ll produce an error message.
(Try it.)

Literals as parameter names

Yet another incorrect skeleton is (define (counterchange) ...)

This one is also illegal: the parameters in a function header must be variable names,
not literals. DrRacket will give you an error message. (Try it.)

78 CHAPTER 5. A RECIPE FOR DEFINING FUNCTIONS

More generally, this kind of mistake points to a common beginner confusion between
calling a function (on specific arguments, e.g. pictures or variables already defined to
stand for pictures) and defining a function (in which you specify place-holder parameter
names).

Remember, the parameter names in a function skeleton should indicate what the
parameter “means” in general (e.g. top-left and top-right), and/or what type it is
(e.g. picture), but should not assume anything about what specific value it is.

5.7 Checking syntax

Once you’ve written a contract, examples, and a function skeleton (with “. . . ” where the
function body will eventually be), DrRacket will help you check whether you’re on the
right track. Obviously, since you haven’t written the function body yet, it won’t produce
correct answers, but at least you can check whether you’re following all the syntax rules
and calling the function with the right number of arguments, thus catching many common
beginner mistakes. Click the “Check Syntax” button near the top of the screen. If your
examples use the function with the wrong number of arguments, DrRacket will tell you
so.

For example, if you made the first of the “common beginner mistakes” above,

(check-expect

(above (beside)

(beside)))

and hit “Check Syntax”, DrRacket would notice that you were calling check-expect with
three arguments rather than two, and tell you so. On the other hand, if you provided
just a picture and an answer:

(check-expect

(above (beside)

(beside)))

“Check Syntax” wouldn’t be able to tell that there was anything wrong, because all your
function calls are with the right number of arguments.

The second of the “common beginner mistakes” above is calling a function with the
wrong number of arguments, or arguments in the wrong order. “Check Syntax” will

5.8. EXERCISES ON WRITING SKELETONS 79

complain if you define a function with two parameters but call it with one or three; it
can’t tell if you call it with two parameters in the wrong order.

The third of the “common beginner mistakes” above, misleading parameter names, is
beyond “Check Syntax”’s ability to catch: all your function calls are legal.

However, it can easily catch the fourth and fifth:

(define (counterchange picture picture) ...)

(define (counterchange) ...)

In both of these cases, the function definition doesn’t fit Syntax Rule 5, and “Check
Syntax” will tell you so.

5.8 Exercises on writing skeletons

In doing the following exercises, use “Check Syntax to see whether your examples and
skeletons match up properly.

Exercise 5.8.1 Write a function skeleton for the copies-beside function of Exer-
cise 5.3.2.

Exercise 5.8.2 Write a function skeleton for the pinwheel function of Exercise 5.3.3.

Exercise 5.8.3 Write a function skeleton for the checkerboard2 function of Exer-
cise 5.3.4.

Exercise 5.8.4 Write a function skeleton for the bullseye function of Exercise 5.3.5.

Exercise 5.8.5 Write a function skeleton for the dot-grid function of Exercise 5.3.6.

Exercise 5.8.6 Write a function skeleton for the lollipop function of Exercise 5.3.7.

5.9 The inventory

Imagine that you’re trying to bake cookies. A smart cook will get all the ingredients
(eggs, milk, butter, sugar, chocolate chips, etc.) out and put them on the counter before
mixing anything together: that way you can see whether you have enough of everything.
We’ll do something similar: list everything that’s available for you to use in defining the
function, before starting to put things together. At this stage, that basically means the
parameters (it will get more interesting later).

You should also recall from Chapter 4 that the parameter names that appear in the
function header must exactly match those that appear in the function body — same
spelling, same capitalization, etc. You may have no idea how the function body is going

80 CHAPTER 5. A RECIPE FOR DEFINING FUNCTIONS

to work, but you can be pretty sure that the parameter names you put in the header will
be used in it. At this stage, I recommend writing the names of all the parameters, one on
each line, commented out, in between the function header and the “. . . ” where its body
will eventually be. It’s often helpful to also write down, next to each parameter, what
data type it is; this determines what you can reasonably do with it.

There may also be particular pieces of information that are always the same, regardless
of the arguments passed into the function. For example, a function that is supposed to
always draw in blue will presumably use the word "blue" at least once in its body.

I generally ask students to write a skeleton, as above, and then insert the inventory
information before the “. . . ”.

Worked Exercise 5.9.1 Add an inventory to the skeleton for the counterchange

function of Exercise 5.5.1.

Solution: We’ve already written the skeleton:

(define (counterchange top-left top-right)

...)

We don’t know yet how the function body will work, but we’re pretty sure it will
involve the variable names top-left and top-right. So we list these, one on each line,
commented out, along with their types. The complete function skeleton, with inventory
then reads

(define (counterchange top-left top-right)

; top-left image

; top-right image

...)

Together with the contract and examples we wrote before, the Definitions pane should
now look like Figure 5.1.

SIDEBAR:

Later in the book, we’ll talk about something analogous called an “outventory”.
Where an inventory answers the question “what am I given, and what can I do with
it?”, an outventory answers the question “what do I need to produce, and how can
I produce it?”. If the inventory is like collecting the raw ingredients for cookies, the
outventory is like observing that the last step in the recipe is baking, and concluding
that you’d better preheat the oven and make sure you have a cookie sheet.

We’ll come back to this concept when we have problems to solve that need it. For
now, inventories will do just fine.

Exercise 5.9.2 Add an inventory to the skeleton for the copies-beside function
of Exercise 5.8.1.

Exercise 5.9.3 Add an inventory to the pinwheel function of Exercise 5.8.2.

Exercise 5.9.4 Add an inventory to the checkerboard2 function of Exercise 5.8.3.

5.9. THE INVENTORY 81

Figure 5.1: Skeleton and inventory of counterchange
; counterchange : image (top-left)

; image (top-right) -> image

; Produces a square arrangement with the top-left image also

; in the bottom right, and the top-right image also in the

; bottom left.

(check-expect (counterchange)

(above (beside)

(beside)))

(check-expect (counterchange)

(above (beside)

(beside)))

(define (counterchange top-left top-right)

; top-left image

; top-right image

...)

82 CHAPTER 5. A RECIPE FOR DEFINING FUNCTIONS

Hint: In addition to the parameters, this function will almost certainly need to use the
number 20 (the size of each small square), so you can include another line with 20 on it.
Its type, obviously, is number.

Exercise 5.9.5 Add an inventory to the bullseye function of Exercise 5.8.4.

Hint: This function will need to make some solid circles, so it’ll need the string "solid".
Include this fixed value, on a line by itself, along with the parameters.

Worked Exercise 5.9.6 Add an inventory to the dot-grid function of Exercise 5.8.5.

Solution: You should already have a skeleton, so we’ll discuss only what to add to it.
Suppose your parameter names are width and height. Obviously, you’ll need them inside
the body:

; width a number

; height a number

In addition, you know that the function will need radius-5 circular blue dots . To
produce these, we can be fairly certain that we’ll need the expression (circle 5 "solid"

"blue"). This too can be added to the inventory. The skeleton with inventory now looks
like
(define (dot-grid width height)

; width a number

; height a number

; (circle 5 "solid" "blue") an image

...)

Exercise 5.9.7 Add an inventory to the lollipop function of Exercise 5.8.6.

5.10 Inventories with values

Sometimes listing the available expressions and their types is enough for you to figure
out the body expression. But what if you do all that, and don’t have any flashes of
inspiration? A technique that has helped many of my students is writing an inventory
with values.

Here’s how it works. After you’ve written down all the “available expressions” and
their types, choose one of your test cases (preferably one that’s not too simple), and for
each of the expressions in the inventory, write down its value for that test case. Then add
another line to the inventory, labelled

; right answer

and write down the right answer for that test case. Finally, look at the value of the right
answer and the values of the available expressions, trying to find a way to get the right
answer from the available expressions.

Worked Exercise 5.10.1 Add values to the inventory of the counterchange func-
tion of Exercise 5.5.1.

5.11. THE FUNCTION BODY 83

Solution: We already have a skeleton and test cases in Figure 5.1.

We’ll pick the second of our test cases, the one involving and , and
add the values of each inventory item to the inventory:

(define (counterchange top-left top-right)

; top-left image

; top-right image

; right answer image (above (beside)

; (beside)))

...)

Note that we’re not saying that top-left will always be a stick-figure, or top-right
will always be a calendar, only that we’re using those values as an example to see more
concretely what the inventory means. We still have to write the function in such a way
that it works on any values we give it.

5.11 The function body

Now it’s time to put some meat on the bones. This, frankly, is the hardest part of pro-
gramming: coming up with an expression which, no matter what arguments the function
is applied to, will always produce the right answer. We’ve done as much of the work ahead
of time as possible: we know what types the function is taking in and returning, we’ve
written a couple of specific examples, we have the basic syntax of a function definition,
we know what parameters and values are available for us to use, and we have a specific
example of them to compare with a specific right answer. Now we have to think about
how we would solve the problem if we were the computer. In doing this, you will find
function contracts (both for predefined functions and for your own functions) extremely
useful: for example, if you have a string that you know is supposed to be the name of a
color, you can be pretty sure it’ll appear as the last parameter to the circle, rectangle,
ellipse, or triangle function; which one depends on what the function is supposed to
draw.

Just as we added the inventory into the skeleton, we’ll add the function body just after
the commented-out “ingredients” from the inventory stage, still inside the parentheses,
in place of the “. . . ”, so the whole thing becomes a legal function definition that happens
to have a commented inventory in the middle.

84 CHAPTER 5. A RECIPE FOR DEFINING FUNCTIONS

Worked Exercise 5.11.1 Add a body to the skeleton and inventory for the
counterchange function of Exercise 5.9.1.

Solution: Of course, we’ve already done this in Exercise 4.2.3. But if we hadn’t, here is
how we would figure it out. We already have the skeleton and inventory:
(define (counterchange top-left top-right)

; top-left image

; top-right image

; right answer image (above (beside)

; (beside)))

...)

We know that the body will (almost certainly) use the names top-left and top-right

(at least once each). If you immediately see how to put them together to get the right
results, great. If not, look at the examples, both of which fit the pattern

(above (beside something something-else)

(beside something-else something))

They differ only in what pictures are used as something and something-else, both of
which must be images. Do we have any images available to work with? Yes: according
to the inventory, top-left and top-right are images, so the obvious thing to try is to
use those as something and something-else. But which one is which? In the “inventory
with values”, the image that was the value of top-left was the first argument to the
first beside and the second argument to the second, while the image that was the value
of top-right was the second argument to the first beside and the first argument to the
second. This suggests

(above (beside top-left top-right)

(beside top-right top-left))

as the body, and we’ll type this in between the inventory and the closing parenthesis of
the skeleton. We should now have a Definitions pane that looks like Figure 5.2.

Together with the contract and examples we wrote before, the Definitions pane should
now look like Figure 5.2.

Unfortunately, I haven’t yet told you everything you need to write the bodies of
copies-beside or dot-grid. (We’ll get to these in Chapter 24.) However, you should
be able to do the following four, especially if you’ve done all the steps up until now for
them.

Exercise 5.11.2 Add a body to the pinwheel function of Exercise 5.9.3.

Exercise 5.11.3 Add a body to the checkerboard2 function of Exercise 5.9.4.

5.11. THE FUNCTION BODY 85

Figure 5.2: Complete definition of counterchange

; counterchange : image (top-left)

; image (top-right) -> image

(check-expect (counterchange)

(above (beside)

(beside)))

(check-expect (counterchange)

(above (beside)

(beside)))

(define (counterchange top-left top-right)

; top-left image

; top-right image

; right answer image (above (beside)

; (beside)))

(above (beside top-left top-right)

(beside top-right top-left))

)

86 CHAPTER 5. A RECIPE FOR DEFINING FUNCTIONS

Hint: You can write this function directly, using beside and above, or you can write
it shorter and simpler by re-using another function we’ve already written. Shorter and
simpler is good!

Exercise 5.11.4 Add a body to the bullseye function of Exercise 5.9.5.

Exercise 5.11.5 Add a body to the lollipop function of Exercise 5.9.7.

5.12 Testing

Now it’s the moment of truth: the time to find out whether your function definition works.
If you’ve typed everything into the Definitions pane correctly, just click the “Run” button.
If you’re using “should be” for test cases, you’ll see the results in the Interactions pane,
each followed by the words “should be” and the right answer. Check that each of the
actual answers matches what you said it “should be”: if any of them don’t match, figure
out what’s wrong and fix it. If, on the other hand, you’re using check-expect, you should
see a report telling you exactly how many and which of your test cases failed.

If you get an error message like reference to an identifier before its definition, it
means that you tried to use the new function before defining it — for example, if you
have “should be”-style examples appearing ahead of the definition. (Examples using
check-expect are allowed to appear ahead of the definition.) A slightly different error
message, name is not defined, not an argument, and not a primitive name, means that
the name of the function in the examples doesn’t exactly match the name of the function
in the definition (in spelling, or capitalization, or something like that).

If you get an error message like this procedure expects 2 arguments, here it is provided
1 argument , it means your contract, examples, and skeleton disagree on how many argu-
ments the function is supposed to take in. An error message like expects type <number>
as 1st argument, given “hello” likewise indicates a disagreement among contract, exam-
ples, and skeleton on either the types or the order of the arguments.

Exercise 5.12.1 Test each of the functions whose definitions you wrote in Section 5.11.
If any of them produce wrong answers, fix them and test again until they produce correct
answers for every test case.

5.13 Using the function

Now that you’ve tested the function on problems for which you know the right answer,
you have confidence that it works correctly. So you can use it on problems for which you
don’t know the right answer, and be reasonably confident that the answers it produces
are right.

Just as important, you can now use your new function in writing other functions,
knowing that if something is wrong with the new function, it’s not the old function’s
fault. When a new piece of commercial software is written, it may rely on hundreds or
thousands of previously-written functions; if a programmer had to re-examine every one
of them to fix a bug in the new program, nothing would ever get done.

5.14. PUTTING IT ALL TOGETHER 87

5.14 Putting it all together

In reality, you would seldom want to write just the contract, or just the examples, of a
function. Much more common is to go through all the steps for a single function, then
go through all the steps for another function. In this section are several more function-
definition exercises: for each one, go through all the steps of the design recipe.

Exercise 5.14.1 Develop a function named diamond that takes in a string (the color
of the diamond) and a number (the length of one of its sides) and produces a diamond
shape, i.e. two triangles connected along one side.

Exercise 5.14.2 Develop a function named text-box that takes in two strings, of
which the second should be a color-name, and two numbers (width and height), and pro-
duces a picture of the first string, in 18-point black type, on a background rectangle of the
specified color, width, and height.

Exercise 5.14.3 (Thanks to Leon LaSpina for this problem)

Develop a function named two-eyes that, given a number and a color name, pro-
duces a picture of two circular “eyes”, 100 pixels apart horizontally. Each one should
have a black “pupil” of radius 10, surrounded by an “iris” of the specified color and ra-
dius (which you may assume is more than 10). The 100-pixel separation is measured from
edge to edge, not center to center.

Exercise 5.14.4 (Thanks to Leon LaSpina for this problem)

Develop a function named circle-in-square that takes in a number (the length
of a side of a square) and two strings (the colors of a square and a circle), and produces
a picture of a square of one color, with a circle of the other color inscribed inside it. The
diameter of the circle should be the same as the side of the square, so the circle just barely
touches the edge of the square at the middle of each side.

Hint: If you’ve already read Chapter 7, you’ll be tempted to do this using arithmetic.
But it can be done without arithmetic, using only what you’ve seen so far.

Exercise 5.14.5 Develop a function named caption-below that takes in an image
and a string, and produces a copy of the same image with a caption underneath it:

88 CHAPTER 5. A RECIPE FOR DEFINING FUNCTIONS

5.15 Review of important words and concepts

Projects (such as writing a computer program) are more likely to be finished successfully
if you follow a recipe. In particular, you need to have a very clear, precise idea of what
a program is supposed to do before you start writing it. To design a Racket function,
follow the following seven steps:

1. Write a function contract (and possibly a purpose statement) for the function you
want to write. Include the function name, the numbers, types, and order of inputs,
and the type of the result (which so far is always “image”).

2. Write several examples of how the function will be used, with their correct answers.
Include special cases and anything else “weird” (but legal, within the contract) that
might help you uncover errors in your program.

3. Write a skeleton of the function you want to write, by combining Syntax Rule 5 with
the decisions you’ve already made about number, type, and order of parameters in
step 1. At this point you can use “Check Syntax” to confirm that your examples
and skeleton match one another.

4. Add an inventory to the skeleton, showing the names and types of all the parameters,
and any “fixed data” that you know will be needed no matter what arguments are
plugged in. If there are more complex expressions that you’re confident you’ll need,
you can write those at this point too. It’s often a good idea to choose a specific test
case and write down the values of all the inventory items for this test case, as well
as what the right answer should be for this test case.

5. Fill in the body of the function definition. This will be based on the skeleton, with
the help of any patterns you notice from the “right answers” of your examples. At
this point you can use “Check Syntax” again to confirm that all the parentheses
are matched correctly, you’re calling functions with the right number of arguments,
and so on.

6. Test your program on the examples you chose in step 2. If the actual answers don’t
match what you said they “should be”, figure out what’s wrong, fix it, and test
again.

5.16. REFERENCE 89

7. Use your program to answer questions for which you don’t already know the right
answer, or to build other, more complex functions, secure in the knowledge that
this one works.

Although this chapter didn’t introduce a lot of new Racket constructs, it is probably
the most important chapter in the book. If, a year after completing this course, you’ve
forgotten all your Racket but you remember the design recipe, I’ll be happy, and you’ll
be well on your way to being a good programmer.

5.16 Reference

No new functions or syntax rules were introduced in this chapter.

90 CHAPTER 5. A RECIPE FOR DEFINING FUNCTIONS

Chapter 6

Animations in DrRacket

6.1 Preliminaries

Up to this point we’ve been working with static pictures. But it’s much more fun and
interesting to deal with pictures that change over time and interact with the user.

We think of an animation as showing, at all times, a simulated “world” or “model”.1

The world changes over time, and we watch it through the animation window. Our ani-
mations will use a built-in function (defined in the teachpack) named big-bang (because
it “starts the world”). Here’s its contract:

; big-bang : image(start) event-handler ... -> image

What does all this mean? The big-bang function takes in one or more parameters:
the first parameter is the first image the animation should show, and any remaining
parameters are “event handlers”. An event handler is a kind of function, and since there
are several different kinds of events to be handled, we need to specify which one goes with
which kind of event. When the animation ends, the function returns the last image it
showed. (Again, this is slightly simplified; we’ll see more details in Chapters 8 and 10.)

An event handler is a function for the animation to call whenever a certain “event”
happens. There are several kinds of “events”: draw the screen, clock tick, mouse activity,
keyboard activity, etc. but for our first example, the only one we need is called a “draw
handler”, whose job is to decide what to show on the screen at each step. For now,
we’ll use a built-in function named show-it, which takes in an image and returns it
unchanged, as our draw handler. To tell DrRacket to use show-it as a draw handler,
we put (on-draw show-it) as one of the “event handler” arguments to big-bang. This
means that whenever DrRacket needs to redraw the screen, it will show the current image.

Worked Exercise 6.1.1 Develop an animation that displays an unchanging green
circle of radius 20.

Solution: The starting image needs to be a green circle of radius 20; we know how
to create such a thing with (circle 20 "solid" "green"). And since what we want

1There’s also something called a “universe”, which is several worlds running at the same time, either
on the same computer or on different computers communicating over a network. We won’t get to that
in this book, but the picturing-programs library provides everything you need. If you want to learn
to write such programs, first get through Chapter 10, then open DrRacket’s Help Desk and search for
“multiple worlds”.

91

92 CHAPTER 6. ANIMATIONS IN DRRACKET

to show in the animation window is exactly this picture, we’ll use show-it as our draw
handler. The result is

(big-bang (circle 20 "solid" "green") (on-draw show-it))

Try this, either by typing it into the Interactions pane and hitting ENTER, or by typing
it into the Definitions pane and clicking “Run”. It should bring up a separate window
with a green dot in it; when you click the “close” box of this window, the window goes
away and big-bang returns the picture of the green dot.

Practice Exercise 6.1.2 Try some different pictures.

Exercise 6.1.3 Develop an animation that displays an unchanging green circle of
radius 20 in the center of a square white window 100 pixels on a side.

Hint: Use either place-image or overlay to put the circle onto a background built
using rectangle.

Specifying window size

In several of our animations so far, we’ve used overlay or place-image to place a picture
onto a background, which is usually built by rectangle. If all you want is to have a larger
animation window, there’s a simpler way: specify the width and height of the window as
additional arguments to on-draw.

(big-bang pic:calendar (on-draw show-it 300 200))

and see what happens. It should create an animation window, 300 pixels wide by 200
high, with a calendar in the top-left corner.

Of course, as you’ve already seen, these extra arguments to on-draw aren’t required;
if you leave them out, the animation window will be just big enough to hold your starting
picture.

Practice Exercise 6.1.4 Make up several examples like the above with pictures of var-
ious sizes and animation windows of various sizes. See how they behave.

6.2 Tick handlers

Of course, these “animations” aren’t very interesting. To get one to change over time,
we need another event handler : specifically a tick handler , i.e. a handler which will be
called “every time the clock ticks”. You tell big-bang that you’re giving it a tick-handler
by saying (on-tick function-name interval) as one of the arguments to big-bang.
The interval parameter is how many seconds there should be between one “tick” and the
next; if you leave it out, the animation will run as fast as it can. The function-name
parameter is the name of any function that takes in an old image and returns a new one.
Ordinarily, you’ll write a function yourself to do this job, but for this example, we’ll use
one that’s already built in.

Worked Exercise 6.2.1 Develop an animation of a calendar that rotates 90◦ clock-
wise every half second in the center of a 100x100 window.

6.3. COMMON BEGINNER MISTAKES 93

Solution: The starting picture is our calendar picture, overlay-ed into the middle of an
empty 100x100 box. The interval is half a second. For the tick handler, we need a function
that takes in an image and returns that image rotated clockwise 90◦. Conveniently
enough, rotate-cw does exactly this, so our handler will be (on-tick rotate-cw 1/2)

and the whole animation becomes

(big-bang (overlay pic:calendar (rectangle 100 100 "solid" "white"))

(on-draw show-it)

(on-tick rotate-cw 1/2))

Try this.

By the way, you could also have said

(big-bang (overlay pic:calendar (rectangle 100 100 "solid" "white"))

(on-tick rotate-cw 1/2)

(on-draw show-it))

and this would work too: the various handlers can be specified in any order, as long as
the starting picture comes first.

Practice Exercise 6.2.2 What would happen in Exercise 6.2.1 if you skipped the overlay
and the 100x100 rectangle, and simply used the additional arguments to on-draw to make
the window 100x100? Try it. Do you understand why it did what it did?

Exercise 6.2.3 Develop an animation of a picture of your choice that flips upside
down every 1.5 seconds in the center of the window.

Practice Exercise 6.2.4 Make up some other variations: different time intervals, dif-
ferent pictures, different functions in place of rotate-cw. (Note that the only functions
that make sense here are functions that take in one image and return another — for
example, rotate-cw and flip-vertical but not beside or overlay/xy.)

What happens if you change the solution to Exercise 6.2.1 to use a colored background?
What if the background isn’t a square (say, it’s wider than it is high)? What if the calendar
isn’t in the center? If you don’t like the results of some of these, we’ll see later how to fix
them.

SIDEBAR:

Technically, on-tick and on-draw aren’t functions, but rather something called spe-
cial forms. What this means in practice is that you can’t use them anywhere except
as an argument to big-bang.

6.3 Common beginner mistakes

Leaving out the draw handler

If you write an animation with no on-draw clause, like

(big-bang pic:calendar (on-tick rotate-cw 1/2))

then DrRacket doesn’t know how you want to show the animation window, so it doesn’t.
Depending on what version of DrRacket you have, this may produce an error message,

94 CHAPTER 6. ANIMATIONS IN DRRACKET

or the animation may run but with no animation window (you’ll have to hit the “Stop”
button in the top-right corner of the DrRacket window).

There actually are times when you want to run an animation without displaying
it — e.g. when it’s communicating over the network with other computers, and they’re
displaying it — but we won’t get to that in this book.

Testing big-bang with check-expect

A student wrote the following:

; rotating : image -> image

(check-expect (rotating pic:calendar)

(big-bang (overlay pic:calendar

(rectangle 200 200 "solid" "white"))

(on-draw show-it)

(on-tick rotate-cw 1/2)))

(define (rotating pic)

(big-bang (overlay pic

(rectangle 200 200 "solid" "white"))

(on-draw show-it)

(on-tick rotate-cw 1/2)))

This is all legal. It passes a syntax check, it runs, and it shows a rotating calendar on the
screen. In fact, after I close the animation window, it shows another rotating calendar
on the screen. After I close the second animation window, it tells me that the program
failed its one test case. What’s going on here?

The above code calls (rotating pic:calendar), which calls big-bang, which starts
an animation. When a user closes this animation window, it returns from rotating, and
check-expect calls big-bang again to construct the “right answer”; this starts another
animation. When the user closes this animation window, check-expect compares the
result of the first big-bang with the result of the second.

Recall from Section 6.1 that the result of big-bang is the last image it showed in the
animation window. So unless both animations happen to end with the calendar pointing
the same direction, the results won’t match and check-expect will say the test failed. In
general, check-expect is not useful on the results of big-bang.

This student has made things much more complicated than they need to be. I seldom
call big-bang inside a function definition at all; instead, I call big-bang directly in the

Definitions or Interactions window, not inside a function definition. So instead
of the eleven lines the student wrote above, I would write the three lines

(big-bang (overlay pic:calendar (rectangle 200 200 "solid" "white"))

(on-draw show-it)

(on-tick rotate-cw 1/2))

If you really want to define a function that runs a particular animation, so you have a
shorter name for it, the above definition is a good one: it takes in an image, and puts that
image rotating every half second in the middle of a 200x200 animation window. But don’t
bother writing test cases for it, since we’re interested in the function for the animation it
runs, not for the result it returns.

6.4. WRITING TICK HANDLERS 95

6.4 Writing tick handlers

In most cases, you want to do something more complicated when the clock ticks, something
for which there isn’t already a built-in function like rotate-cw. So we write one.

Worked Exercise 6.4.1 Develop an animation of a calendar that starts in the top-
left corner of a window and moves 10 pixels to the right every second.

Solution: Obviously, we’ll need a tick handler with an interval of 1 second. It’ll be
convenient to specify the size of the window with something like

(on-draw show-it 500 100)

(note that we’ve left lots of width so there’s room for the calendar to move right). The
starting picture can be just pic:calendar. What’s not so obvious is how to move a
picture to the right by 10 pixels; there isn’t already a built-in function that does that. So
we’ll write one.

Following the usual design recipe, we’ll start with the contract. Let’s name our
function move-right-10. In order to work as a tick handler, it must take in an image
and return an image, so the contract is

; move-right-10 : image -> image

The purpose is obvious from the function name, so we’ll skip the purpose statement.
Next we need some examples. Any image should work, e.g.

(move-right-10 pic:calendar)

But what should the right answer be? We could move the calendar right 10 pixels by
putting it to the right of something 10 pixels wide with beside. What should we put it
beside? A rectangle 10 pixels wide should do the job. . . but how high? We don’t actually
want to see a rectangle there, so let’s make it 0 pixels tall (which makes it invisible; it
really doesn’t matter whether it’s outlined or solid, or what color it is.)

(check-expect (move-right-10 pic:calendar)

(beside (rectangle 10 0 "solid" "white") pic:calendar))

(check-expect (move-right-10 (circle 3 "solid" "green"))

(beside (rectangle 10 0 "solid" "white")

(circle 3 "solid" "green")))

The next step in the design recipe is a function skeleton. We know that the function
will be named move-right-10, and it’ll take one parameter that’s a picture; in fact, let’s
name the parameter “picture”. So our function skeleton looks like

(define (move-right-10 picture)

...)

Next, we need to add an inventory. We only have one parameter, so we’ll write down
its name and datatype:

(define (move-right-10 picture)

; picture image

...)

The next step in the design recipe is filling in the function body. We know that the
function body will use the parameter name picture, and from our examples we see that
the right answer tends to look like

(beside (rectangle 10 0 "solid" "white") something)

96 CHAPTER 6. ANIMATIONS IN DRRACKET

where something is whatever picture you want to move to the right.
So our function definition becomes
(define (move-right-10 picture)

; picture image

(beside (rectangle 10 0 "solid" "white")

picture)

)

The complete definition window should now look like Figure 6.1.

Figure 6.1: Complete definition of move-right-10
(require picturing-programs)

; move-right-10 : image -> image

(check-expect (move-right-10 pic:calendar)

(beside (rectangle 10 0 "solid" "white") pic:calendar))

(check-expect (move-right-10 (circle 3 "solid" "green"))

(beside (rectangle 10 0 "solid" "white")

(circle 3 "solid" "green")))

(define (move-right-10 picture)

; picture image

(beside (rectangle 10 0 "solid" "white") picture)

)

Now we can test the function by clicking the “Run” button.

Everything we just went through to define move-right-10 was so that we could use
the move-right-10 function in an animation. The animation itself is now pretty simple:

(big-bang pic:calendar

(on-draw show-it 500 100)

(on-tick move-right-10 1))

Type this into the Interactions pane and see whether it works.

SIDEBAR:

The idea of providing a function for the animation to call as necessary — e.g.
whenever the clock ticks — is called “event-driven programming with callbacks.”
That is, you’re providing a function, you call the animation, and it “calls back” your
function whenever an interesting “event” happens. If you have friends or relatives
who do computer programming, tell them this is what you’re studying.

Exercise 6.4.2 Develop an animation which moves a picture of your choice down 5
pixels every half second, starting at the top-left corner of the window.

Exercise 6.4.3 Develop an animation which moves a picture of your choice to the
left by 3 pixels every half second, starting at the top-left corner (so the picture seems to
fall off the left edge of the window).

6.5. WRITING DRAW HANDLERS 97

Hint: You can get the effect of moving to the left by cutting off the left-hand few
pixels of the image. You’ll want to start with either a fairly large picture, or one that’s
place-imaged away from the left edge.

Exercise 6.4.4 Develop an animation which starts with a small red dot at the top-left
corner of the window, then replaces it with two red dots side by side, then with a row of
four, then a row of eight, then a row of sixteen . . . doubling every three seconds.

6.5 Writing draw handlers

As you recall, when you define a function you need to distinguish between what’s the
same every time (which tends to become the body of the function) and what’s different
every time (which tends to become the parameters of the function). Something similar
happens in animations: we need to identify what about the animation is always the same
and what parts of the animation can change while it runs. The latter is called the model.

In all the examples so far, the model was the complete contents of the animation
window. Whenever that happens, we can use show-it as the draw handler.

But sometimes we want only part of the animation window to change: for example,
exercise 6.5.2 has a stick-figure flipping upside down, somewhere on a background scene
that doesn’t change. In this case the model is only the stick-figure, and the draw handler
has the job of embedding the model (the changing part) into the background image (the
unchanging part).

A draw handler can be any function with contract image -> image; the image it
takes in is the model, and the image it produces is the whole contents of the animation
window. You can write such a function, then use it (rather than show-it) as an argument
to on-draw.

Worked Exercise 6.5.1 Develop an animation of a calendar that sits at coordinates
(100, 40) of a 150x200 pink window and rotates clockwise every 1/2 second.

Solution: Using what we’ve already seen, we could set the starting image to be just a
calendar, which would make it easy to rotate using (on-tick rotate-cw 1/2) . . . but
then it’ll appear at the top-left corner of a white window rather than where we want it
in a pink window. (Try it!)

Or we could set the starting image to be (place-image pic:calendar 100 40 (rectangle

150 200 "solid" "pink")) . . . but when we rotated it, it would rotate the whole window
rather than rotating just the calendar in place. (Try it!)

We’ll solve both of these problems by letting the model be only the calendar, rather
than the whole window, and writing our own draw handler to place the calendar on the
pink background. Let’s name it place-on-pink. It’s pretty straightforward:

Contract:

; place-on-pink : image -> image

Examples:

98 CHAPTER 6. ANIMATIONS IN DRRACKET

(check-expect (place-on-pink pic:calendar)

(place-image pic:calendar

100 40

(rectangle 150 200 "solid" "pink")))

(check-expect (place-on-pink (triangle 30 "solid" "blue"))

(place-image (triangle 30 "solid" "blue")

100 40

(rectangle 150 200 "solid" "pink")))

Skeleton and Inventory:

(define (place-on-pink picture)

; picture image

...

)

Body:

(define (place-on-pink picture)

; picture image

(place-image picture

100 40

(rectangle 150 200 "solid" "pink"))

)

Once we’ve tested this, we can use it in an animation:

(big-bang pic:calendar

(on-tick rotate-cw 1/2)

(on-draw place-on-pink))

Note that we didn’t need to specify the window size, because place-on-pink always
returns a rectangle of the right size.

Exercise 6.5.2 Find an outdoor scene on the Web. Develop an animation in which

a stick-figure is positioned somewhere appropriate in the scene, and flips upside-
down every second, staying in the same place; the background should not flip upside-down!

Exercise 6.5.3 Modify your solution to Exercise 6.4.4 so the row of dots is always
centered in the window.

Exercise 6.5.4 Develop an animation which shows a picture of your choice at the
center of the animation window, rotating smoothly (say, 5 degrees every 1/10 second).

Hint: If you do this the obvious way, the picture may wander around a bit. This is
because overlay lines up the center of the picture with the center of the background. But
the “center” is defined as “halfway between the leftmost and rightmost points, halfway
between the top and bottom points”, and when the picture is rotated, this can refer to
different parts of the picture than before. One way around this is to first overlay the
picture on an invisible (i.e. the same color as the background) circle that completely
contains it, so whatever point on your picture is at the center of the circle will stay put.

6.6. OTHER KINDS OF EVENT HANDLERS 99

Exercise 6.5.5 Develop an animation in which a stick-figure stands at the edge of a
lake (part of the background scene) and does slow cartwheels (say, 5 degrees every 1/10
second). The figure’s reflection should appear below him in the lake, upside down and doing
slow cartwheels in the opposite direction (i.e. if the stick figure is rotating clockwise, the
reflection should be rotating counter-clockwise).

Hint: You don’t have to do anything special to get the reflection to rotate in the
opposite direction: if the stick-figure is rotating, then its upside-down reflection will be
rotating the opposite direction.

Exercise 6.5.6 Develop an animation in which a stick-figure appears in three differ-
ent places, scattered around a background scene. One should be right-side-up, one rotated
180 degrees, and one flipped upside-down. The first and second should rotate slowly clock-
wise, while the third rotates slowly counter-clockwise.

6.6 Other kinds of event handlers

As mentioned earlier, “tick handlers” are the simplest kind, but one can also provide
handlers to respond whenever somebody types a key on the keyboard, or whenever some-
body moves or clicks the mouse. The details are in Figure 6.2. (There’s another kind of
handler which we use to stop an animation; we’ll discuss it in Chapter 14.)

Here’s a simple example of a mouse handler:

Worked Exercise 6.6.1 Develop an animation of a picture of your choice, moving
right 10 pixels whenever the mouse is moved or clicked.

Solution: Again, we’ll use the calendar picture, with the same width and height as
before. We need to install a handler using on-mouse, but (according to the contract in
Figure 6.2) the function we give to on-mouse must take in a picture, two numbers, and
a mouse-event, even though we’re not interested in most of these things (and don’t even
know what a “mouse-event” is!). So we’ll write a function similar to move-right-10, but
taking in this extra information and ignoring it.

Contract:

; move-right-10-on-mouse :

; image number number mouse-event -> image

Purpose statement:

; Just like move-right-10, but takes in three extra

; parameters and ignores them.

Examples: We’ve already come up with examples for move-right-10, so these should
be similar, only with some extra arguments plugged in. Since we’re writing the function
and we know it will ignore the “mouse-event” parameter, it doesn’t matter what we plug
in there; we’ll use strings.

(check-expect

(move-right-10-on-mouse pic:calendar 318 27 "whatever")

(beside (rectangle 10 0 "solid" "white") pic:calendar))

(check-expect

(move-right-10-on-mouse (circle 3 "solid" "green") -3784 3.7 "blah")

(beside (rectangle 10 0 "solid" "white")

(circle 3 "solid" "green")))

100 CHAPTER 6. ANIMATIONS IN DRRACKET

Figure 6.2: big-bang and event handlers

The big-bang function has the contract

; big-bang : image(start) handler ... -> image

tick handlers must have the contract

; function-name : image (old) -> image (new)

They are installed by using (on-tick function-name interval) as an argu-
ment to big-bang. The interval is the length of time (in seconds) between clock
ticks; if you leave it out, the animation will run as fast as it can.

key handlers must have the contract

; function-name : image (old) key -> image (new)

The “key” parameter indicates what key was pressed; we’ll see how to use it in
Chapter 18.

They are installed with (on-key function-name).

mouse handlers must have the contract

; function-name : image (old)

; number (mouse-x) number (mouse-y)

; event

; -> image (new)

The first parameter is the old picture; the second represents the x coordinate,
indicating how many pixels from the left the mouse is; the third represents the y
coordinate, indicating how many pixels down from the top the mouse is; and the
“event” tells what happened (the mouse was moved, the button was pressed or
released, etc.); we’ll see in Chapter 18 how to use this.

Mouse handlers are installed with (on-mouse function-name).

draw handlers must have the contract

; function-name : image (current) -> image

and are installed with (on-draw function-name width height). If you leave
out the width and height, the animation window will be the size and shape of the
result the first time the draw handler is called.

An especially simple draw handler, show-it, is predefined: it simply returns the
same image it was given. Use it when your model represents the entire animation
window.

6.6. OTHER KINDS OF EVENT HANDLERS 101

Function skeleton:

(define (move-right-10-on-mouse picture x y mouse-event)

...)

Fill in the inventory:

(define (move-right-10-on-mouse picture x y mouse-event)

; picture image

; x number

; y number

; mouse-event whatever this is

...)

Fill in the body: We already know how to use picture to get the desired answer.
The other three parameters are of no interest to us, so we just won’t use them. Thus we
can write
(define (move-right-10-on-mouse picture x y mouse-event)

; picture image

; x number

; y number

; mouse-event whatever this is

(beside (rectangle 10 0 "solid" "white") picture)

)

Notice that the function body is the same as in move-right-10. Most computer scientists
would consider this inelegant: if you already wrote it once, the computer knows it, so
why should you have to write it again? A briefer and more elegant way to do it is to
re-use the move-right-10 function (assuming the definition of move-right-10 is still in
the definitions window, somewhere up above). The entire definitions window (including
both definitions) should now look as in Figure 6.3.

Now that we have the move-right-10-on-mouse function, we can use it in an anima-
tion:
(big-bang pic:calendar

(on-draw show-it 500 100)

(on-mouse move-right-10-on-mouse))

SIDEBAR:

Notice that the animation only pays attention to mouse motion when the mouse is
inside the animation window ; in the above example, you can move around the rest
of the screen without the calendar moving.

Exercise 6.6.2 Develop an animation of a picture of your choice that moves right 10
pixels whenever a key is pressed on the keyboard.

Hint: Obviously, you need a key handler. Just ignore the “key” parameter for now;
we’ll see how to use it in Chapter 18.

A more realistic example of using a mouse handler is the following:

102 CHAPTER 6. ANIMATIONS IN DRRACKET

Figure 6.3: move-right-10 and move-right-10-on-mouse
(require picturing-programs)

; move-right-10 : image -> image

(check-expect (move-right-10 pic:calendar)

(beside (rectangle 10 0 "solid" "white") pic:calendar))

(check-expect (move-right-10 (circle 3 "solid" "green"))

(beside (rectangle 10 0 "solid" "white")

(circle 3 "solid" "green")))

(define (move-right-10 picture)

; picture image

(beside (rectangle 10 0 "solid" "white") picture)

)

; move-right-10-on-mouse :

; image number number mouse-event -> image

; Just like move-right-10, but takes in three

; extra parameters and ignores them.

(check-expect

(move-right-10-on-mouse pic:calendar 318 27 "whatever")

(beside (rectangle 10 0 "solid" "white") pic:calendar))

(check-expect

(move-right-10-on-mouse (circle 3 "solid" "green") -3784 3.7 "blah")

(beside (rectangle 10 0 "solid" "white")

(define (move-right-10-on-mouse picture x y mouse-event)

; picture image

; x number

; y number

; mouse-event whatever this is

(move-right-10 picture)

)

6.6. OTHER KINDS OF EVENT HANDLERS 103

Worked Exercise 6.6.3 Develop an animation of a picture of your choice that moves
with the mouse on a 500x300 background.

Solution: This animation doesn’t do anything on a regular schedule, so it doesn’t need a
tick handler. It obviously needs a mouse handler, whose job is to place the picture at the
right place. Do we need a draw handler? The main reason we’ve written draw handlers
in the past is to put a picture at a specific location, and the mouse handler is taking care
of that, so let’s try doing without a draw handler.

The trick will be writing a mouse-handler function that puts the picture in the specified
location. Let’s use the calendar picture again, and name our function calendar-at-mouse.

Contract: We’ve already chosen the name, and the fact that it’s a mouse handler
forces the rest of the contract to be

; calendar-at-mouse : image(old-picture)

num(x) num(y) mouse-event -> image

Purpose statement: Recall from above that mouse coordinates are measured in
pixels from the left, and pixels from the top. In practice, the coordinates of the mouse
will always be positive integers, so let’s make that assumption explicit. The function’s
purpose can be stated as

; Produces a picture of a calendar, with its top-left corner

; x pixels from the left and y pixels down from the top of a

; 500x300 white rectangle.

; Assumes x and y are both positive integers.

Examples: The function will always draw a calendar on a blank background, regard-
less of the old picture, so we can ignore the old picture. And we don’t even know what a
mouse-event is yet, so we’ll ignore that too. Thus for our examples, it shouldn’t matter
much what arguments are plugged in for these. As for x and y, we should be able to plug
in any positive integers and get something reasonable.

(check-expect (calendar-at-mouse pic:stick-figure 34 26 "huh?") ...)

But what “should” the answer “be”? Ignoring the “old picture” and the “mouse-event”,
the result should clearly be a calendar that’s 34 pixels over from the left and 26 pixels
down. The easiest way to put it there is with place-image:

(check-expect

(calendar-at-mouse pic:stick-figure 34 26 "huh?")

(place-image pic:calendar

34 26

(rectangle 500 300 "solid" "white")))

The reader is encouraged to come up with another example.

By the way, we’re going to be using this 500x300 solid white rectangle a lot, so it
makes sense to give it a name:

(define white-background (rectangle 500 300 "solid" "white"))

The example can then become
(check-expect

(calendar-at-mouse pic:stick-figure 34 26 "huh?")

(place-image pic:calendar 34 26 white-background))

104 CHAPTER 6. ANIMATIONS IN DRRACKET

Function skeleton: This is pretty straightforward from the contract:

(define (calendar-at-mouse old-picture x y mouse-event)

...)

Inventory: This too is pretty straightforward from the contract:

(define (calendar-at-mouse old-picture x y mouse-event)

; old-picture image (ignored)

; x positive integer

; y positive integer

; mouse-event whatever this is (ignored)

; pic:calendar a picture we’ll need

; white-background a picture we’ll need

...)

Body: We’ve already decided to ignore old-picture and mouse-event, so we need
only figure out how to use x and y. From the code in the “right answer”, it seems that x
and y should be the second and third arguments to place-image. The whole definition
pane should now look like Figure 6.4.

Figure 6.4: Complete definition of calendar-at-mouse
; calendar-at-mouse : image(old-picture)

; num(x) num(y) mouse-event -> image

; Produces a picture of a calendar, with its top-left corner

; x pixels from the left and y pixels down from the top.

; Assumes x and y are both positive integers.

(define white-background (rectangle 500 300 "solid" "white"))

(check-expect

(calendar-at-mouse pic:stick-figure 34 26 "huh?")

(place-image pic:calendar 34 26 white-background))

; whatever other examples you’ve come up with

(define (calendar-at-mouse old-picture x y mouse-event)

; old-picture image (ignored)

; x positive integer

; y positive integer

; mouse-event whatever this is (ignored)

(place-image pic:calendar x y white-background)

)

You can now test this definition by hitting “Run”. Once we know that it works, we
can use it in an animation.

To make sure there’s enough room, we need to either provide a 500x300 starting picture
(e.g. white-background) or specify a draw handler with dimensions of 500x300.
(big-bang white-background

(on-draw show-it)

(on-mouse calendar-at-mouse))
or
(big-bang (rectangle 0 0 "solid" "white")

(on-draw show-it 500 300)

(on-mouse calendar-at-mouse))

6.7. DESIGN RECIPE 105

If everything works properly, whenever you move the mouse around within the animation
window, a picture of a calendar will move with it.

6.7 Design recipe for an animation, first version

We’ve written a number of animations by now. What do they all have in common? I’ve
listed the steps as a “design recipe for animations” in Figure 6.5.

Figure 6.5: Recipe for an animation, version 1

1. Identify what handlers you’ll need (draw, tick, mouse, and/or key).

• If your animation needs to change at regular intervals, you’ll need a tick
handler.

• If your animation needs to respond to mouse movements and clicks, you’ll
need a mouse handler.

• If your animation needs to respond to keyboard typing, you’ll need a key
handler.

• You always need a draw handler, but in many cases you can get away with
using show-it; see the next step.

2. Identify the model. What parts of the animation window can change while
it runs, and what about it stays the same? If the model represents the whole
animation window, you can use show-it as your draw handler; if it represents
only part of the animation window, you’ll need to write your own draw handler
to build the whole picture from the part that changes.

3. Write down the handlers’ contracts (using Figure 6.2). You can name these
functions whatever you want but their contracts must be as in Figure 6.2.

4. Develop each of these functions, following the usual design recipe for each
one. Don’t go on to the next one until the previous one passes all of its test cases.

5. Decide on the starting picture the animation should start with.

6. Decide on the width and height (if they’re not the same as those of the
picture).

7. Decide on the time interval between “ticks” (if you have a tick handler).

8. Call big-bang with the starting picture and handlers (specified using on-draw,
on-tick, on-mouse, and on-key). See whether it works.

Use this recipe to work the following exercises, each of which requires more than one
handler.

106 CHAPTER 6. ANIMATIONS IN DRRACKET

Exercise 6.7.1 Modify the animation of Exercise 6.6.3 so the picture slides left and
right with the mouse, but stays at the same vertical position — say, halfway down the
window — regardless of the mouse’s vertical position.

Exercise 6.7.2 Develop an animation of a picture of your choice that moves to the
right every second, and moves down whenever somebody types on the keyboard.

Exercise 6.7.3 Develop an animation of a picture of your choice that moves to the
right every second, moves down whenever the mouse moves, and resets to its starting
position whenever somebody types on the keyboard.

Hint: To “reset to its starting position”, you’ll need the model to become, again, the
initial model that you gave as a first argument to big-bang.

6.8 A note on syntax

According to the syntax rules we’ve seen so far, the only place a function name can
appear is just after a left parenthesis, as in (above pic:calendar (flip-vertical

pic:calendar)). But we’ve been using the on-tick, on-key, and on-mouse functions in
a strange way: we’ve been giving them the names of functions as arguments. It turns out
that this is legal, because function names are really identifiers, just like variable names,
so an expression like

(big-bang (circle 5 "solid" "red")

(on-draw show-it 500 50)

(on-tick twin-beside))

can be justified with a box diagram as follows:
2

(big-bang

2

(circle
1
5

1
"solid"

1
"red")

2

(on-draw
3
show-it

1
500

1
50)

2

(on-tick
3
twin-beside))

Which raises the question: what is the contract for a function like on-tick? Its
argument is supposed to be not an image, or a number, or a string, but a function,
and its result is an “event handler” (let’s not worry about what this is for now). So to
oversimplify slightly, the contracts of these functions can be written

; on-draw : function -> handler

; on-tick : function -> handler

; on-key : function -> handler

; on-mouse : function -> handler

In other words, “function” and “handler” are data types, like “image”, “number”,
“string”, etc.

However, on-draw, on-tick, etc. don’t actually work on any function; they only work
on functions with the right contract. In order for a function to be used as a draw or tick
handler, it must take in an image and return an image; to be used as a key handler, it
must take in an image and a key and return an image; and to be used as a mouse handler,

6.9. RECORDING 107

it must take in an image, two numbers, and a mouse-event, and return an image. Or in
short:
; on-draw : (image -> image) -> handler

; on-tick : (image -> image) -> handler

; on-key : (image key -> image) -> handler

; on-mouse : (image number number mouse-event -> image) -> handler

We’ll investigate this in more detail, and learn to write functions that work on other
functions, in Chapter 28.

Exercise 6.8.1 Draw a box diagram for the big-bang call of one of the animations
you’ve written in this chapter.

Exercise 6.8.2 Draw a box diagram for one of the function definitions you’ve written
in this chapter.

6.9 Recording an animation

If you’d like to show off your animations to your friends, you can record one and save it as
an “animated GIF file”, which you can then put on your Web page. Visitors to your Web
page can’t interact it with the program, but they can see what appeared on the screen
when you ran it yourself. To do this, add the line (record? true) to your big-bang

call, e.g.

(big-bang (overlay pic:calendar (rectangle 100 100 "solid" "white"))

(on-draw show-it)

(on-tick rotate-cw 1/2)

(record? true))

After the animation ends, you’ll be asked to select a folder to store the result into. I
recommend creating a new folder for this purpose, as DrRacket will put into it not only
an animated GIF file, but dozens or hundreds of PNG files representing individual frames
of the animation. (You can safely delete these once you’ve got the GIF file.)

6.10 Review of important words and concepts

You can create open-ended, animated pictures in DrRacket, providing event handlers or
callback functions for the animation to “call back” whenever an interesting “event” (such
as a clock tick, keyboard or mouse activity, etc.) occurs.

Each handler takes in (among other things) the current model — the part of the
animation that can change while it runs — and returns either a new model or the image
to show in the window.

To install a handler, you use a function that takes in another function; this is a
powerful programming technique, about which which we’ll learn more later.

Many of the details in this chapter are specific to DrRacket, and to this particular an-
imation package, but the ideas of model/view separation, event-driven programming and
callback functions are common to almost all graphics systems and almost all program-
ming languages. For example, the Java language has ActionListeners, MouseListeners,
KeyListeners, paint methods, etc. corresponding roughly to the various kinds of event
handlers we’ve used in this chapter. So once you know how to design an animation in
DrRacket, most of the ideas will work the same way in other languages; only the language
syntax will be different.

108 CHAPTER 6. ANIMATIONS IN DRRACKET

6.11 Reference: Built-in functions for animation

In this chapter, we’ve introduced seven new built-in functions:

• big-bang

• on-tick

• on-draw

• on-mouse

• on-key

• show-it

• record?

(Technically, most of these aren’t really “functions”, because they only make sense inside
big-bang, but they look like functions.)

Chapter 7

Working with numbers

7.1 Fitting arithmetic into Racket syntax

The syntax rule we’ve used most heavily thus far is Rule 2: to use a function, type

(function-name argument ...)

Racket’s built-in arithmetic operations use the exact same rule, which may make arith-
metic expressions in Racket look a little unfamiliar, but has the advantage that all func-
tions, whether they involve pictures, numbers, strings, etc. use the same syntax rule.

Most of Racket’s built-in arithmetic and mathematical functions have exactly the
name you would expect: + for addition, − for subtraction, ∗ for multiplication, / for
division, sin for sine, etc..

Worked Exercise 7.1.1 Write a Racket expression to represent the standard arith-
metic expression 3 + 4.

Solution: The operation we need to perform is +, so (as always in Racket) it goes after
a left-parenthesis, before the things it’s supposed to operate on:

(+ 3 4)

Of course, we know the answer should be 7, so we might even write

(+ 3 4) "should be 7"

or

(check-expect (+ 3 4) 7)

Test this (e.g. by typing it into the Interactions pane and hitting ENTER) and confirm
that the answer actually is 7.

Exercise 7.1.2 Write a Racket expression to represent the standard arithmetic ex-
pression 5 · 3. As always, test to make sure the answer is what you expect.

Hint: Racket, like most programming languages, uses an asterisk (*) to represent
multiplication.

Exercise 7.1.3 Write a Racket expression to represent the standard arithmetic ex-
pression 7 − 4.

109

110 CHAPTER 7. WORKING WITH NUMBERS

(Did you get the arguments in the right order? The value should be 3, not -3.)

Exercise 7.1.4 Write a Racket expression to represent the standard arithmetic ex-
pression 3 + (5 · 2).

Hint: Remember that both operations have to follow Syntax Rule 2: they each go after
a left-parenthesis, before whatever they’re supposed to work on. If you get wrong answers,
use the Stepper to watch what’s going on inside the expression, step by step.

Exercise 7.1.5 Write a Racket expression to represent the standard arithmetic ex-
pression (1 + 2) · (3 + 4).

Exercise 7.1.6 Write a Racket expression to represent the standard arithmetic ex-
pression

√
4 + 5.

Hint: Since you can’t type the
√

symbol into DrRacket, the square-root function is
spelled sqrt.

The operations of “adding one” and “subtracting one” are so common in programming
that Racket provides built-in functions add1 and sub1 for them.

Practice Exercise 7.1.7 Write some expressions using add1 and sub1. Write equiva-
lent expressions using +, −, and 1.

Exercise 7.1.8 Make up some more arithmetic expressions and convert them to Racket.
Figure out the right answers, type the expressions into DrRacket, and see whether Dr-
Racket agrees. If not, use the Stepper to figure out what went wrong.

7.2 Variables and numbers

You already know how to define a variable to hold a picture, using Syntax Rule 4, and
refer to variables using Syntax Rule 3. You can define variables to hold numbers, and use
them in subsequent expressions, in exactly the same way:

(define age 20)

(define eggs-per-carton 12)

(check-expect (+ age 1) 21)

(check-expect (* 3 eggs-per-carton) 36)

Worked Exercise 7.2.1 Define a variable named bignum with the value 1234567890.
Compute the value of bignum2.

Solution: The definition is simply

(define bignum 1234657890)

The expression bignum2 really means two copies of bignum multiplied together, so we
would write

(* bignum bignum)

Note that these can both be in the Definitions pane, with the definition first, or
both can be in the Interactions pane, with the definition first, or the definition can be
in the Definitions pane and the formula in the Interactions pane. Try each of these

possibilities.

7.2. VARIABLES AND NUMBERS 111

Exercise 7.2.2 Define (in the Definitions pane) a variable named x with the value 4.
Then write an expression (in the Definitions pane) to represent the “standard” alge-
braic expression

3x + 2

What “should” the answer be? Try it and see whether it worked as you expect.
Change the value of x to 5 in the Definitions pane and predict what the answer should

be now. Try it and see whether you were right.

Hint: Remember that 3x in “standard” arithmetic really means 3 times x.

Exercise 7.2.3 Write an expression in the definitions pane to represent the “stan-
dard” algebraic expression

fnord + snark/boojum

Test your expression by defining the variable fnord to be 5, snark to be 12, and boojum

to be -4. What should the right answer be?
Test your expression again by defining the variables with different values, and predicting
what the right answer should be.

Exercise 7.2.4 Define (in the Definitions pane) two variables distance and time to
represent how long you spent on a trip, and how far you travelled. Then write an

expression (again in the Definitions pane) for your average speed (i.e. distance divided
by time); hit “Run” and make sure the answer comes out the way you expected.

Change the values of time and distance, but don’t change the expression. Hit “Run”
and make sure the answer is correct for the new time and distance.

SIDEBAR:

Time and distance, of course, are measured in units, e.g. hours and kilometers respec-
tively. But a Racket numeric variable holds only a number ; you have to remember
what unit is associated with which variable.

Exercise 7.2.5 Make up some more algebraic expressions and convert them to Racket.
Figure out the right answers, type them into DrRacket, and see whether DrRacket agrees.

If you’re comfortable with all of those, here’s a trickier one:

Exercise 7.2.6 Write an expression in the definitions pane to represent the “stan-
dard” algebraic expression

(−b) +
√

(b2) − 4ac

2a
Test your expression by defining a to be 1, b to be -2, and c to be -3; the answer should
be 3.
Test your expression again by defining the variables with different values, and predicting
what the right answer should be.

Exercise 7.2.7 Develop a function named simpler-bullseye 1 that’s like the bullseye
program of exercise 5.3.5, but taking in only one number, representing the radius of the
outer ring. The radius of the inner disk should be half as large.

Hint: The only new challenge is computing “half the radius”, which you didn’t know
how to do before.

1This function is named simpler-bullseye because it’s simpler to use — not necessarily simpler to
write. There’s often a trade-off between those two goals!

112 CHAPTER 7. WORKING WITH NUMBERS

7.3 Why prefix notation is your friend

Racket’s convention, putting the operation always before whatever it works on, is called
prefix notation2. By contrast, the arithmetic notation you learned in grade school has
a few “prefix operators” (e.g. negation, sin, cos,

√
. . .) that go before their arguments,

together with “infix operators” (e.g. +, −, ·, /) that go between their arguments.
An advantage of Racket’s notation (aside from consistency) is that operations like

+, ∗, etc. can easily take more than two parameters. For example, consider the infix
expression

1 + 2 + 3 + 4 + 5

We could convert this to Racket as

(+ 1 (+ 2 (+ 3 (+ 4 5))))

or

(+ (+ (+ (+ 1 2) 3) 4) 5)

or various other ways, but since + can take more than two parameters, we could write
it more simply as

(+ 1 2 3 4 5)

which is actually shorter than its infix form because we don’t have to keep repeating the
+ sign.

Exercise 7.3.1 Write a Racket expression, as simple as possible, to represent
the standard arithmetic expression 3 · 5 · 2

Exercise 7.3.2 Write a Racket expression, as simple as possible, to represent
the standard arithmetic expression (2 · 3 · 4) + 5 + (7 − 4)

Worked Exercise 7.3.3 Write a Racket expression to represent the standard arith-
metic expression 3 + 4 · 5.

Solution: To solve this, you first need to be sure what the “standard” arithmetic ex-
pression means. There are actually two possible ways to read this: “add 3 and 4, then
multiply by 5,” or “add 3 to the result of multiplying 4 by 5,” and these two interpre-
tations lead to different answers: 35 and 23 respectively. This is called an ambiguous
expression. Which interpretation is right?

By convention, “standard” arithmetic uses precedence rules (or “order of operations”
rules) to resolve this: parentheses, exponentiation, multiplication and division, addition
and subtraction (PEMDAS; you may have heard the mnemonic “Please Excuse My Dear
Aunt Sally”). According to these rules, multiplication happens before addition, so the
second reading is correct, and the right answer should be 23, not 35.

Now that we’ve agreed that the original expression means 3 + (4 ∗ 5), or (in English)
“add 3 to the result of multiplying 4 by 5,” writing it in Racket is straightforward:

(+ 3 (* 4 5))

But what if we had meant the other interpretation, e.g. if the original expression had
been (3 + 4) · 5? The Racket expression would be

2or sometimes Polish notation, because it was invented by a Polish mathematician named Jan
 Lukasiewicz.

7.4. A RECIPE FOR CONVERTING FROM INFIX TO PREFIX 113

(* (+ 3 4) 5)

Notice that this expression looks completely different ; it cannot possibly be confused with
(+ 3 (* 4 5)) ! An arithmetic expression in prefix notation doesn’t need precedence
rules; it has no ambiguity, hence no need to resolve the ambiguity.

In other words, if you had learned Racket in elementary school instead of “standard”
arithmetic notation, you would never have heard of My Dear Aunt Sally.

Worked Exercise 7.3.4 Write a Racket expression to represent the standard arith-
metic expression 3 · −4.

Solution: The “negation” operator follows the same syntax rule as everything else in
Racket: it goes after a left parenthesis, before whatever it applies to. So we could write

(* 3 (- 4))

However, negative numbers are so common that Racket allows you to type them directly:
if you put the − sign immediately before the number (with no space in between), the
number is treated as negative. So a shorter way of writing the expression would be

(* 3 -4)

7.4 A recipe for converting from infix to prefix

If you did the problems in the previous sections with no difficulty, you can probably
skip this section. If not, here’s a step-by-step technique that may help in translating an
expression in “standard” infix algebraic notation into Racket’s prefix notation:

1. Expand all the abbreviations and special mathematical symbols. For example, 3x
really stands for 3 * x; x2 really stands for x * x; and

√
3x uses a symbol that we

don’t have on the computer keyboard, so we’ll write it as sqrt(3 * x).

2. Fully parenthesize everything, using the usual order-of-operations rules (PEMDAS:
parentheses, exponents, multiplication, division, addition, subtraction). By the end
of this step, the number of operators, the number of left parentheses, and the number
of right parentheses should all be the same. Furthermore, each pair of parentheses
should be associated with exactly one operator and its operands; if I point at any
operator, you can point to its left-parenthesis and its right-parenthesis.

3. Move each operator to just after its left-parenthesis, leaving everything else in the
same order it was in before.

This may be clearer with some examples:

Worked Exercise 7.4.1 Write a Racket expression to represent the standard arith-
metic expression 3 + x.

Solution: There’s nothing to do in Step 1.
Step 2 adds parentheses to get (3 + x).
In Step 3, the + sign moves to just after its left-parenthesis:

after which we can just read off the answer (+ 3 x).

114 CHAPTER 7. WORKING WITH NUMBERS

Worked Exercise 7.4.2 Write a Racket expression to represent the standard arith-
metic expression 3 · 4 + 5.

Solution: In step 1, we replace the · with *.
Step 2 tells us to “fully parenthesize, using order of operations”; since multiplication

comes before addition, we rewrite the expression as (3 + (4 * 5)). Note that there are
two operators (+ and *), two left parentheses, and two right parentheses; the + is directly
inside the outer pair of parentheses, while the * is directly inside the pair enclosing 4 and
5.

In step 3, we move each operator to just after its own left parenthesis:

The left parenthesis belonging to + is the one at the beginning, so and the left parenthesis
belonging to ∗ is the one before 4, so we get (+ 3 (* 4 5)), which is a correct Racket
expression.

Worked Exercise 7.4.3 Write a Racket expression to represent the standard arith-
metic expression 5 − 6 − 2.

Solution: In Step 1, there’s nothing to do.
In Step 2, we could parenthesize it as ((5 − 6) − 2, or as (5 − (6 − 2)). These two

interpretations give different answers: the first produces −3, while the second produces 1.
In other words, this expression too is ambiguous. By convention, “standard” arithmetic
says that the − operator is applied from left to right, as though it were parenthesized as
((5 − 6) − 2). Note that the first − sign is associated with the inner pair of parentheses,
and the second is associated with the outer pair.

Step 3 then moves each − sign to just after its own left parenthesis:

(- (- 5 6) 2)

This is a perfectly good, correct expression, but as we’ve already seen, Racket allows
arithmetic operators to work on more than one operand, so we could rewrite it shorter as

(- 5 6 2)

Worked Exercise 7.4.4 Write a Racket expression to represent the standard arith-
metic expression sinx.

Solution: There’s nothing to do in step 1. As for step 2, in “standard” algebraic notation,
named functions like sin are customarily placed in front of their arguments, often with the
arguments surrounded by parentheses. So the “standard” way to write this, completing
step 2, would be sin(x).

In step 3, we move the sin to just after its left parenthesis (which it is currently
outside): (sin x).

Exercise 7.4.5 Write a Racket expression to represent the standard arithmetic ex-
pression

√
3x.

7.5. KINDS OF NUMBERS 115

Worked Exercise 7.4.6 Write a Racket expression to represent the standard arith-
metic expression 7x− 3+x

y+2
.

Solution: Step 1 expands the 7x to 7 ∗ x.
Step 2 adds parentheses around 3+x, and around y+2, and around the whole fraction,

and around 7 ∗ x, and around the whole expression, to get

((7 ∗ x) − ((3 + x)/(y + 2)))

Step 3 moves each of the five operators to just after its own left parenthesis:

Finally, we can just read this from left to right and get
(- (* 7 x) (/ (+ 3 x) (+ y 2))).

Now try the exercises from the previous sections again, using this technique.

7.5 Kinds of numbers

7.5.1 Integers

All the examples so far deal with integers : the counting numbers 0, 1, 2, 3, . . . and their
negatives. Racket is very good at dealing with integers: consider

(* 1234567890 1234567890 1234567890)

which should come out 1881676371789154860897069000.
SIDEBAR:

If you multiplied three copies of 1234567890 in Java, you would get a negative number!
This is because Java, C, C++, and most other programming languages use limited-
range integers, and once the answers get much beyond two billion, they are no longer
guaranteed to be correct. In fact, if you tried it in C or C++, you could get different
answers on different computers! In Racket, if you do a computation resulting in a
500-digit integer, every one of those digits will be correct. On the other hand, we
pay a price for correctness: arithmetic in Racket is slightly slower than in Java, C,
or C++.

7.5.2 Fractions

But many calculations in the real world go beyond the integers, using fractions, irra-
tional numbers, complex numbers, etc.. Consider the expression (/ 4 11). In Racket,
the answer will print out either in fractional form 4/11 or as a repeating decimal 0.3̄6
depending on how DrRacket is set up. (If you’d like to experiment with this, go to “Lan-
guage”, “Choose Language”, “Show Details”, and find the radio buttons labelled “Mixed
fractions” and “Repeating decimals”.)

Racket does arithmetic on fractions the way you learned in grade-school, complete
with reduction to lowest terms: for example, (+ (/ 2 3) (/ 1 4)) comes out as 11/12
or 0.916̄, and (- (/ 2 3) (/ 1 6)) comes out as 1/2 or 0.5.

116 CHAPTER 7. WORKING WITH NUMBERS

Again, fractions are so common that Racket allows you to type them directly, without
the parentheses: if you type two integers separated by a “/”, with no spaces in between,
it will treat the whole thing as one fraction; thus the two preceding examples could be
written more briefly as (+ 2/3 1/4) and (- 2/3 1/6) respectively.

7.5.3 Inexact numbers

Some numbers cannot be represented even by fractions, e.g.
√

2. Try the expression (sqrt

2) and you’ll get the answer #i1.4142135623730951. The “#i” at the beginning tells
you that this is an “inexact” number, only an approximation to the true square root of 2.
You can see this first-hand by multiplying (sqrt 2) by itself; you should get something
very close, but not quite equal, to 2. Likewise, most expressions involving trigonometric
functions (sin, cos, tan, etc.) produce inexact answers.

This poses a problem for writing test cases. The check-expect function expects the
answer to be exactly what you said it would be, so

(check-expect (* (sqrt 2) (sqrt 2)) 2)

will fail. When we’re working with inexact numbers, we instead use a built-in function
named check-within, which takes in three numbers: the actual answer, the right answer,
and “how close” the answer needs to be in order to pass the test. Thus

(check-within (* (sqrt 2) (sqrt 2)) 2 0.0001)

tests whether (* (sqrt 2) (sqrt 2)) is within 0.0001 of the “right answer”, 2, and it
should pass.

SIDEBAR:

In most programming languages, division on integers does one of two peculiar things.
Either it produces an inexact number, so for example 49 ∗ (1/49) is almost but not
quite equal to 1, or it does “integer division”, rounding down to make the answer an
integer, so 5/3 is 1 “with a remainder of 2”, and 3 ∗ (5/3) is 3 rather than 5. The
latter can be useful sometimes, and Racket allows you to do it using the quotient and
remainder functions, but the plain-old division operator produces fractions which
are exactly correct if its arguments were exactly correct.

Exercise 7.5.1 Write a Racket expression to represent the standard arithmetic ex-
pression

√

4 + (2 · 3). Be sure to write a test case!

Hint: The answer should come out close to 3.162.

SIDEBAR:

Mathematicians also talk about something called complex numbers, a system in which
negative numbers do have square roots. Racket supports complex numbers, which
are written like 3+4i, again with no spaces in between. However, we won’t need
complex numbers in this book.

7.6 Contracts for built-in arithmetic functions

We’ve seen that to really know how to use a function, you need to know its contract,
i.e. how many arguments of what types in what order it accepts, and what type of answer
it returns.

7.7. WRITING NUMERIC FUNCTIONS 117

Worked Exercise 7.6.1 Write the contract for the built-in + operator.

Solution: It works on two or more numbers and returns a number, so we can write

; + : number number ...-> number

Exercise 7.6.2 Write the contracts for the built-in −, ∗, /, and sqrt functions.

7.7 Writing numeric functions

You can define functions to do numeric computations in the same way that you defined
functions producing pictures in Chapter 4. As always, you should still use the design
recipe of Chapter 5. In fact, it’ll be a bit easier because for the “right answers”, you can
just compute the right answer in your head or on a calculator and type in the number,
rather than coming up with a Racket expression that builds the correct picture.

Worked Exercise 7.7.1 Develop a function that takes in a number and returns its
cube, i.e. three copies of it multiplied together.

Solution: Contract: The obvious name for the function is cube. It takes in a number
and returns a number, so the contract looks like

; cube : number -> number

The function’s purpose is obvious from its name, so we’ll skip the purpose statement.
Examples: Any number should work. Let’s start with really easy numbers, for which

we know the right answers, and work up to harder ones for which we may only be able
to estimate the right answers. For example, 203 = 8000, so 193 must be a little less.

(check-expect (cube 0) 0)

(check-expect (cube 2) 8)

(check-expect (cube -3) -27)

(check-expect (cube 2/3) 8/27)

(check-within (cube (sqrt 2)) 2.828 0.01)

(cube 19) "should be a little under 8000"

(cube bignum) "should be 28-29 digits long"

; assuming bignum is defined to be 1234657890

Note that we’ve picked several things that might be “special cases”: 0, both positive and
negative numbers, a fraction, etc. If the function works correctly on all of these, we can
reasonably expect it to work on all inputs.

Note also that we’ve used check-expect where we know the exact right answer,
check-within where the answer is inexact but we know a good approximation to it, and
"should be" where we only know a rough criterion for “is this a reasonable answer?”

Skeleton: The contract gives us much of the information, but we still need to choose
a name for the parameter. It’s a number, and doesn’t necessarily “mean” anything more
specific, so I’ll choose num. The skeleton then looks like

(define (cube num)

...)

118 CHAPTER 7. WORKING WITH NUMBERS

Inventory: We have only one parameter, so we’ll add it in a comment:

(define (cube num)

; num number

...)

Body: We know that the body will be an expression involving num. To get its cube,
we simply need to multiply together three copies of num:

(define (cube num)

; num number

(* num num num)

)

Was it obvious to you that the right expression was (* num num num)? Perhaps, but
not all functions are this simple; we can’t rely on “seeing” what the right expression must
be. So what would we do if we got to this point and didn’t “see” the answer? Remember
the Inventory with Values technique in Chapter 5: add a line to the inventory labelled
“should be”, pick a not-too-simple example, and write down next to each inventory item
its value for this example. Let’s suppose we picked the fourth example, (cube 2/3). Our
inventory-with-values would look like

(define (cube num)

; num number 2/3

; should be number 8/27

...)

Now, look at the “should be” value and try to figure out how to get it from the values
above. The simplest way to get 8/27 from 2/3 is to multiply together three copies of 2/3,
which is the value of the variable num, so we would come up with the body expression (*

num num num), exactly as before.

The Definitions pane should now look like Figure 7.1.

Figure 7.1: Definition of the cube function
(define bignum 1234567890)

; cube : number -> number

(check-expect (cube 0) 0)

(check-expect (cube 2) 8)

(check-expect (cube -3) -27)

(check-expect (cube 2/3) 8/27)

(check-within (cube (sqrt 2)) 2.828 0.01)

(define (cube num)

; num number 2/3

; should be number 8/27

(* num num num)

)

(cube 19) "should be a little under 8000"

(cube bignum) "should be 28-29 digits long"

7.7. WRITING NUMERIC FUNCTIONS 119

Note that the check-expect and check-within test cases can appear either before
the function definition or after it; “should be”-style test cases must appear after the
definition, or DrRacket will complain that you’re calling a function you haven’t defined
yet.

Testing: Hit “Run” and look at the results. If any of the actual results doesn’t match
what they “should be”, something is wrong.

Exercise 7.7.2 Develop a function named rect-perimeter that takes in the width
and height of a rectangle, and returns its perimeter.

Exercise 7.7.3 Develop a function named circle-perimeter that takes in the radius
of a circle, and returns its perimeter.

Hint: The formula for the perimeter of a circle is approximately 3.14 · 2 · r, where r is
the radius. Since the 3.14 and 2 are “always the same”, they shouldn’t be parameters to
the function.

Exercise 7.7.4 Develop a function named area-of-circle that takes in the radius
of a circle and computes its area.

Hint: The formula for the area of a circle is approximately 3.14 ·r2, where r is the radius.

Worked Exercise 7.7.5 Consider the colored rings

and .
Design a function named area-of-ring which computes the area of such a ring.

Solution:

Contract: The assignment doesn’t actually say what the function should take in, so we
need to figure that out. The area clearly doesn’t depend on the color or location of the
ring, but does depend on the size of both the inner and outer circles. How do we usually
specify the size of a circle? Most often with its radius. So this function needs to take in
two numbers: the inner radius and the outer radius. It doesn’t make sense for the inner
radius to be larger than the outer radius, so let’s point that out.

; area-of-ring : number (inner-radius)

; number (outer-radius) -> number

; assumes inner-radius ≤ outer-radius

Examples: As usual, we’ll start with really easy ones that we can solve in our heads,
then build up to more complicated ones. We’ll also throw in some “special cases”: one
or both of the radii are zero, the two radii are equal, etc.

Before we can write down what the answers “should be”, we need to know how to
find the right answers ourselves. So let’s imagine we were cutting out a “ring” in paper.

120 CHAPTER 7. WORKING WITH NUMBERS

We would probably start by cutting a circle with the outer radius, then marking another
circle with the inner radius and the same center, cutting that out, and throwing away the
inner part. So the area of what we have left is the area of a circle with the outer radius,
minus the area of a circle with the inner radius.

(check-expect (area-of-ring 0 0) 0)

(check-expect (area-of-ring 2 2) 0)

(check-within (area-of-ring 0 1) 3.14 0.01)

(check-within (area-of-ring 0 2) 12.56 0.01)

(check-within (area-of-ring 1 2) 9.42 0.01)

; 4*3.14 for the outer circle, minus 3.14 for the inner circle

(check-within (area-of-ring 2 5) 65.94 0.01)

; 25*3.14 for the outer circle, minus 4*3.14 for the inner circle

Skeleton: The contract already tells us the name of the function and of its two
parameters, so we can immediately write

(define (area-of-ring inner-radius outer-radius)

...)

Inventory: There are two parameters, both of type number, and we know the “magic
number” 3.14 is involved, so. . .

(define (area-of-ring inner-radius outer-radius)

; inner-radius number

; outer-radius number

; 3.14 magic number

...)

Body: If you already see what to do next, great. But for practice (or if you don’t
already see what to do next), let’s add a “should be” line and some values to this inventory.
We need a “not too simple” example, which rules out those with a zero in them, and those
with inner and outer radius the same. Let’s try the example (area-of-ring 1 2).

(define (area-of-ring inner-radius outer-radius)

; inner-radius number 1

; outer-radius number 2

; 3.14 magic number 3.14

; should be number 9.42

...)

Now how could you get the “right answer” 9.42 from the values above it? Obviously, the
value that most resembles it is 3.14; the right answer in this case is exactly 3 ·3.14. Where
did the 3 come from? The most obvious way is from 1 + 2, so we might guess that the
expression is (* 3.14 (+ inner-radius outer-radius)). This seems a bit too simple,
since it doesn’t use the area formula from before. Still, we can type this in and test it,
and find that although it works for this test case, it fails two of the six test cases.

We’ve been led astray by picking too simple a test case. If we had picked (area-of-ring

2 5) instead, we would have had a “right answer” of 65.94, which is 21 times 3.14. It
may not be obvious where the 21 came from, but it’s certainly not (+ inner-radius

outer-radius)! And we could reasonably figure out that the 21 comes from 52 − 22 =
25 − 4, which would lead us to the correct formula

7.7. WRITING NUMERIC FUNCTIONS 121

(* 3.14 (- (* outer-radius outer-radius) (* inner-radius inner-radius)))

If we type this in as the function body, it passes all the tests.
Another way to approach the problem would be to remember that the area of the ring

is the area of the larger circle minus the area of the smaller circle; we can use the formula
for the area of a circle twice to get
(- (* 3.14 outer-radius outer-radius) (* 3.14 inner-radius inner-radius))

which is equivalent to the answer above.
But once we’ve recognized that we need to compute the areas of circles, why not re-use

the area-of-circle function we already wrote to do this job?

(define (area-of-ring inner-radius outer-radius)

; inner-radius number

; outer-radius number

(- (area-of-circle outer-radius)

(area-of-circle inner-radius))

)

This is much shorter and clearer.
Testing: Assuming you’ve typed all of this into the Definitions pane, you should be

able to hit “Run” and check the results.

Improving the program: In fact, a more accurate formula for the area of a circle
is π · r2, where π is a special number, approximately 3.141592653589793. In fact, π is so
special that it comes predefined in Racket: there’s a variable named pi with this value.
We can use this to make area-of-circle more accurate, by replacing the 3.14 in its
body with pi. This built-in variable pi is inexact, so you’ll need to write your test cases
using check-within.

Practice Exercise 7.7.6 Replace the 3.14 in area-of-circle with pi, and change
the test cases for both area-of-circle and area-of-ring appropriately. Make sure both
functions still pass all their test cases.

Recall that we defined area-of-ring by re-using area-of-circle. Since we’ve just
made area-of-circle more accurate, area-of-ring is now automatically more accurate
too, without changing anything in its definition! This is one of the powerful benefits of
re-using one function in writing another.

Exercise 7.7.7 Develop a function named hours->minutes that takes in a number
of hours, and returns how many minutes are in that many hours.

Hint: You can name the parameter anything you wish, but it’s best to give it a name
that tells what it means. In this case, the input represents a number of hours, so hours

would be a good name.

Exercise 7.7.8 Develop a function named days->hours that takes in a number of
days, and returns how many hours are in that many days.

Exercise 7.7.9 Develop a function named days->minutes that takes in a number of
days, and returns how many minutes are in that many hours.

Hint: By re-using previously-written functions, you should be able to write this function
with no numbers in the definition (although you’ll need numbers in the examples).

122 CHAPTER 7. WORKING WITH NUMBERS

Exercise 7.7.10 Develop a function named dhm->minutes that takes in three num-
bers: how many days, how many hours, and how many minutes, in that order, and returns
the total number of minutes.

Hint: Again, you should be able to write this with no numbers in the definition.

Exercise 7.7.11 Develop a function named feet->inches that takes in a number of
feet, and returns the number of inches in that many feet.

Exercise 7.7.12 Develop a function named total-inches that takes in a length in
feet and inches (e.g. 5 feet, 2 inches) and returns the number of inches in that length (in
this example, 62).

Hint: Look for opportunities to re-use functions you’ve already written.

Practice Exercise 7.7.13 Try the sin function on various values, including 0, 1, pi,
(/ pi 2), (/ pi 3), (/ pi 6), etc.
Compare the results of
(sin (sqrt something))

with
(sqrt (sin something))

by plugging in various numbers for something.

Exercise 7.7.14 Develop a function at-most-10 that takes in a number and returns
either that number or 10, whichever is less.

Hint: Use the built-in function min (read about it in the Help Desk). While you’re at
it, also look up the max and abs functions.

Exercise 7.7.15 Develop a function named celsius->kelvin that takes in a tem-
perature measurement in Celsius, and returns the corresponding temperature in Kelvin.

Hint: A degree Kelvin is the same size as a degree Celsius, but 0◦K is approximately
−273.15◦C. This gives you at least one example:

(check-within (celsius->kelvin -273.15) 0 0.01)

Come up with at least two more examples of your own, and use the “inventory with
values” technique to figure out the right algebraic expression.

Exercise 7.7.16 Develop a function named fahrenheit->celsius that takes in a
temperature measurement in Fahrenheit, and returns the corresponding temperature in
Celsius.

Hint: The conversion formula is C = (F − 32) · 5/9.

Exercise 7.7.17 Develop a function named fahrenheit->kelvin that takes in a tem-
perature measurement in Fahrenheit, and returns the corresponding temperature in Kelvin.

Hint: You should be able to write this with no numbers or arithmetic operators in the
body of the function, by re-using previously-written functions.

7.7. WRITING NUMERIC FUNCTIONS 123

Exercise 7.7.18 Develop a function named convert-3-digits that takes in the “hun-
dreds”, “tens”, and “ones” digits of a number, in that order, and returns the number itself.
For example,

(convert-3-digits 5 2 8) "should be" 528

Exercise 7.7.19 Develop a function named convert-3-reversed that takes in the
“ones”, “tens”, and “hundreds” digits of a number, in that order, and returns the number
itself. For example,

(convert-3-reversed 7 0 1) "should be" 107

Hint: By re-using a previously-defined function, you should be able to write this in a
line or two, with no numbers and only one arithmetic operator.

Exercise 7.7.20 Develop a function named top-half that takes in an image and
returns the top half of it.

Hint: See Section 3.5 for functions you’ll need.

Exercise 7.7.21 (Thanks to Leon LaSpina for this problem)

Develop a function named splice-pictures that takes in two images and combines
them by splicing the left half of the first together with the right half of the second.

Hint: This will work best if you pick pictures of approximately the same height. Try
the faces of two famous people . . .

Exercise 7.7.22 Develop a function named progress-bar that takes in three numbers
(width, height, and progress) and a string (color) and produces a horizontal progress
bar as in this example, in which the leftmost progress pixels are solid and the rest are
outlined. You may assume that width, height, and progress are all positive integers, and
that progress is no larger than width.

Exercise 7.7.23 Develop a function bar-graph that takes in four numbers and pro-
duces a bar-graph with four vertical bars (red, blue, green, and yellow respectively) of those
heights.

124 CHAPTER 7. WORKING WITH NUMBERS

Exercise 7.7.24 Develop a function frame-pic that takes in an image, a color name,
and a positive number, and produces that picture surrounded by a “frame” of the specified
color and thickness. For example,

> (frame-pic calendar "blue" 10)

Exercise 7.7.25 My wife wanted to change the background image on her Web page to a
repeating image. But she didn’t want the image to repeat in a monotonous checkerboard
pattern; she wanted each row to be offset from the previous one. Unfortunately, there’s no
HTML command to do that, so I had to build an image which, when repeated horizontally
and vertically, looks like alternating rows offset from one another.

Develop a function offset-tile which takes in an image and produces an image
twice as tall: the top row is the original image, and the bottom row is the image split in
half and put back together in reverse order.

Hint: This is trickier than it seems at first. Be sure to test it on both even-width and
odd-width images, and try putting several copies of the result side by side to make sure
you haven’t created “jaggies”.

This exercise may be easier if you first define two “helper functions” left-half and
right-half. We’ll learn more about helper functions in Chapter 11.

7.8. MANIPULATING COLORS IN IMAGES 125

7.8 Manipulating colors in images

7.8.1 Images, pixels, and colors

Images on a television or computer screen are actually made up of millions of tiny colored
dots, called pixels (short for “picture elements”). Look at such a screen up close with a
magnifying glass, and you may be able to see them. In many computer systems, including
Racket, the color of each dot is represented in RGB (or RGBA) form: three (or four)
numbers representing the amounts of red, green, blue, and perhaps opacity in the dot
(the red, green, blue, and alpha components of the color). Each of these numbers is
conventionally restricted to the integers from 0 to 255. So for example a color with 0 red,
0 green, and 0 blue is black; 255 red, 255 green, and 255 blue is white; 255 red, 0 green,
and 0 blue is pure red; the combination of 100 red, 160 green, and 220 blue is a sort of
light denim-blue; etc.

7.8.2 Building images pixel by pixel

The picturing-programs teachpack includes a function named build3-image which
builds an image pixel by pixel based on where in the picture you are. Its contract is

; build3-image : number(width) number(height)

; function(red-function)

; function(green-function)

; function(blue-function)

; -> image

It takes in the width and height of the desired image, and three functions. Each of
the three functions takes in the x and y coordinates of a pixel; one computes the red
component, one the green component, and one the blue component.

Worked Exercise 7.8.1

Build a rectangle 50 by 50 which shades smoothly from black at the left
edge to red (specifically 250 red, 0 green, 0 blue) at the right edge.

Solution: The only way we know to do this is using build3-image. Obviously the
width and height are both 50, but we’ll need three functions to give it. For now, let’s
name them red-function, green-function, and blue-function (we may come up with
better names later).

Each of the three functions must have the contract

; whatever : number(x) number(y) -> number

Now we need some examples for red-function. It doesn’t care about the y coordinate
given to it, but it should be 0 when the x coordinate is 0, and 250 when the x coordinate
is 50. So
(check-expect (red-function 0 53) 0)

(check-expect (red-function 50 17) 250)

What formula would give us this? Well, there are many ways to do it, but the simplest
is red = 5x. Let’s add another test case in between:

(check-expect (red-function 20 40) 100)

126 CHAPTER 7. WORKING WITH NUMBERS

The skeleton and inventory are straightforward:

(define (red-function x y)

; x a number

; y a number

...

)

And the formula is easy to translate into Racket:

(define (red-function x y)

; x a number

; y a number

(* 5 x)

)

Test this, and it should work.

Now let’s try the green component. We already have the contract. The examples are
easy: no matter what x and y coordinates we plug in, the answer should be 0.

(check-expect (green-function 7 45) 0)

(check-expect (green-function 118 -3) 0)

The skeleton and inventory are exactly the same as for red-function, except for
renaming the function, and the body is even easier:

(define (green-function x y)

; x a number

; y a number

0

)

Test this, and it should work.

The blue function does exactly the same thing ; we don’t even need to write and test
another function for it (although we could if we wished).

We can now build the desired picture as follows:

(build3-image 50 50 red-function green-function green-function)

Try this and see what comes out.

Note that I’ve used green-function as both the green function and the blue function.
This is sorta confusing; it might be better to rename it to say what it does, instead of
how we intend to use it in this problem.

(define (always-zero x y)

; x a number

; y a number

0

)

(build3-image 50 50 red-function always-zero always-zero)

For that matter, we could rename red-function to better indicate what it does: let’s
call it 5x, because it returns 5 times the x coordinate.

7.8. MANIPULATING COLORS IN IMAGES 127

(define (5x x y)

; x a number

; y a number

(* 5 x)

)

(build3-image 50 50 5x always-zero always-zero)

Exercise 7.8.2 Build a rectangle, 50 x 50, which shades smoothly from black at the top-
left corner to purple (i.e. red plus blue) in the bottom-right corner. The top-right corner
should be blue, and the bottom-left corner red.

Hint: You can re-use some previously-defined functions, and you’ll need to write a new
one.

7.8.3 Error-proofing

What happens if you make the image larger than 50 x 50 in the above exercises? 51 is
OK, 52 is OK, but 53 produces an error message because one of the color components is
outside the range from 0 to 255.

SIDEBAR:

You may be wondering why 52 is OK, since 52 ·5 = 260. The reason is that the pixel
positions are numbered from 0 up to one less than the width or height, so the largest
number ever actually given to 5x is 51.

One way to solve this problem is to not allow the numbers to get too big, using min:

; safe-5x : number(x) number(y) -> number (no more than 255)

(check-expect (safe-5x 0 17) 0)

(check-expect (safe-5x 50 27) 250)

(check-expect (safe-5x 51 7) 255)

(check-expect (safe-5x 89 53) 255)

(define (safe-5x x y)

; x a number

; y a number

(min 255 (* 5 x)))

This way if 5x ≤ 255, the answer will be 5x, but if 5x is too large, the function will
return 255. Try this on an image of, say, 100 wide by 75 high. Do you like the result?

Another approach is to multiply by something smaller than 5, e.g. if you wanted a
100x75 image that shades smoothly from black to red, you might want to multiply by
2.55 instead of 5. This also produces error messages, however, because the components of
a color are supposed to be integers. Fortunately, there’s a function real->int that does
what it sounds like: it takes in a real number and produces the closest integer to it. For
example,

128 CHAPTER 7. WORKING WITH NUMBERS

; safe-2.55x : number(x) number(y) -> number

(check-expect (safe-2.55x 0 17) 0)

(check-expect (safe-2.55x 45 27) 115)

(check-expect (safe-2.55x 100 7) 255)

(check-expect (safe-2.55x 189 53) 255)

(define (safe-2.55x x y)

; x a number

; y a number

(min 255 (real->int (* 2.55 x))))

Note that this real->int trick is only necessary if you’re multiplying coordinates by
something other than an integer, since an integer times an integer is always an integer.

Exercise 7.8.3 Is it always clear what “the closest integer” is? Can you think of a
kind of number for which there are two different “closest integers”? Experiment with
real->int to find what it does in this case. Do you have any guesses as to why it works
this way?

Exercise 7.8.4

Build a rectangle, 100 x 100, which shades smoothly from red
at the left edge to green at the right edge.

Exercise 7.8.5

Build a rectangle, 100 x 100, which shades smoothly from black
at the top-left corner to yellow (i.e. red plus green) at the bottom-
right corner. Every point along the diagonal from top-right to
bottom-left should be the same color.

Hint: The formula needs to treat x and y the same, so that increasing either of them
will increase the amount of color. The red and green functions will be the same.

Exercise 7.8.6

Build a rectangle, 100 x 100, which is yellow (i.e. red plus
green) in the top-right and bottom-left corners, and black along
the diagonal from top-left to bottom-right.

7.8. MANIPULATING COLORS IN IMAGES 129

Hint: Use the abs function.

Exercise 7.8.7 Experiment with colors based on

• the square of the x or y coordinate,

• the square root of the x or y coordinate,

• the sine of the x or y coordinate,

• the sum, difference, or product of the x and y coordinates

In all these cases, consider the largest and smallest possible values of the formula, and
scale it and convert to integer so the color values are integers between 0 and 255. It may
also be easier to see what’s happening if you divide the x or y coordinate by something
like 10 or 20 before taking the sine of it.

7.8.4 Building images from other images

There’s also a built-in function map3-image which is similar to build3-image, but builds
a new image from an existing image. Its contract is

; map3-image : function(red-function)

; function(green-function)

; function(blue-function)

; image -> image

That is, it takes in three functions and an image, and produces a new image. Each of
the three functions must have the contract
; whatever : number(x) number(y)

; number(red) number(green) number(blue) -> number

The first two parameters are the x and y coordinates, as before. The third, fourth, and
fifth are the red, green, and blue components of the pixel at that location in the original
picture.

Worked Exercise 7.8.8 Choose an interesting picture (preferably a photograph)
and build a version of it with all the red removed, leaving only the green and blue
components.

Solution: Obviously, we’ll need to call map3-image, which means we need three functions
to give it. Let’s call them red-function, green-function, and blue-function for now.
All three have the contract
; whatever : number(x) number(y)

; number(red) number(green) number(blue) -> number

130 CHAPTER 7. WORKING WITH NUMBERS

The red function is easy: no matter what x, y, or the old color are, it should return
0:
(check-expect (red-function 10 20 30 40 50) 0)

(check-expect (red-function 1000 100 250 125 0) 0)

(define (red-function x y red green blue)

; x a number

; y a number

; red a number

; green a number

; blue a number

0)

The green function simply returns the same amount of green as before:

(check-expect (green-function 10 20 30 40 50) 40)

(check-expect (green-function 1000 100 250 125 0) 125)

(define (green-function x y red green blue)

; x a number

; y a number

; red a number

; green a number

; blue a number

green)

and the blue function is similar, but returns the same amount of blue as before (left as
an exercise).

Once all three of these are tested, we can simply say

(map3-image red-function green-function blue-function my-picture)

to get the desired result.

Exercise 7.8.9 Define a function remove-red that takes in an image and returns the
same image with all the red removed.

Hint: For this exercise, and most of the exercises in this section, there is no easy way to
build “the right answer” other than the function itself. So I suggest describing the right
answer in English, rather than using check-expect. You still need to write test cases,
you just need to check them by eye rather than relying on check-expect.

Exercise 7.8.10 Define a function swap-red-blue that takes in an image and returns
the same image with the red and blue components reversed: wherever there was a lot of
red, there should be a lot of blue, and vice versa.

Exercise 7.8.11 Define a function convert-to-gray that takes in an image and re-
turns the same image in gray-scale. That is, every pixel should have red, green, and blue
components equal to one another. However, the total amount of color at each pixel should
be roughly the same as the total amount of color at that point in the original picture.

Exercise 7.8.12 Define a function apply-blue-gradient that takes in an image and
returns an image with the same red and green components, but with the blue component
equal to the y coordinate (so none at the top and the most at the bottom).

7.9. RANDOMNESS 131

Hint: Test your program with images of a variety of sizes, including some that are more
than 255 pixels high. (It would be nice to have this function always reach full blue just

at the bottom of the image, regardless of image height, but that requires some techniques
you don’t know yet; we’ll see how in Chapters 27 and 28.)

Exercise 7.8.13 Make up some other cool tricks to do with images and their pixels. Go
wild.

7.8.5 A sneak preview

It’s sort of inconvenient having to write three separate functions for the red, green, and
blue components of the resulting picture (either for build3-image or for map3-image).
There’s a function named build-image: where build3-image takes in three functions
that return the red, green, and blue components of a pixel, build-image takes in one
function that returns a whole color (with make-color).

Exercise 7.8.14 Re-write some of exercises 7.8.1 through 7.8.7 using build-image

instead of build3-image.

There’s also a function map-image which takes in only one function rather than three.
But that function in turn takes in a color rather than three numbers, so you can’t really
use it until you’ve learned in Chapter 20 how to take colors apart.

7.8.6 A problem with bit-maps

The build3-image and map3-image functions produce an image in a form called a bit-
map (or, more precisely, a pixel-map). Such images display very nicely “as is”, but if
you try to enlarge them or rotate them, the results often don’t look very good. For ex-
ample, suppose my-picture was a picture you had created in one of these ways. Then
rotate 15 my-picture, or scale 5 my-picture, may well have “jaggies” — visibly
jagged, “stairstep” edges that wouldn’t happen if you just scaled or rotated a pure geo-
metric shape like a triangle.

Exercise 7.8.15 Develop a function bitmapize that takes in a picture and, using
map3-image, returns an image with exactly the same colors.

Compare the results of

(bitmapize (scale 5 (triangle 10 "solid" "blue")))

(scale 5 (bitmapize (triangle 10 "solid" "blue")))

Which one looks smoother? Why?

The moral of the story is that if you’re going to do bitmap operations (such as
map3-image), they should be ideally done after scaling.

7.9 Randomness

If you were writing a video game, you probably wouldn’t want things to always play out
the same way; you’d want to give the game a certain amount of unpredictability. Likewise,
people doing computer simulations of complex systems like traffic patterns, economics,
aerodynamics, and drug interactions may want to include some unpredictable events in
their simulations.

132 CHAPTER 7. WORKING WITH NUMBERS

In Racket, as in most programming languages, this is done with the help of a built-in
function called a random number generator.3 There’s a Racket function named random

that takes in a positive integer and returns a “randomly” chosen integer, at least zero
and less than the given integer. Here’s a sample interaction:

> (random 10)

6

> (random 10)

4

> (random 10)

0

> (random 10)

3

> (random 10)

7

> (random 10)

4

> (random 10)

2

The answers can be anything from 0, 1, . . . 9 (10 choices). In general, the number of
possible answers is equal to the argument of random. Try the random function several
times each, on several different arguments.

7.9.1 Testing random functions

Since random produces an unpredictable result, it’s difficult to write test cases for func-
tions that use it. If we write something like

(check-expect (random 10) 4)

it will fail 90% of the time. For that matter, if we write

(check-expect (random 10) (random 10))

it will still fail 90% of the time. (Why?)
One answer is to use "should be" and an English-language description of what’s a

“reasonable” answer, e.g. "should be an integer from 0 through 9". Since random-
valued functions may return different answers each time you call them on the same input,
make sure to test them several times interactively : if you expect different answers each
time, but you actually get the same answer each time, or if you expect several equally-
likely answers but in fact one answer is much more common than another, something may
be wrong.

Another way is to use one of check-expect’s cousins, check-member-of and
check-range. check-member-of takes three or more arguments, and checks whether
the first matches any of the remaining ones:

(check-member-of (random 6) 0 1 2 3 4 5)

If you’re calling random with a large argument, you probably don’t want to type in all
the possible answers, so check-range takes in three numbers and checks that the first is
between the second and third (inclusively — that is, it’s allowed to be exactly the second
or the third):

3Most “random number generators” don’t produce really random numbers, but rather a predictable
sequence of numbers that look random unless you know the formula that is used to produce them.

7.9. RANDOMNESS 133

(check-range (random 1000) 0 999)

The check-member-of and check-range functions are more convenient to use than
“should be”, because you don’t have to look at the answers yourself. However, they don’t
help you spot the kind of mistake described above, where a function that’s supposed to
be random actually produces the same answer every time, or produces answers with the
wrong probabilities. So even if you decide to use check-member-of or check-range, you
should still have a few “should be”-style tests so you can see whether you’re actually
getting different answers.

Even with check-member-of and check-range, it’s harder to test a function with
random behavior than one that’s predictable. So as a general strategy, it’s best to make
as much as possible of the program predictable. If a program involves a random number,
but this same random number is used in several places, it’s a good idea to generate the
random number once, then pass it to a predictable “helper” function that does all the
non-random work. You can test this “helper” function just as you usually would, because
it doesn’t have any randomness in it.

7.9.2 Exercises on randomness

Exercise 7.9.1 Develop a function named random-digit that returns one of the in-
tegers 0, 1, . . . 9, chosen at random.

Hint: This function doesn’t depend on a parameter, but DrRacket’s Beginner Lan-
guage won’t let you write a function without a parameter, so have your function take in
something and ignore it.

Exercise 7.9.2 Develop a function named roll-die that returns an integer randomly
chosen from 1 to 6 inclusive — no zeroes, no 7’s.

Hint: As before, the function should take a dummy parameter. There are 6 possible
answers; how do you make sure that the function never returns 0, but does return 6 some
of the time?

Exercise 7.9.3 Develop a function named two-dice that acts like rolling two 6-sided
dice and counting the total number of dots.

Hint: As before, give it a dummy parameter. Note that the possible answers are 2
through 12, but they’re not equally likely: 7 should come up much more often than 2 or
12. How can you test this?

Exercise 7.9.4 Develop a function named random-picture that takes in a width and
a height, and produces a rectangle that size and shape, in which each pixel is a random
color (that is, for each pixel, the red, green, and blue components are each chosen ran-
domly). Note: I’m not asking you to pick a random color, then make a rectangle of that
color; I want each pixel to be chosen at random separately.

134 CHAPTER 7. WORKING WITH NUMBERS

7.10 Review of important words and concepts

Racket provides all the usual arithmetic operators: +, -, *, /, sqrt, etc. They obey the
same syntax rule as everything else in Racket:

(function-name argument ...)

In other words, they are prefix operators: we write them before whatever they’re supposed
to work on. This may feel unnatural for people accustomed to the infix operators we
learned in grade school, but in many ways Racket’s syntax is simpler, more consistent, and
more flexible; for example, there is no need to memorize precedence rules like PEMDAS,
because everything is parenthesized.

Racket distinguishes among different kinds of numbers: integers, fractions, inex-
act numbers and complex numbers. When testing a function with inexact results, use
check-within rather than check-expect.

Variables and functions can have numeric values, just as they can have image values.
The process of defining them is almost exactly as before, except that it’s usually easier
to construct “right answers” to function examples. There are a few predefined variables
in Racket, notably pi and e, to stand for special numeric values.

Racket, like most programming languages, provides a random number generator, which
produces (mostly-)unpredictable numbers in a specified range. Since random-valued func-
tions are unpredictable, you can’t test them using check-expect, but you can specify in
English what the allowable values are, or you can use check-member-of or check-range.
Be sure to test such functions several times, both with checking functions and with “should
be”.

7.11 Reference: Built-in functions on numbers

In this chapter we’ve introduced a number of functions, many of which you’ve been using
for years:

• +, which takes two or more parameters

• −, which takes one or more parameters

• ∗, which takes two or more parameters

• /

• add1

• sub1

• sqrt

• min

• max

• abs

• sin

• quotient

• remainder

7.11. REFERENCE 135

• random

• pi, which is actually a built-in variable, not a function.

• check-member-of

• check-range

• build3-image

• build-image

• map3-image

136 CHAPTER 7. WORKING WITH NUMBERS

Chapter 8

Animations involving numbers

8.1 Model and view

The examples of Chapter 6 all compute the next picture in the animation from the previ-
ous picture. This turns out to be a rather restrictive way to look at things. For example,

suppose we wanted an animation of a digital clock.

How would you go about computing the next picture from the previous one? Well,
first you would have to look at the picture and “read” it: from the pattern of dark and
light pixels in the picture, recognize each of the digits, interpret the sequence of digits as
a number, add 1 to that number, and finally convert the result back into a picture. We’re
asking the computer to do things that humans do easily, but computers aren’t very good
at — things that took our eyes millions of years of evolution, and our infant selves years
of training.

A more sensible approach would be to store the current time directly as a number
(which computers are very good at), and add one second to it at every “tick”. We’d still
need to convert a number to a picture, but this is considerably easier than analyzing a
picture and reading a number from it.

In Chapter 6, I said I was simplifying things. The truth is that an event handler
doesn’t necessarily take in an image; it takes in a “model”, which (for now) can be either
an image or a number. For each animation you write, you’ll need to decide which of these
to use, and stick to that decision throughout the animation.

You can tell DrRacket what kind of model you’re using by adding another event han-
dler to big-bang: either (check-with image?) or (check-with number?) depending
on whether you’re using images or numbers. This makes no difference if your animation
is written perfectly, but if (as will almost certainly happen once or twice) you get con-
fused, and write part of it to work on images and another part to work on numbers, a
check-with handler allows DrRacket to give you better error messages, so you can figure
out more easily what went wrong. We’ll explore check-with more thoroughly in Chap-
ter 14, but for now suffice it to say that image? is a built-in function that checks whether
something is an image, and number? similarly checks whether something is a number.

The details are in Figure 8.1.

137

138 CHAPTER 8. ANIMATIONS INVOLVING NUMBERS

Figure 8.1: Event handlers for animations with image or numeric models

The big-bang function has the contract

; big-bang : model (start) handler ... -> model

where model is either number or image.

tick handlers must have the contract

; function-name : model (old) -> model (new)

They are installed with (on-tick function-name interval). The interval is
the length of time (in seconds) between clock ticks; if you leave it out, the ani-
mation will run as fast as it can.

key handlers must have the contract

; function-name : model (old) key -> model (new)

The “key” parameter indicates what key was pressed; we’ll see how to use it in
Chapter 18.

They are installed with (on-key function-name).

mouse handlers must have the contract

; function-name : model (old)

; number (mouse-x) number (mouse-y) event

; -> model (new)

The first parameter is the old model; the second represents the x coordinate,
indicating how many pixels from the left the mouse is; the third number represents
the y coordinate, indicating how many pixels down from the top the mouse is; and
the “event” tells what happened (the mouse was moved, the button was pressed
or released, etc.); we’ll see in Chapter 18 how to use this.

They are installed with (on-mouse function-name).

draw handlers must have the contract

; function-name : model (current) -> image

and are installed with (on-draw function-name width height).

If you leave out the width and height, the animation window will be the size and
shape of the result the first time the draw handler is called.

An especially simple draw handler, show-it, is predefined: it simply returns the
same image it was given, and it’s useful if you need to specify the width and
height of the animation window but don’t want to write your own draw handler.

To specify the model type , put in another event handler: either (check-with

image?) or (check-with number?), depending on whether your animation uses
images or numbers as its model.

8.2. DESIGN RECIPE 139

SIDEBAR:

This idea of distinguishing between a “model” of reality and the way that model
appears visually is called the “model-view framework”. If you have friends or relatives
who do computer programming, tell them you’re studying the model-view framework
and they should know what you mean.

8.2 Design recipe for an animation, second version

Now that we know about different types of models, we’ll add to the earlier design recipe.
The result is in Figure 8.2.

To illustrate it, let’s work some examples. Everything in Chapter 6 still works, using
images as our models. But we can now do much more. We’ll start, as before, with an
unmoving “animation”.

Worked Exercise 8.2.1 Develop an animation whose “model” is a number, and
whose “view” is a blue circle of that radius. For now, it won’t change.

Solution: Since the animation won’t actually change, we don’t need a tick-handler, a
key-handler, or a mouse-handler; we’re not sure yet whether we’ll need a draw handler.

We’ve been told to use a number as the model, so that decision is made. Since the
model isn’t an image, we’ll definitely need a draw handler.

The draw handler needs to take in a number and return an image of a blue circle
whose radius is that number. Let’s name the function blue-circle-of-size.

Contract:

; blue-circle-of-size : number(radius) -> image

Examples:

(check-expect (blue-circle-of-size 2)

(circle 2 "solid" "blue"))

(check-expect (blue-circle-of-size 37)

(circle 37 "solid" "blue"))

Function skeleton:

(define (blue-circle-of-size radius)

...)

Inventory:

(define (blue-circle-of-size radius)

; radius number

; "blue" a string I know I’ll need

...)

Body:

(define (blue-circle-of-size radius)

; radius number

; "blue" a string I know I’ll need

(circle radius "solid" "blue")

)

140 CHAPTER 8. ANIMATIONS INVOLVING NUMBERS

Figure 8.2: Design recipe for an animation, version 2

1. Identify what handlers you’ll need (check-with, draw, tick, mouse, and/or
key).

• You should always have a check-with handler.

• If your animation needs to change at regular intervals, you’ll need a tick
handler.

• If your animation needs to respond to mouse movements and clicks, you’ll
need a mouse handler.

• If your animation needs to respond to keyboard typing, you’ll need a key
handler.

• You’ll always need a draw handler. If your model is exactly the image you
want to show in the animation window, you can use show-it; if not, you’ll
need to write your own draw handler.

2. Decide what type a “model” is — image or number, for now — and what it
“means”.

What kinds of changes do you want to make in response to events? If
they’re easily described by arithmetic, use a number; if they’re image operations
(e.g. rotate-cw), use an image. If neither, see Chapter 10.

If you decide to use a numeric model, you still need to decide what it means : a
rectangle’s height, a circle’s radius, a string’s length, something’s x coordinate,
. . .

If you decide to use an image model, follow the recipe of Chapter 6.

If you decide to use a number as the model, you’ll definitely need to write a draw
handler.

3. Write the contracts for the handlers, using Figure 8.1. Again, the function
names are up to you, but once you’ve chosen a type for your model, the contracts
must be exactly as in Figure 8.1.

4. Develop each of these functions, following the usual design recipe for each
one. Don’t go on to the next one until the previous one passes all of its test cases.

5. Decide on the initial number the model should start at.

6. Decide on the width and height (if the draw handler doesn’t produce some-
thing of the right size).

7. Decide on the time interval between “ticks” (if you have a tick handler).

8. Call big-bang with the initial picture and handlers (specified using check-with,
on-draw, on-tick, on-mouse, and on-key). See whether it works.

8.3. ANIMATIONS USING ADD1 141

Test this function to make sure it works correctly by itself.
To run the animation, we need to make some more decisions: what is the unchanging

radius of the circle? (let’s try 7), and what shape and size should the animation window
be? I’ll pick 100 wide by 50 high, which should be plenty big enough to show a radius-7
circle. The big-bang call is now

(big-bang 7

(check-with number?)

(on-draw blue-circle-of-size 100 50))

The result should be an animation window, 100x50, containing a blue circle of radius 7.
Notice that when you close the window, it returns the number 7 to the Interactions pane.

Practice Exercise 8.2.2 Try this with different numbers in place of the 100, 50, and
7.

Try this with a string like "hello" instead of a number as the first argument to
big-bang. What error message do you get?

Take out the (check-with number?) handler, and try that same mistake again.
What error message do you get?

Exercise 8.2.3 Develop an animation of a small picture of your choice on a 200x200
white background. The model should be a number representing the x coordinate of the
picture’s location; the y coordinate should always be 50.

Try it with several different numbers as initial models.

The result, like Exercise 8.2.1, won’t actually move, but the picture will appear at a
distance from the left edge determined by the “initial model” in the big-bang call. And,
as with Exercise 8.2.1, we’ll modify this animation shortly to do more interesting things.

8.3 Animations using add1

Recall that for the animation of Exercise 8.2.1, we decided that the model is a number
indicating the radius of the circle. How would we change the radius? Well, if we wanted
the circle to grow over time, we could add 1 to the radius at each clock tick.

A tick handler function, for an animation with a numeric model, must always have a
contract of the form

function-name : number -> number

Conveniently enough, the add1 function (introduced in Chapter 7) has exactly this
contract, so we can use it as a tick handler without needing to write our own. The result
should be a circle that grows larger every tick:

(big-bang 7

(check-with number?)

(on-draw blue-circle-of-size 100 50)

(on-tick add1 1/2))

(Remember, the 1/2 means the clock should tick every half second.)

Practice Exercise 8.3.1 Try this.

142 CHAPTER 8. ANIMATIONS INVOLVING NUMBERS

Exercise 8.3.2 Modify the display of Exercise 8.3.1 so that the circle appears centered
and unmoving in a 200x200 white background, so it appears to grow around a fixed center.

Exercise 8.3.3 Modify Exercise 8.2.3 so that the picture moves 1 pixel to the right
every 1/10 second.

Hint: This doesn’t require writing any new functions at all, only changing the big-bang
call.

Exercise 8.3.4 Develop an animation of a square, initially 1x1, which grows by 1
pixel in each dimension at each clock tick, centered in a 200x200 window.

Note: You may find that the square seems to jiggle slightly from upper-left to lower-
right and back. This is because DrRacket uses integers for the positions of images; when
the square has an even size, its center is exactly halfway, but when it has an odd size,
its “center” for drawing purposes is half a pixel above and to the left of its actual center.
Why didn’t this problem show up in Exercise 8.3.1?)

Exercise 8.3.5 Develop an animation of a rectangle, initially 2x1, which grows by 1
pixel in height and 2 in width at each clock tick, centered in a 200x200 window.

Hint: Have the model represent only the height; put together the right picture from
this information.

Exercise 8.3.6 Develop an animation that displays a small dot or star at a location
that varies over time. The x coordinate should be simply t, and the y coordinate t2/20,
where t is the number of ticks since the animation started.

Hint: Write a “helper” function y-coord that takes in the current value of t and
computes t2/20; use this function in your draw handler.

Exercise 8.3.7 Modify the animation of Exercise 8.3.6 so that the x coordinate is 100+
50 cos(t/10) and the y coordinate 100 + 30 sin(t/10).

Hint: This will show up better if you use a short tick interval, or leave it out completely
so the animation runs as fast as possible.

Exercise 8.3.8 Add the variable definitions

(define XCENTER 100)

(define YCENTER 100)

(define XSCALE 50)

(define YSCALE 30)

to your definitions pane, and replace the formulæ in Exercise 8.3.7 with

x = XCENTER + XSCALE ∗ cos(t/10)

and

y = Y CENTER + Y SCALE ∗ sin(t/10)

The animation should still work exactly as before. Check that it does.

8.4. ANIMATIONS WITH OTHER NUMERIC FUNCTIONS 143

Now change the definitions of some of the variables to different numbers and run the
animation again. Can you predict what will happen?

There are two other “magic numbers” still in the program: the 1/10’s inside the cos

and sin functions. Replace these too with variables; make sure the animation works as
before, then try changing these values and predict what will happen. For example, what
happens when these two numbers aren’t the same: when one is twice the other, or three
times the other, or slightly more or less than the other?

Exercise 8.3.9 Write an animation that shows a blue progress bar 20 high by 120
wide, initially just an outline but filling in from left to right at 1 pixel per quarter of a
second.

Note: Depending on how you write this, your animation will probably stop changing
after 30 seconds, when the progress bar reaches 100% full. In fact, it’s still running, but
not showing any visible change. We’ll learn in Chapter 15 how to have it actually stop at
a specified point.

8.4 Animations with other numeric functions

Of course, you can do much more interesting things to a numeric model than simply add
1 to it. For example, you can write an add5 function that takes in a number and adds 5
to it, and use this in place of add1 for the examples in Section 8.3, to get a blue circle
that grows by 5 pixels at a time, or a digital counter that counts by 5 rather than 1.

Here’s another example.

Worked Exercise 8.4.1 Write an animation of a picture of your choice that moves
right 1 pixel whenever the mouse is moved or clicked, and left 4 pixels whenever a key is
typed on the keyboard.

Solution:

What handlers do we need? The animation needs to respond to the mouse and the
keyboard, so we’ll need a mouse handler and a key handler. If we use a non-image
model, we’ll also need a draw handler.

Identify the model: The next step in designing an animation is deciding what type the
“model” is, and what it “means”. The only piece of information that changes in
this animation is the x-coordinate of a picture, so let’s say our model is a number
indicating the x coordinate of the picture.

(You could try to do this animation using an image as the model, moving it to the
right with beside and to the left with crop-left. Unfortunately, if it “moved” off
the left edge of the screen, the picture would be reduced to nothing, and subsequent
attempts to “move it right” wouldn’t bring it back. Using a number as the model,
we can move it off the left edge, then bring it back onto the screen, as many times
as we like.)

Contracts for handlers: Draw handlers always have contract

; handle-draw : model -> image

We’ve decided that for this animation, “model” means “number”, so

144 CHAPTER 8. ANIMATIONS INVOLVING NUMBERS

; handle-draw : number -> image

Key handlers always have contract

; handle-key : model key -> model

For this animation, that becomes

; handle-key : number key -> number

Mouse handlers always have contract

; handle-mouse :

model number(mouse-x) number(mouse-y) event

-> model

In our case, this becomes

; handle-mouse :

number(old) number(mouse-x) number(mouse-y) event

-> number(new)

Write the draw handler: Since our model is a number, we’ll need a draw handler to
convert it into an image. Let’s use our favorite calendar picture, and (since the
assignment says it moves only left and right) decide that it’ll always be at a y-
coordinate of, say, 50. Since it’s moving only left and right, a window height of 100
should be plenty, with a window width of (say) 500.

If you did Exercises 8.2.3 and 8.3.3, you’ve already written a draw handler that
will work for this; the only change is the size and shape of the background. Let’s
suppose you wrote one named calendar-at-x.

Write the mouse handler: We need to move right (i.e. increase the x coordinate)
whenever there’s a mouse event, but we don’t care about any of the details of the
event. So we’ll write a function with the contract

; add1-on-mouse : number(x)

; number(mouse-x) number(mouse-y)

; event -> number

(Remember, the first parameter to a mouse handler is always the current model,
which for this animation is a number representing the x coordinate of the picture.)
We’re ignoring mouse-x, mouse-y, and event, so the following examples should be
enough:

"Examples of add1-on-mouse:"

(check-expect

(add1-on-mouse 3 29 348 "blarg") 4)

(check-expect

(add1-on-mouse 15 503 6 "glink") 16)

8.4. ANIMATIONS WITH OTHER NUMERIC FUNCTIONS 145

The skeleton comes directly from the contract:

(define (add1-on-mouse x mouse-x mouse-y event)

...)

The inventory simply adds the four parameters:

(define (add1-on-mouse x mouse-x mouse-y event)

; x number

; mouse-x number (ignore)

; mouse-y number (ignore)

; event whatever (ignore)

...)

In the body, we merely need to add 1 to x:

(define (add1-on-mouse x mouse-x mouse-y event)

; x number

; mouse-x number (ignore)

; mouse-y number (ignore)

; event whatever (ignore)

(+ x 1) ; or, if you prefer, (add1 x)

)

Test this, and we can go on to the next handler.

Write the key handler: This is quite similar to the mouse handler. My solution is

; sub4-on-key : number (x) key -> number

(check-expect (sub4-on-key 7 "dummy argument") 3)

(check-expect (sub4-on-key 4 "whatever") 0)

(define (sub4-on-key x key)

; x number

; key whatever (ignore)

(- x 4)

)

Test this, and we can go on to running the animation.

Initial model: Let’s start halfway across the window, at an x coordinate of 250.

Call big-bang: We’ve already made all the decisions, so all that’s left is

(big-bang 250

(check-with number?)

(on-draw calendar-at-x)

(on-mouse add1-on-mouse)

(on-key sub4-on-key))

146 CHAPTER 8. ANIMATIONS INVOLVING NUMBERS

Exercise 8.4.2 Write an animation of a picture of your choice that starts at the top
of the screen, and moves down by 5 pixels every half second. Use a number, not an image,
as your model.

Exercise 8.4.3 Write an animation of a dot that doubles in size every 5 seconds, but
shrinks by 4 pixels every time a key is typed on the keyboard.

Exercise 8.4.4 Write an animation in which a red disk — say,

(circle 15 "solid" "red")

— alternates every second between x-coordinate 20 and x-coordinate 60 on a fixed back-
ground picture. (Try

(beside (circle 20 "solid" "blue") (circle 20 "solid" "green"))

as the background picture.)

Hint: Use overlay/xy or place-image to place the dot at a specified x coordinate,
which should be the model.

Exercise 8.4.5 Write an animation of a progress bar (as in Exercise 8.3.9) that starts
at 120, and is cut in half every second thereafter: 60, 30, 15, . . .

8.5 Randomness in animations

We can use randomness to make our animations more interesting.
Hint: Perhaps the most common mistake I’ve seen students make on these exercises is
putting randomness into a draw handler, which is almost never a good idea. If something
is supposed to be changing randomly, you probably want to remember that change for
later events, which means it needs to affect the model. Draw handlers don’t affect the
model, only the way the model appears on the screen right now. If you use random in

a draw handler, you’re probably doing something wrong!

Exercise 8.5.1 Write an animation of a picture of your choice that appears each
second at a different x-coordinate (and the same y-coordinate), chosen from among the
five choices 20, 60, 100, 140, 180.

Hint: There are 5 choices, so you’ll need to call (random 5) somewhere in the simula-
tion. And your draw handler will have to convert from a 0-4 choice to one of the specified
numbers; what algebraic formula would do that? Be sure to test your function using
check-member-of.

Hint: You can do this with no model at all, putting all the work in a draw handler
that ignores its input and uses random. But that goes crazy as soon as the user moves
the mouse or types on the keyboard — a good example of why it’s better to put the
randomness in the tick handler, not the draw handler.

Exercise 8.5.2 Write an animation of a picture of your choice that moves either 1
pixel left, 1 pixel right, or not at all, with equal probability, four times a second.

8.6. REVIEW 147

Hint: How many choices are there? How can you convert them into a modification of
the state of the model?

Exercise 8.5.3 Write an animation that starts with a blank screen, and each half
second adds a small dot at a completely random location — both the x coordinate and the
y coordinate are chosen at random.

Hint: Since you need to keep all the previous dots and add one more, your “model”
should probably be an image rather than a number. How can you add a dot at a specified
location to an existing image?

Hint: It would be especially nice if you could start the animation with any image, of
any size or shape, and it would sprinkle dots at random all over that background, without
rewriting the handlers.

8.6 Review of important words and concepts

Now that we know how to write functions with numeric values, we have a lot more
flexibility in creating animations: we can have a number as the “model”, change it one
way on clock ticks, change it another way on mouse actions, and change it a third way
on keyboard actions, as long as we write a suitable draw handler to convert from number
to image.

Racket’s random number generator can be used to make animations more unpre-
dictable and interesting.

8.7 Reference

There are no new built-in functions or syntax rules in this chapter.

148 CHAPTER 8. ANIMATIONS INVOLVING NUMBERS

Chapter 9

Working with strings

9.1 Operations

Computer scientists use the term string, or character string, to mean a sequence of char-
acters, which are basically keys on the keyboard. (There are a few exceptions: the arrow
keys, function keys, “page up” and “page down” keys, etc. don’t produce ordinary char-
acters.) You’ve already learned how to type a literal string: a string starts and ends with
double-quote marks, and in between them, you can put numbers, letters, spaces, paren-
theses, punctuation — anything except other double-quote marks. (In fact, if you really
need to put a double-quote mark inside a string, you can do it by preceding it with a
backslash, e.g. "He said \"Hello,\" and I replied \"Hi there.\"" We won’t need
to do this very often.) In this section we’ll learn to operate on strings just as we’ve already
learned to operate on pictures and numbers.

The simplest imaginable string has no characters at all in between the quotation
marks:

""

This is referred to, for obvious reasons, as the “empty string”. Whenever you write a
function that works on strings, make sure you include the empty string as one of the test
cases.

Here are several of the most common operations on strings:

string-append

Contract:

; string-append : string ...-> string

It takes in one or more1 strings, puts them together end to end into a single string,
and returns that. For example,

(string-append "hello" "there" "friend")

"hellotherefriend"

Note that it does not automatically put spaces in between: if you want spaces, you
have to put them in:

(string-append "hello " "there" " " "friend")

"hello there friend"

1Actually, it even accepts no strings at all; it returns the empty string "".

149

150 CHAPTER 9. WORKING WITH STRINGS

string-length

Contract:

; string-length : string -> integer

It tells you how many characters (letters, spaces, punctuation marks, etc.) are in
the given string. For example,

(string-length "hellothere")

10

(string-length "Hi there, friend!")

17

substring

Contract:

; substring : string integer(start) [integer(end)] -> string

(The “[integer(end)]” notation means that the third parameter is optional; in other
words, the function takes in a string and one or two integers.) If there is only one
integer parameter, substring chops off that many characters at the beginning. If
there are two integer parameters, substring chops off everything after the first
end characters, and then chops off the first start characters. The result will have
length end-start, unless end is smaller than start, in which case you’ll get an
error message.

number->string

Contract:

; number->string : number -> string

Converts a number to the sequence of characters used to print it out.

string->number

Contract:

; string->number : string -> number

If the string can be interpreted as the sequence of characters used to print out a
number, returns that number. If not, returns the special value false (about which
we’ll learn more in Chapter 13).

Practice Exercise 9.1.1 Play with these.

9.2 String variables and functions

You can define variables and functions with string values just as you can define them with
image or numeric values.

Practice Exercise 9.2.1 Define a variable named me whose value is your full name
(first and last, with a space in between).
Write several expressions using this variable and the built-in functions string-append,
string-length, and substring.

9.3. REVIEW 151

Exercise 9.2.2 Develop a function named repeat that takes in a string and returns
that string appended to itself (i.e. the resulting string is twice as long).

Exercise 9.2.3 Develop a function chop-first-char that takes in a string and re-
turns all but the first character. (For now, you may assume the string is non-empty; we’ll
drop this assumption later.)

Exercise 9.2.4 Develop a function first-char that takes in a string and returns a
string of length 1, containing just the first character of the given string. (For now, you
may assume the string is non-empty; we’ll drop this assumption later.)

Exercise 9.2.5 Develop a function named last-half that takes in a string and re-
turns the last half of it.

Hint: Be sure to test your program on both even-length and odd-length strings. Also
try some special cases like the empty string, "".

Exercise 9.2.6 Develop a function named first-half that takes in a string and
returns the first half of it.

What happens if you concatenate the first-half of a string to the last-half of the
same string? What should happen? Again, be sure to test this on both even-length and
odd-length strings, and on the empty string.

Exercise 9.2.7 Develop a function named number->image that takes in a number and
returns an image of that number in (say) 18-point blue font.

Hint: Combine the built-in functions text and number->string.

Exercise 9.2.8 Develop a function named digits that takes in a positive integer (like
52073; you don’t need to deal with fractions or decimals) and tells how many digits long
it is, when written in base 10.

Hint: This doesn’t require any arithmetic, only combining functions described in this
chapter.

9.3 Review of important words and concepts

Thus far we’ve seen three important data types, or kinds of information: images, strings,
and numbers (which can be further broken down into integers, fractions, floats, and
complexes). Racket provides several built-in functions for working on strings. These
functions are used in exactly the same way as functions on images or functions on numbers.
Likewise, you can define variables and functions with string values, just as you defined
variables and functions with image or number values.

9.4 Reference: Built-in functions on strings

This chapter introduced the following built-in functions:

• string-append

152 CHAPTER 9. WORKING WITH STRINGS

• string-length

• substring

• number− >string

• string− >number

Chapter 10

Animations with arbitrary
models

10.1 Model and view

In Chapter 8, we saw that an animation involves two pieces of information: a model
(either an image or a number) and a view of that model (always an image). In fact,
things are more flexible than that: the model can be of any data type at all, as long as
you’re consistent within a given animation. The details are in Figure 10.1.

Note that all the examples of chapters 6 and 8 still work. But now we can also use
strings as models, and as we learn more data types in future chapters we’ll be able to use
those types as models too.

10.2 Design recipe for an animation, version 3

Our design recipe for an animation is now as in Figure 10.2.

Exercise 10.2.1 Write an animation that initially displays the letter “a” in 18-point
green type, and each second adds a “b” onto the end. So after one second it’ll say “ab”;
after two seconds “abb”; etc.

Hint: For this animation, your “model” should be a string, and your draw handler will
involve the text function.

Exercise 10.2.2 Add a mouse handler to the previous animation: every time the
mouse is moved or clicked, one character will be chopped off the beginning of the string.

Exercise 10.2.3 Write an animation that initially displays the word "cat". Each
second, it inserts the letters "xyz" in the middle (i.e. between the first half and the
second half) of the current word.

Hint: It may be useful to write a “helper” function insert-in-middle that takes two
strings, and inserts one of them into the middle of the other.

153

154 CHAPTER 10. ANIMATIONS WITH ARBITRARY MODELS

Figure 10.1: Event handlers for animations with arbitrary models

The big-bang function has the contract

; big-bang : model(start) handler ... -> number

tick handlers must have the contract

; function-name : model (old) -> model (new)

They are installed with (on-tick function-name interval). The interval
is the length of time (in seconds) between clock ticks; if you leave it out, the
animation will run as fast as it can.

key handlers must have the contract

; function-name : model (old) key -> model (new)

The “key” parameter indicates what key was pressed; we’ll see how to use it in
Chapter 18.

They are installed with (on-key function-name).

mouse handlers must have the contract

; function-name : model (old)

; number (mouse-x) number (mouse-y) event

; -> model (new)

The first parameter is the old model; the second represents the x coordinate,
indicating how many pixels from the left the mouse is; the third number represents
the y coordinate, indicating how many pixels down from the top the mouse is; and
the “event” tells what happened (the mouse was moved, the button was pressed
or released, etc.); we’ll see in Chapter 18 how to use this.

They are installed with (on-mouse function-name).

draw handlers must have the contract

; function-name : model (current) -> image

and are installed with (on-draw function-name width height). (If you leave
out the width and height arguments, the animation window will be the size of the
first image.)

An especially simple draw handler, show-it, is predefined: it simply returns the
same image it was given, and it’s useful if you need to specify the width and
height of the animation window but don’t want to write your own draw handler.

To specify the model type , use (check-with type-checker), where type-checker
is a function that checks whether something is of a specified type, e.g. image?,
number?, or string?, depending on what type you’ve chosen for this animation’s
model.

10.2. DESIGN RECIPE 155

Figure 10.2: Design recipe for an animation, version 3

1. Identify what handlers you’ll need (check-with, draw, tick, mouse, and/or
key).

• You should always have a check-with handler.

• If your animation needs to change at regular intervals, you’ll need a tick
handler.

• If your animation needs to respond to mouse movements and clicks, you’ll
need a mouse handler.

• If your animation needs to respond to keyboard typing, you’ll need a key
handler.

• You always need a draw handler. If your “model” is simply the image you
want to show in the animation window, you can use show-it; otherwise
you’ll need to write your own.

2. Decide what type a “model” is and what it means.

The model type should be something that you can easily update in response to
events, and also something from which you can figure out what to show on the
screen. Choosing an image as the model usually makes the draw handler easy to
write, but may make the other handlers more difficult.

For example, if your response to events is easily described by arithmetic, you
probably want a numeric model. If it’s easily described by image operations, you
probably want an image model. If it’s easily described by string operations, you
probably want a string model.

If you decide to use something other than an image as the model, you’ll definitely
need to write a draw handler.

3. Write the contracts for the handlers (using Figure 10.1). Again, the names of
the functions are up to you, but once you’ve chosen a type for your model, the
contracts must be exactly as in Figure 10.1.

4. Develop each of these functions, following the usual design recipe for each one.
Don’t go on to the next one until the previous one passes all of its test cases.

5. Decide on the initial value of the model.

6. Decide on the width and height (if the draw handler doesn’t produce some-
thing of the right size).

7. Decide on the time interval between “ticks” (if you have a tick handler).

8. Call big-bang with the initial picture and handlers (specified using check-with,
on-draw, on-tick, on-mouse, and on-key). See whether it works.

156 CHAPTER 10. ANIMATIONS WITH ARBITRARY MODELS

The following exercise is a step towards the “digital clock” we described earlier:

Exercise 10.2.4 Develop an animation that displays a digital counter, in 18-point
blue numerals. It should start at 0 and increase by 1 each second.

Hint: Since the change every second is a numeric change — adding 1 — you should use
a number as the model. But to display it on the screen, you’ll need to turn the number
into an image. Have you written a function that does this?

Exercise 10.2.5 Develop an animation that displays a number that starts at 0 and
increases by 1 each second, while simultaneously moving one pixel to the right each second.
So, for example, after 24 seconds you should see the decimal number 24, 24 pixels from
the left edge of the window.

Exercise 10.2.6 Develop an animation that, at all times, shows the mouse’s coor-
dinates as an ordered pair in the animation window. For example, if the mouse were
currently 17 pixels from the left and 43 pixels down from the top, the screen would show
(17, 43)

10.3 Review of important words and concepts

Interactive programs are generally written following the model/view framework : the
model changes in response to events, and the view is computed from the model. The
model in an animation may be of any data type you choose, as long as you pick a type
and stick to it consistently for all the relevant handlers.

10.4 Reference

There are no new built-in functions or syntax rules in this chapter, but some previously-
defined functions have broader contracts than you knew about before; see Figure 10.1.

Chapter 11

Reduce, re-use, recycle

11.1 Planning for modification and extension

Professional programmers learn very quickly that program requirements change. You
may be given an assignment, be halfway through writing it, and suddenly be told that
the program needs to do something different (usually something additional) from what
you were told originally. Even after you’ve turned in an assignment, or released a piece
of software to the public, the requirements can continue to change: either somebody will
complain about the way a particular feature works, and ask you to change it, or somebody
will think of a neat new feature that they want you to add for the next version. In some
of the courses I teach, I warn students in advance “I reserve the right to change the
assignment slightly on the day that it’s due; you’ll have a few hours to accommodate the
change.”

How can anybody work in such conditions? One thing you can do is, when you first
get an assignment, start thinking about likely ways it might change. Then you can plan
your program in such a way that, if it does change in those ways, you can handle the
change quickly and easily.

To be more specific, try to design things so that each likely change affects only one
variable or function. Or, as Parnas writes in “On the Criteria to be Used in Decomposing
Systems into Modules” [Par72],

. . . one begins with a list of difficult design decisions or design decisions
which are likely to change. Each module is then designed to hide such a
decision from the other [modules].

The rest of this chapter will discuss various ways to do this.

11.2 Re-using variables

Worked Exercise 11.2.1 Design a function named gas-cost that estimates how
much you’ll spend on gasoline for a trip. It should take in the number of miles you’re
driving, and return how much you expect to spend, in dollars. Your car gets approximately
28 miles per gallon (i.e. this is an inexact number), and gasoline costs $2.459 per gallon.
(This example was written in 2006, when that was a reasonable price for gasoline!)

Solution:

Contract: The function takes in one number and returns another. (The 28 and 2.459

157

158 CHAPTER 11. REDUCE, RE-USE, RECYCLE

are important parts of the problem, but they’re fixed numbers: they’ll be the same every
time you call the function, so they shouldn’t be specified as parameters.) Thus

; gas-cost : number(miles) -> number

Examples: As usual, we’ll start with easy examples and gradually work up to more
complicated ones: 0 miles requires 0 gas, hence costs $0.00. 28 miles requires 1 gallon of
gas, so it costs $2.459. And so on.
"Examples of gas-cost:"

(check-within (gas-cost 0) 0 .01)

(check-within (gas-cost 28) 2.459 .01) ; i.e. one gallon

(check-within (gas-cost 56) 4.918 .01) ; i.e. two gallons

(check-within (gas-cost 77) 6.76 .01) ; 2-3/4 gal; use calculator

(check-within (gas-cost 358) 31.44 .01) ; yecch; use calculator

Skeleton:

(define (gas-cost miles)

...)

Inventory:

(define (gas-cost miles)

; miles a number

; #i28 a fixed number I know I’ll need

; 2.459 ditto

...)

Body: If you already see how to write the expression, great. If not, let’s try the
“inventory with values” trick. Pick a not-too-simple example, e.g.

(check-within (gas-cost 56) 4.918 .01) ; i.e. two gallons

and fill in values:

(define (gas-cost miles)

; miles a number 56

; 28 a fixed number 28

; 2.459 ditto 2.459

; should be a number 4.918

...)

The number 4.918 doesn’t look much like any of the previous numbers, but the one it
resembles most closely is 2.459. In fact, it is exactly twice 2.459. So where did the 2 come
from? Well, the number of miles in this example is exactly twice the miles-per-gallon
figure, so one might reasonably guess that the formula is

(* (/ miles 28) 2.459)

Of course, this formula works for this example; we still need to test it on the remaining
examples to be convinced that it works in general.

11.2. RE-USING VARIABLES 159

The arithmetic expression in the body could be simplified somewhat: multiplying by
2.459 and dividing by 28 is equivalent to multiplying by approximately 0.08782142857, so
we could have written

(define (gas-cost miles)

; miles a number

; #i0.08782142857 a fixed number I know I’ll need

(* #i0.08782142857 miles)

)

However, this program is much harder to understand. If one of your classmates (or
yourself, three months from now) were to look at it, they’d have no idea where the
0.08782142857 came from, whereas in the previous version the algebraic expression “ex-
plains itself.”

Why is this important? Because program requirements change. Imagine that you’ve
worked out this program, and are just about to turn it in, when you learn that the price
of gasoline has gone up to $3.899 per gallon. In the original version of the program,
you simply replace 2.459 with 3.899 wherever it appears (and change the “right answers”
accordingly), and it should work. In the “simplified” version, however, it’s not obvious
how the number 0.08782142857 needs to be changed, unless you remember that you got
it by dividing the gasoline price by the fuel efficiency.

Now suppose you’ve written not just one but several programs that involve the current
price of gasoline: say, there’s also one that estimates how much money is wasted through
spills, and one that estimates how much profit oil companies are making, etc. When the
price of gasoline rises again, you’ll need to change all the programs. This is a pain, and
it violates the principle that “each change to requirements should affect only one variable
or function.” So to make our lives easier, let’s define a variable to represent this number,
and rewrite all the functions that use the price of gasoline to use the variable name, rather
than the number, e.g.

(define PRICE-PER-GALLON 2.459)

; gas-cost : number (miles) -> number

(define (gas-cost miles)

; miles a number

; #i28 a fixed number I know I’ll need

; PRICE-PER-GALLON ditto

(* PRICE-PER-GALLON (/ miles #i28))

)

"Examples of gas-cost:"

(check-within (gas-cost 0) 0 .01)

(check-within (gas-cost 28) 2.459 .01) ; i.e. one gallon

(check-within (gas-cost 56) 4.918 .01) ; i.e. two gallons

(check-within (gas-cost 77) 6.76 .01) ; 2-3/4 gal; use calculator

(check-within (gas-cost 358) 31.44 .01) ; yecch; use calculator

160 CHAPTER 11. REDUCE, RE-USE, RECYCLE

; spillage-cost : number (gallons spilled) -> number

(define (spillage-cost gallons)

; gallons a number

(* PRICE-PER-GALLON gallons)

)

"Examples of spillage-cost:"

(check-within (spillage-cost 0) 0 .01)

(check-within (spillage-cost 1) 2.459 .01)

(check-within (spillage-cost 20000) 49180 1)

; etc.

SIDEBAR:

The use of ALL-CAPITALS in the variable name is a convention among Racket
programmers (as well as C, C++, and Java programmers) to indicate a variable
that represents a “fixed” or “constant” value. Of course, it isn’t really constant, but
it changes much less frequently than the number of miles driven or the number of
gallons spilled. In this book, we’ll often use ALL-CAPITALS for variables defined in
their own right, to distinguish them from function parameters (which are also a kind
of variable).

Now, the next time you hear that the price of gasoline has changed, you only need
to change the value of PRICE-PER-GALLON in one place, and all the functions should now
work with the new price. (You may also need to recalculate the “right answers” to your
examples, but if your program worked before, and the only thing that’s changed is the
price of gasoline, you can be reasonably confident that your program will still work.)

Obviously, there’s another “fixed” value in this problem that could change: the 28
miles per gallon.

Exercise 11.2.2 Replace 28 everywhere it appears in the program with a variable named
MILES-PER-GALLON, define that variable appropriately, and make sure the program still
works.
Change the values of the variable and the “right answers”, and test that the program
produces the new correct answers.

As a general rule, if the same number appears more than once in your program, it
deserves a name. Even if it appears only once, it’s often a good idea to give it a name; a
complex expression with a meaningful name in it is often easier to understand than the
same expression with a “magic number” in it.

Of course, by “give it a name” I don’t mean something silly like

(define TWELVE 12)

But if the number 12 appears several times in your program, figure out what each one
means, and define a variable that makes the meaning clear. You may even discover
that the same number currently appears in your program for two different reasons: for
example, a program dealing with annual orders for a grocery store that sells both eggs
and soda pop might include

(define MONTHS-PER-YEAR 12)

(define EGGS-PER-CARTON 12)

(define OZ-PER-CAN 12)

11.3. COMPOSING FUNCTIONS 161

If the store suddenly started selling eggs in 18-egg cartons, or 16-oz cans of soda pop, you
would need to change only one variable definition rather than going through the whole
program line by line, looking for twelves and deciding which ones were twelve for which
reason.

11.3 Composing functions

Recall Exercise 7.7.17, the fahrenheit->kelvin function, which could be written by
simply calling one previously-written function (celsius->kelvin) on the result of another
(fahrenheit->celsius). This sort of re-use has several benefits:

• fahrenheit->kelvin is easy to write, without needing to look up the formulæ or
numbers for the other two functions.

• If you make an improvement to the accuracy or efficiency of one of the other func-
tions, fahrenheit->kelvin will automatically become more accurate or efficient
too. (Remember using pi to make area-of-circle and area-of-ring more accu-
rate?)

• Each of the three functions can be tested and debugged separately (although, since
fahrenheit->kelvin depends on the other two, there’s not much point testing it
until you have confidence in the other two).

• If you have confidence in the correctness of the other two functions, but get wrong
answers from fahrenheit->kelvin, you don’t need to look at the other two func-
tions; you can confine your attention to how they’re combined (e.g. perhaps you
called them in the wrong order).

• Each of the three functions can be useful in its own right.

• Each of the three functions is shorter, simpler, and easier to understand than if they
were all combined into one big function.1

Now let’s think about gas-cost again. Intuitively, it first computes how many gallons
of gas we need (from the mileage and the fuel efficiency), and then computes how much
money that many gallons of gas cost (from the price of gas). Each of these questions (“how
much gas does it take to drive a specified distance?” and “how much does a specified
amount of gas cost?”) could be useful in its own right. So let’s break the program up into
three separate functions:

1The human mind seems to have a hard time thinking about more than seven “things” at a time,
according to George Miller’s famous paper “The Magical Number Seven, Plus or Minus Two” [Mil56]. If
your function definition has much more than seven variables and operators in it, it might be a good idea
to break it into smaller, simpler pieces so you can hold the whole thing in your mind at once.

162 CHAPTER 11. REDUCE, RE-USE, RECYCLE

; gas-needed : number (miles) -> number

"Examples of gas-needed"

(check-within (gas-needed 0) 0 .01)

(check-within (gas-needed 28) 1 .01)

(check-within (gas-needed 56) 2 .01)

(check-within (gas-needed 77) 2.75 .01)

(check-within (gas-needed 358) 12.8 .01)

; cost-of-gallons : number (gallons) -> number

"Examples of cost-of-gallons:"

(check-within (cost-of-gallons 0) 0 .01)

(check-within (cost-of-gallons 1) 2.459 .01)

(check-within (cost-of-gallons 2) 4.918 .01)

(check-within (cost-of-gallons 2.75) 6.76225 .01)

; gas-cost : number (miles) -> number

"Examples of gas-cost:"

(check-within (gas-cost 0) 0 .01)

(check-within (gas-cost 28) 2.459 .01) ; i.e. one gallon

(check-within (gas-cost 56) 4.918 .01) ; i.e. two gallons

(check-within (gas-cost 77) 6.76 .01) ; 2-3/4 gal; use calculator

(check-within (gas-cost 358) 31.44 .01) ; yecch; use calculator

Each of these functions is easy to write, particularly now that we’ve given names to the
price of gasoline and the fuel efficiency of the car. Note that gas-cost shouldn’t need to
use any numbers or those two variables; it should simply use the other two functions.

Exercise 11.3.1 Write, test, and debug the gas-needed, cost-of-gallons, and
(new, improved) gas-cost functions.

In general, there are several ways a new function can use an old function:

• rearranging or adding arguments, and passing these to the old function (e.g. the
convert-3-reversed function of Exercise 7.7.19, or the draw handler of Exer-
cise 10.2.1).

• calling one old function on the result of another (such as fahrenheit->kelvin and
the new gas-cost)

• using the same old function several times (e.g. the counterchange function, which
used beside twice).

Exercise 11.3.2 Develop a function cylinder-volume that takes in the radius and
height of a cylinder, and computes its volume.

Hint: Look for a previously-written function you can re-use to do part of the job.

Exercise 11.3.3 Develop a function cylinder-area that takes in the radius and
height of a cylinder, and computes its area.

Hint: The area includes the vertical sides and both ends.

11.4. DESIGNING FOR RE-USE 163

Exercise 11.3.4 Develop a function pipe-area that takes in the inner radius of a
pipe, the length of the pipe, and the thickness of the walls, and computes its area.

Hint: The area includes the inner surface, the outer surface, and the narrow top and
bottom.

Exercise 11.3.5 The nation of Progressiva has a simple tax code. The tax you pay is
your salary times the tax rate, and the tax rate is 0.5% per thousand dollars of salary.
For example, if you make $40,000, your tax rate is 0.5% times 40, which is 20%, so you
pay 20% of $40,000, which is $8,000.

Develop a function to compute the net pay (i.e. pay after taxes) of a person with a
given salary.

Hint: You’ll probably need two auxiliary functions as well as net-pay.

Exercise 11.3.6 This tax system has the peculiar feature that, beyond a certain income
level, if you earn more, you actually get less take-home pay. Use your net-pay function
to find this income level by experimentation.

Now imagine the tax rate rises to 0.6% per thousand dollars of salary. What would
you need to modify in the program to handle this change? What would be the new income
level beyond which you get less take-home pay?

11.4 Designing for re-use

When you’re writing a program, sometimes you’ll realize that there’s an existing program
that does most of the work for you. Take advantage of this opportunity (unless your
instructor has specifically told you not to in a particular case); a good programmer is
lazy, and refuses to re-invent the wheel. Recognizing and using such opportunities will
save you a lot of time in programming.

But if the previous program was written to solve only one very narrow, specific prob-
lem, you may not be able to re-use it for your new problem. So when you’re writing a
new function, even if you don’t immediately see any other application for it, design it to
be easily re-used ; you never know when some future problem will need it. What does this
mean?

• Don’t make unnecessary assumptions about your parameters.

Suppose you’re writing a function that takes in a string and displays it in an ani-
mation window. In the particular animation we’re working on, we know that the
string in question will always be just a single letter. But unless it’s considerably
easier or more efficient to write the function for single-letter strings, don’t assume
the parameter is a single letter. In fact, test it on different-length strings, even
though you’ll only need it for single letters in the current project, because a future
project might need it for other strings.

Here’s a situation I see often. I’ve assigned an animation, which will require writing
two or three event-handling functions, with (let’s say) a number as the model. In
the current animation, the model will never be bigger than 100, so one student
writes the functions so they only work on numbers less than 100, while another
writes them to work for any number. Later in the course, I give another assignment
that requires some of the same functions, but no longer guarantees that the model

164 CHAPTER 11. REDUCE, RE-USE, RECYCLE

is never bigger than 100. The student who wrote a general, re-usable function in
the first place can simply re-use the old function; the one who wrote a “narrower”
function has to write a new one from scratch.

• Write each function to do one clear, simple task, not several.

Suppose the current project requires computing how much I’m going to spend at
gasoline stations for a trip, considering that every time I stop for gas I also buy a
soda pop. You could write a single function that solves this whole problem, but
it would be fairly complicated, and it would “tie up” the solutions to all the sub-
problems so you can’t solve one without the others. In particular, if a future project
needed to compute the amount of gasoline used on a trip or the cost of a specified
amount of gasoline, you would have to write those functions (and figure out the
right formulæ, and test and debug) then anyway. A better approach is to write
several simple functions: how much gas do I need, how much will the gas cost, how
much will I spend on soda pop, etc. This way I can re-use whichever parts of the
current project are needed in the future project.

There are whole books written, and whole college courses taught, about “designing
programs for re-use”, but the above two rules will get you started.

11.5 Designing multi-function programs: a case study

Let’s take the gasoline-cost problem a step farther.

Worked Exercise 11.5.1 Design a function road-trip-cost which determines the
cost of a road trip, given the number of miles you’re driving and how many days you’ll
be away. The car gets roughly 28 miles to the gallon, gasoline costs $2.459 per gallon,
and motels cost $40 per night. Furthermore, you don’t actually own a car, so you have
to rent one. The car rental agency charges a fixed processing fee of $10, plus $29.95 per
day, plus $0.10 per mile . Assume that you’re bringing all your own food and drinks, so
you don’t need to worry about the cost of food on the road. Also assume that the “number
of days you’ll be away” includes both the day you leave and the day you return.

Solution: This is a more complicated problem than we’ve yet seen. If you try to solve
the whole thing at once, you’ll be overwhelmed. Even if you manage to write a single
function that solves the whole problem, it’ll be long, complicated, and confusing. We
need to take a more careful, methodical approach.

We can write a contract fairly easily:
; road-trip-cost : number (miles) number (days) -> number

The examples will be a pain, since they require that we solve the whole problem at
once, at least in specific cases. So before we jump into that, let’s think about how to
break the problem into smaller pieces.

What are the important values and quantities in the problem?

• the total cost of the road trip

• the number of miles we’re driving

• the number of days we’ll be away

11.5. DESIGNING MULTI-FUNCTION PROGRAMS: A CASE STUDY 165

• the fuel efficiency of the car

• the price of gasoline

• the amount of gasoline we need

• the amount we spend on gasoline

• the cost per night of a motel

• the number of nights we need to stay in a motel

• the amount we spend on motels

• the fixed processing fee for car rental

• the daily charge for car rental

• the per-mile charge for car rental

• the amount we spend on car rental

These quantities fall into several categories: some are fixed numbers (for which we prob-
ably want to use variables — see Section 11.2) — some are inputs (i.e. parameters) to
the function, some are output from the function, and some are intermediate results that
we need along the way.

Fixed numbers:

• the fuel efficiency of the car

• the price of gasoline

• the cost per night of a motel

• the fixed processing fee for car rental

• the daily charge for car rental

• the per-mile charge for car rental

Inputs to the road-trip-cost function:

• the number of miles we’re driving

• the number of days we’ll be away

Output from the road-trip-cost function: the total cost of the road trip
Intermediate results

• the amount of gasoline we need

• the amount we spend on gasoline

• the number of nights we need to stay in a motel

• the amount we spend on motels

• the amount we spend on car rental

166 CHAPTER 11. REDUCE, RE-USE, RECYCLE

The “fixed numbers”, at least, should be easy.

(define MILES-PER-GALLON #i28)

(define PRICE-PER-GALLON 2.459)

(define MOTEL-PRICE-PER-NIGHT 40)

(define CAR-RENTAL-FIXED-FEE 10)

(define CAR-RENTAL-PER-DAY 29.95)

(define CAR-RENTAL-PER-MILE 0.10)

Note that I’ve given all the variables names that a casual reader could understand. This
makes them a bit long, but experience shows that the time saved in figuring out what a
variable name means far exceeds the time spent typing long names.

At this point it is useful to figure out which quantities depend on which others ; see
Figure 11.1. Each of these intermediate results is a good candidate for a separate
function. Because they aren’t the function you originally intended to write, but will help
you write it, they’re called auxiliary functions or helper functions. Conveniently enough,
we’ve already written gas-cost, gas-needed, and cost-of-gallons, but if we hadn’t,
we could write them now in the same way we’ll write the rest. 2

We still have four functions to write: “the total cost of the road trip”, “the number of
nights we need to stay in a motel”, “the amount we spend on motels”, and “the amount
we spend on car rental”. At this point, we know enough about them that we could write
contracts and, perhaps, examples for all of them. This is often a good idea, because some
of the functions will need to call one another, so it’s best to decide how they’ll be called
as early as possible.

We already have a contract for road-trip-cost. Next let’s try “the amount we spend
on motels”. Since road-trip-cost will depend on this function (among others), let’s
insert it in the Definitions pane ahead of what we’ve written so far about road-trip-cost.
Anyway, a good name for this function might be motel-cost, and it obviously returns a
number in dollars. It depends on the number of nights we stay in motels, and the cost
per night of a motel. The latter is a fixed number, and the former is another intermediate
value which in turn depends on the number of days of the trip. So

; motel-cost : number (days) -> number

Since this depends on another function we haven’t dealt with yet, let’s postpone its
examples until we’ve handled that other function.

Next: “The number of nights we spend in motels”. A good name for the function could
be nights-in-motel; it returns a integer, like 0, 1, 2, etc. And since motel-cost depends
on this one, let’s insert this one ahead of what we’ve just written about motel-cost in
the Definitions pane.

This function obviously depends on the number of days of the trip, so

; nights-in-motel : number (days) -> number

As usual, we’ll pick examples from the easiest to more complicated, and often the easiest
number is 0. If the trip involves 0 days, then there is no “day that you leave” or “day
that you return”; this example doesn’t make sense. And a negative number or a fraction
certainly wouldn’t make sense. We’ve learned something about the limits of the problem;
let’s add this as an assumption.

2For some reason, many of my students seem to think that helper functions don’t need contracts or
test cases. This is analogous to building a house of cheap, low-quality bricks. If the bricks dissolve in
the first rainstorm, the house will fall apart no matter how well designed it is. Similarly, if you’re not
clear on your helper functions’ contracts, or you haven’t tested them adequately, your whole program is
unlikely to work.

11.5. DESIGNING MULTI-FUNCTION PROGRAMS: A CASE STUDY 167

Figure 11.1: Which quantities depend on which

• The fixed numbers don’t depend on anything else.

• The inputs (miles and days) don’t depend on anything else.

• “the total cost of the road trip” depends on three other quantities: how much
we spend on gas, how much we spend on motels, and how much we spend on car
rental.

• “the amount we spend on gasoline” depends on the amount of gasoline and the
price of gasoline.

• “the amount of gasoline we need” depends on the number of miles and the fuel
efficiency.

• “the number of nights we need to stay in a motel” depends on the number of days
(but it’s one less: if you leave on Monday and come back Tuesday, you’ve only
stayed over one night).

• “the amount we spend on motels” depends on the number of nights and the cost
per night of a motel.

• “the amount we spend on car rental” depends on the fixed fee, the daily charge,
the number of days, the per-mile charge, and the number of miles we drive.

168 CHAPTER 11. REDUCE, RE-USE, RECYCLE

; nights-in-motel : number (days) -> number

; Assumes the number of days is a positive integer.

The next simplest integer is 1, which would mean leaving today and coming back today,
thus spending zero nights in motels. Similarly, if we took a 2-day trip, leaving today
and coming back tomorrow, it would mean spending 1 night in a motel. In general, the
number of nights is one less than the number of days.

"Examples of nights-in-motel:"

(check-expect (nights-in-motel 1) 0)

(check-expect (nights-in-motel 2) 1)

(check-expect (nights-in-motel 38) 37)

Now we can come back to the examples of motel-cost:

"Examples of motel-cost:"

(check-expect (motel-cost 1) 0)

(check-expect (motel-cost 2) 40)

(check-expect (motel-cost 38) 1480)

(Again, I used a calculator for the last one.)

Next is “the amount we spend on car rental.” Let’s name it rental-cost. It depends
on five different quantities, but three of them are fixed numbers, and the other two are
the number of miles and the number of days, which we have available as parameters to
the main function. So

; rental-cost : number (miles) number (days) -> number

The examples will take some arithmetic, but we can pick the numbers to make the
arithmetic reasonably easy. Remember that we’ve already agreed 0 days doesn’t make
any sense. (One could make a good case that 0 miles doesn’t make sense either; however,
it’s theoretically possible that we might get in the car, turn on the radio, chat for a while,
and get out without ever going anywhere.)

As usual, we’ll start from the easiest cases:

"Examples of rental-cost:"

(check-within (rental-cost 0 1) 39.95 .01)

(check-within (rental-cost 0 2) 69.90 .01)

(check-within (rental-cost 100 1) 49.95 .01)

(check-within (rental-cost 100 2) 79.90 .01)

(check-within (rental-cost 28 1) 42.75 .01)

(check-within (rental-cost 77 2) 77.60 .01)

(check-within (rental-cost 358 3) 135.65 .01)

The only function for which we don’t have examples yet is road-trip-cost itself. So
let’s write some examples for it, using some of the numbers we’ve already worked out.
The cost of the whole road-trip is found by adding up three other things: the cost of
gasoline, the cost of motels, and the cost of car rental.

11.5. DESIGNING MULTI-FUNCTION PROGRAMS: A CASE STUDY 169

"Examples of road-trip-cost:"

(check-within (road-trip-cost 0 1) 39.95 .01)

; the gas and motels cost 0

(check-within (road-trip-cost 0 2) 109.90 .01)

; gas still 0, motel $40

(check-within (road-trip-cost 28 1) 45.209 .01)

; $42.75 for car, $0 for motel, $2.459 for gas

(check-within (road-trip-cost 77 2) 124.36 .01)

; $77.60 for car, c. $6.76 for gas, $40 for motel

(check-within (road-trip-cost 358 3) 247.09 .01)

; $135.65 for car, c. $31.44 for gas, $80 for motel

At this point, we’ve completed the “figure out what you want to do” for all four
functions. This will be useful as we go on, because the definitions of some of them will
depend on understanding what the others do. The Definitions pane should now look
something like Figures 11.2 and 11.3.

We still have to move each of the four functions through the “skeleton”, “inventory”,
“body”, and “testing” stages . . . but what to do first?

For the skeletons, inventories, and bodies, it doesn’t really matter which function
you work on first. Testing and debugging are another story. The motel-cost function
depends on the nights-in-motel function, so we can’t test the former until we’ve written
the latter, and we certainly can’t test the road-trip-cost function until everything else
works. In other words, we have to build the program from the bottom up, like a brick
building: finish the foundation before starting on the walls, and finish the walls before
starting on the roof. Don’t try to test and debug a function that depends on another
function that hasn’t been tested and debugged yet.

For clarity, I’ll do one function (skeleton, inventory, body, testing) at a time; you could
equally well do all the skeletons, then all the inventories, then all the bodies, then test
them in order.

We have to start with a function that doesn’t rely on any other functions (only fixed
numbers and parameters to the main function). According to Figure 11.1, we have two
choices: nights-in-motel, and rental-cost. Let’s try nights-in-motel.

The skeleton and inventory should be straightforward and routine by now:

; nights-in-motel : number (days) -> number

; Assumes the number of days is a positive integer.

(define (nights-in-motel days)

; days a number

...)

The formula is obvious:

; nights-in-motel : number (days) -> number

; Assumes the number of days is a positive integer.

(define (nights-in-motel days)

; days a number

(- days 1)

)

Test this on the already-written examples. (To avoid getting error messages on examples
of functions you haven’t written yet, use the “Comment Out with Semicolons” menu

170 CHAPTER 11. REDUCE, RE-USE, RECYCLE

Figure 11.2: Constants and old functions
; Constants for the road-trip-cost problem:

(define MILES-PER-GALLON #i28)

(define PRICE-PER-GALLON 2.459)

(define MOTEL-PRICE-PER-NIGHT 40)

(define CAR-RENTAL-FIXED-FEE 10)

(define CAR-RENTAL-PER-DAY 29.95)

(define CAR-RENTAL-PER-MILE 0.10)

; gas-needed : number (miles) -> number

(define (gas-needed miles)

; miles a number

; MILES-PER-GALLON a number

(/ miles MILES-PER-GALLON)

)

"Examples of gas-needed:"

(check-within (gas-needed 0) 0 .01)

(check-within (gas-needed 28) 1 .01)

(check-within (gas-needed 56) 2 .01)

(check-within (gas-needed 77) 2.75 .01)

(check-within (gas-needed 358) 12.8 .01)

; cost-of-gallons : number (gallons) -> number

(define (cost-of-gallons gallons)

; gallons number

; PRICE-PER-GALLON number

(* gallons PRICE-PER-GALLON)

)

"Examples of cost-of-gallons:"

(check-within (cost-of-gallons 0) 0 .01)

(check-within (cost-of-gallons 1) 2.459 .01)

(check-within (cost-of-gallons 2) 4.918 .01)

(check-within (cost-of-gallons 2.75) 6.76225 .01)

; gas-cost : number (miles) -> number

(define (gas-cost miles)

; miles number

(cost-of-gallons (gas-needed miles))

)

"Examples of gas-cost:"

(check-within (gas-cost 0) 0 .01)

(check-within (gas-cost 28) 2.459 .01) ; i.e. one gallon

(check-within (gas-cost 56) 4.918 .01) ; i.e. two gallons

(check-within (gas-cost 77) 6.76 .01) ; 2-3/4 gal; use calculator

(check-within (gas-cost 358) 31.44 .01) ; yecch; use calculator

11.5. DESIGNING MULTI-FUNCTION PROGRAMS: A CASE STUDY 171

Figure 11.3: Contracts and examples for new functions
; nights-in-motel : number (days) -> number

; Assumes the number of days is a positive integer.

"Examples of nights-in-motel:"

(check-expect (nights-in-motel 1) 0)

(check-expect (nights-in-motel 2) 1)

(check-expect (nights-in-motel 38) 37)

; motel-cost : number (days) -> number

"Examples of motel-cost:"

(check-expect (motel-cost 1) 0)

(check-expect (motel-cost 2) 40)

(check-expect (motel-cost 38) 1480)

; rental-cost : number (miles) number (days) -> number

"Examples of rental-cost:"

(check-expect (rental-cost 0 1) 39.95)

(check-expect (rental-cost 0 2) 69.90)

(check-expect (rental-cost 100 1) 49.95)

(check-expect (rental-cost 100 2) 79.90)

(check-expect (rental-cost 28 1) 42.75)

(check-expect (rental-cost 77 2) 77.60)

(check-expect (rental-cost 358 3) 135.65)

; road-trip-cost : number (miles) number (days) -> number

"Examples of road-trip-cost:"

(check-within (road-trip-cost 0 1) 39.95 .01) ; the gas and motels are 0

(check-within (road-trip-cost 0 2) 109.90 .01) ; gas still 0, motel $40

(check-within (road-trip-cost 28 1) 45.209 .01)

; $42.75 for car, $0 for motel, $2.459 for gas

(check-within (road-trip-cost 77 2) 124.36 .01)

; $77.60 for car, c. $6.76 for gas, $40 for motel

(check-within (road-trip-cost 358 3) 247.09 .01)

; $135.65 for car, c. $31.44 for gas, $80 for motel

172 CHAPTER 11. REDUCE, RE-USE, RECYCLE

command to comment out everything not related to nights-in-motel.) If it produces
correct answers in every case, go on to the next function.

Staying on the same subject, let’s do motel-cost. Uncomment the lines related to
this function, and write the skeleton and inventory:

; motel-cost : number (days) -> number

; Assumes the number of days is a positive integer.

(define (motel-cost days)

; days a number

...)

In addition, we know from Figure 11.1 that the answer depends on the cost per night,
MOTEL-PRICE-PER-NIGHT, so let’s add that to the inventory. Furthermore, we don’t ac-
tually care about the number of days so much as the number of nights, which we can get
by calling nights-in-motel, so we’ll add that to the inventory too:

; motel-cost : number (days) -> number

; Assumes the number of days is a positive integer.

(define (motel-cost days)

; days a number

; MOTEL-PRICE-PER-NIGHT a number

; (nights-in-motel days) a number

...)

Now, since (nights-in-motel days) represents the number of nights, the formula is
straightforward:

; motel-cost : number (days) -> number

; Assumes the number of days is a positive integer.

(define (motel-cost days)

; days a number

; MOTEL-PRICE-PER-NIGHT a number

; (nights-in-motel days) a number

(* MOTEL-PRICE-PER-NIGHT (nights-in-motel days))

)

Test this on the already-written examples. If it produces correct answers in every case,
go on to the next function. If it doesn’t, use the Stepper to decide whether the mistake is
in nights-in-motel (it shouldn’t be, since we’ve already tested that function) or in this
one (much more likely); fix the problem and re-test.

The only function we can do next is rental-cost. Uncomment its examples and write
a skeleton and (a start on an) inventory:

; rental-cost : number (miles) number (days) -> number

(define (rental-cost miles days)

; miles a number

; days a number

...)

According to Figure 11.1, it also depends on three fixed numbers: CAR-RENTAL-FIXED-FEE,
CAR-RENTAL-PER-DAY, and CAR-RENTAL-PER-MILE, so we’ll add these to the inventory:

11.5. DESIGNING MULTI-FUNCTION PROGRAMS: A CASE STUDY 173

; rental-cost : number (miles) number (days) -> number

(define (rental-cost miles days)

; miles a number

; days a number

; CAR-RENTAL-FIXED-FEE a number

; CAR-RENTAL-PER-DAY a number

; CAR-RENTAL-PER-MILE a number

...)

The “daily charge” obviously needs to be multiplied by the number of days, and the
“per mile charge” obviously needs to be multiplied by the number of miles; add these
expressions to the inventory. (If this isn’t “obvious”, try the “inventory with values”
technique.)

; rental-cost : number (miles) number (days) -> number

(define (rental-cost miles days)

; miles a number

; days a number

; CAR-RENTAL-FIXED-FEE a number

; CAR-RENTAL-PER-DAY a number

; CAR-RENTAL-PER-MILE a number

; (* days CAR-RENTAL-PER-DAY) > a number

; (* miles CAR-RENTAL-PER-MILE) a number

...)

These last two expressions represent the amount the rental company charges for days,
and for miles, respectively. If we add up these two and the fixed fee, we should get the
final answer:

; rental-cost : number (miles) number (days) -> number

(define (rental-cost miles days)

; miles a number

; days a number

; CAR-RENTAL-FIXED-FEE a number

; CAR-RENTAL-PER-DAY a number

; CAR-RENTAL-PER-MILE a number

; (* days CAR-RENTAL-PER-DAY) a number

; (* miles CAR-RENTAL-PER-MILE) a number

(+ (* days CAR-RENTAL-PER-DAY)

(* miles CAR-RENTAL-PER-MILE)

CAR-RENTAL-FIXED-FEE)

)

Test this on the already-written examples. If it produces correct answers in every case,
go on to the next function. If not, use the Stepper to locate the problem (as before); fix
it and re-test.

The only function remaining is road-trip-cost itself. We follow the same procedure:

; road-trip-cost : number (miles) number (days) -> number

(define (road-trip-cost miles days)

; miles a number

; days a number

...)

174 CHAPTER 11. REDUCE, RE-USE, RECYCLE

We know that the answer will involve what we spend on gas, what we spend on motels,
and what we spend on car rental. Fortunately, there are functions that compute each of
these, and the only inputs those functions require are miles and/or days, both of which
we have. So we can add calls to those functions to the inventory:

; road-trip-cost : number (miles) number (days) -> number

(define (road-trip-cost miles days)

; miles a number

; days a number

; (gas-cost miles) a number

; (motel-cost days) a number

; (rental-cost miles days) a number

...)

With these expressions in hand, the answer is obvious: add them up.

; road-trip-cost : number (miles) number (days) -> number

(define (road-trip-cost miles days)

; miles a number

; days a number

; (gas-cost miles) a number

; (motel-cost days) a number

; (rental-cost miles days) a number

(+ (gas-cost miles)

(motel-cost days)

(rental-cost miles days))

)

Test this on the already-written examples. If it produces correct answers in every case,
congratulate yourself: we’ve developed a fairly complex program by breaking it down into
small, digestible pieces.

Exercise 11.5.2 Choose one of the fixed numbers in the above problem: either
MILES-PER-GALLON, PRICE-PER-GALLON, etc. Change its numeric value. Before re-
running the program, predict which examples are affected, and recalculate (by hand
or calculator) their new correct values. Test the program to see if your predictions were
right.

By the way, we could in principle have written the whole function at once, without
breaking it down into small pieces, and the result might have looked like this:

(define (monolithic-rtc miles days)

(+ (* (/ miles MILES-PER-GALLON) PRICE-PER-GALLON)

(* MOTEL-PRICE-PER-NIGHT (- days 1))

(+ (* days CAR-RENTAL-PER-DAY)

(* miles CAR-RENTAL-PER-MILE)

CAR-RENTAL-FIXED-FEE)

))

If we got everything right on the first try, this would actually be quicker and easier than
writing seven separate functions . . . but computer programs are almost never right on the
first try, especially if they’re more than two or three lines long. If something were wrong
in this definition, it would be quite difficult to track down the mistake(s).

11.6. PRACTICALITIES OF MULTI-FUNCTION PROGRAMS 175

The approach we took, breaking the problem into several small functions, has at least
two major advantages: one can test each function individually, and some of the functions
may be re-usable from one project to another (e.g. the gas-needed, cost-of-gallons,
and gas-cost functions which we just copied from a previous problem).

11.6 Practicalities of multi-function programs

As you’ve seen, a multi-function program is written by applying the design recipe to each
of the functions in turn, and testing them “bottom-up” — that is, the functions that
don’t depend on any others first, then the ones that depend on the first few, and finally
the main function that depends on all the others. And you have a certain amount of
flexibility how far to go on which function in which order.

However, the final result should look as though you had written one function at a
time: the contract, skeleton-turned-body, and examples for one function should appear
together with no other function definitions in between. In other words, you may need to
do a certain amount of moving forward and backwards to find the right places to type
things.

Exercise 11.6.1 Develop a function build-house that draws a picture of a house,

like these: Note that houses
can be of different widths, heights, and colors, but the door is always the same size, and
centered on the floor of the house. The roof is also always the same height.

Hint: You may find it helpful to write some auxiliary functions that produce images,
and others that produce numbers.

Exercise 11.6.2 A small commercial airline company wants to figure out how much to
charge for its tickets. Specifically, for any given ticket price, they’d like to be able to
predict how much profit they’ll make. Given that ability, they can try various different
ticket prices, see which produces the most profit, and select that as their ticket price.

Profit, of course, is income minus expenses. There are two major expenses: paying
the salaries of the pilot, copilot, and two flight attendants (these four salaries add up
to $450 per flight, regardless of how many passengers are on the flight), and jet fuel, at
$2.999/gallon. The amount of jet fuel consumed is one gallon per twenty pounds of loaded
weight, which is the weight of the airplane itself plus the weight of the people and luggage
on it. The airplane itself weighs 50000 pounds. Each passenger and his/her luggage, on
average, weighs 250 pounds; same for the four crew members (pilot, copilot, two flight
attendants).

The airline is currently charging $200/ticket, and at that price they can typically sell
120 tickets. Raising the price means they make more money on each ticket, but it also

176 CHAPTER 11. REDUCE, RE-USE, RECYCLE

causes fewer people to buy tickets; conversely, lowering the price means they take in less
money on each ticket, but they can sell more of them. To be precise, they estimate that
for each $10 they raise (lower) the ticket price, they’ll lose (gain) 4 paying passengers.

Develop a function airline-profit that takes in a proposed ticket price, and re-
turns the estimated profit the airline will make at that price.

Use your function to determine the profit-maximizing ticket price. Also find the least
they could charge and make any profit at all.

Change one or two of the constants (e.g. the price of jet fuel, the number of people
who change their minds about buying tickets when the price goes up or down, the size of
the crew, the crew salaries, etc.) and repeat the previous paragraph.

Exercise 11.6.3 Develop a function that takes in the name of a color (e.g. "green")
and produces that word, followed by a randomly-chosen numeric font size (say, between
10 and 30 points inclusive), in text of that color and font size, surrounded by a box of the
same color which is 10 pixels wider and 6 pixels higher than the text. For example,

Hint: Since this function has random results, it’ll be difficult to write test cases for. I
did it with two helper functions, both of which contained no randomness and therefore
could be tested using check-expect.

11.7 Re-using definitions from other files

By this time you’ve probably gotten used to me saying things like

Hint: Re-use a function you’ve already written!

If the function you need to re-use is in the same Definitions pane, this is no problem: you
can just call it in the definition of your new function. But what if you want to re-use
something you wrote weeks ago, e.g. for a previous homework assignment? For example,
suppose you did some problems from chapter 9, saved them in the file chap9.rkt, then
started working on chapter 10 in the file chap10.rkt and realized that problem 10.2.4
would be easier if you re-used the number->image function you wrote for problem 9.2.7.

You could do this by opening chap9.rkt, copying the relevant definition (and its test
cases), pasting it into chap10.rkt, then using the function as usual. But doing this
should bother you: remember the rule if you write almost the exact same thing over and
over, you’re doing something wrong. (In fact, this time you’re writing exactly the same
thing over and over, just in different files.) One problem with this is that if you discover

11.7. RE-USING DEFINITIONS FROM OTHER FILES 177

a bug in that function definition, now it’s in two different files so you have to remember
to fix it in both places.

It’s quite common for professional programmers to realize, while working on one pro-
gram, that they need a function that they originally wrote as part of a different program.
And every modern programming language provides a way to re-use such things without
copying them; Racket is no exception.

11.7.1 require and provide

Depending on what version of DrRacket you have, this may not work. If not, you can
either use copy-and-paste, or download a newer version of DrRacket.

In a sense, you’ve already seen how Racket does this: require. Since the beginning
of this book, you’ve been writing

(require picturing-programs)

to tell DrRacket that you want to be able to use all the variables and functions defined
in the picturing-programs library. You can do something similar to tell DrRacket that
you want to be able to use things defined in a previous program of your own:

(require "chap9.rkt")

Note: I’ve put the name chap9.rkt in quotation marks. When you do this, DrRacket
expects it to be the name of a file you wrote yourself. On the other hand, if you require

something that’s not in quotation marks, DrRacket expects it to be the name of a standard
built-in library, like picturing-programs.

But just putting

(require "chap9.rkt")

into chap10.rkt isn’t quite enough: if you try to use image->number in chap10.rkt,
you’ll still get an error message like number->image: this variable is not defined .
This is because DrRacket respects the privacy of other files, and doesn’t read anything
from them for which it hasn’t specifically been given permission.

Each Racket file has its own “privacy settings”: each Racket file is expected to specify
which of the things defined in that file can be used in other files. Open chap9.rkt and
add the line

(provide number->image)

somewhere (I usually put things like this near the beginning, just after the (require

picturing-programs).) This tells DrRacket that other files are allowed to see the
number->image function defined in this file — but nothing else. Now save chap9.rkt, go
back to chap10.rkt, which should still have the line

(require "chap9.rkt")

in it, and run it; it should now be able to use image->number as though it were defined
in the same Definitions pane.
Note: When you require a file of your own like this, DrRacket looks for it in the same
folder that you’re already in. So if you want to take advantage of this feature, make sure
to save all your .rkt files in the same folder. There are ways to refer to files in other
folders; if you need to do that, you can read about it in the Help Desk.

This also means that if you open a new DrRacket window, start writing, and try to
run it without saving first, DrRacket doesn’t know what “folder you’re already in,” so it

178 CHAPTER 11. REDUCE, RE-USE, RECYCLE

can’t find the other file. So before you try to run a file that requires another file, make
sure you’ve saved both files.

Practice Exercise 11.7.1 Create two files part-a.rkt and part-b.rkt.
In part-a.rkt, define a variable my-pic to stand for some picture you’ve built, and

define the counterchange and surround functions from exercises 4.2.3 and 4.2.4. You
should provide my-pic and surround, but not counterchange.

In part-b.rkt, define a function surround-with-my-pic that takes in a picture
and surrounds it with two copies of my-pic, re-using (but not copying) the definitions
of surround and my-pic from part-a.rkt. Make sure this works, then add a call to
counterchange and confirm that it doesn’t pass a syntax check (much less run).

Hint: In part-a.rkt, you can write two separate provide lines:

(provide my-pic)

(provide surround)

or you can combine them into one:

(provide my-pic surround)

11.7.2 provide-ing everything

Now suppose you’ve written a file that contains a lot of definitions that you want to use
in other files. You can provide them all one by one:

(provide this-function

that-function

the-other-function

yet-another-function

lots-of-other-functions)

but for the common situation that you want to provide everything in the file, there’s a
shorthand:

(provide (all-defined-out))

Practice Exercise 11.7.2 Replace the (provide my-pic surround) in part-a.rkt from
exercise 11.7.1 with (provide (all-defined-out)), and confirm that the counterchange
call in part-b.rkt works again.

Hint: If it doesn’t, the most likely reason is that you haven’t saved the modified version
of part-a.rkt yet.

11.8 Review of important words and concepts

Program requirements change, so it’s in your interest to prepare for such change. One
way to do this is to use symbolic constants : variables with meaningful names to represent
important or likely-to-change values. When these values do change, you can just change
the variable definition in one place, and all the functions and programs that use this
variable will automatically be corrected. Another way is to design large programs so that
each likely change affects only one function.

11.9. REFERENCE 179

To paraphrase John Donne, “no program is an island.” Every program you ever write
has the potential to be re-used to make subsequent programs easier, and it’s in your
interest to design the current program to maximize the likelihood that you can re-use it
later. In particular, don’t make unnecessary assumptions about your input, and design
each function to do one clear, simple task.

A large program is often made up of a “main function” and one or more auxiliary
or “helper” functions. When faced with a large program to write, break it down into
manageable pieces Identify the important quantities in the problem, and categorize each
as an input, an output, a fixed value, or an intermediate computation. The inputs will
probably become parameters to your main function (and to some of the auxiliary func-
tions); the output will probably be the result of your main function; the fixed values will
probably become symbolic constants; and the intermediate computations will probably
become auxiliary functions. It’s often a good idea to write down contracts (and perhaps
examples) for all of these functions at once, so you have a clear idea what they’re all
supposed to do. Then start writing skeletons, inventories, and bodies, and testing the
functions one at a time, starting with the ones that don’t depend on any other functions.

Really large programs are often spread out over several files, either as an organiza-
tional technique to keep closely-related parts of the program together, or simply because
you wrote some of the functions for other purposes and want to re-use them. In Racket,
the require function allows you to specify that you want to re-use the definitions from
a particular other file, while the provide function allows you to specify which defini-
tions from this file can be re-used in others. (Other languages like Java have different
mechanisms to accomplish the same thing.)

11.9 Reference

The only new function introduced in this chapter is provide, which takes one or more
names defined in this file and makes them available to other files that require this file.
provide can also be given the shorthand (all-defined-out) to provide everything that
was defined in this file. There are other such shorthands — all-from-out, rename-out,
prefix-out, struct-out — but I don’t want to go into them here; you can read about
them if you’re interested.

We also learned a new way of using require: with a filename in quotation marks, for
which DrRacket will look in the same folder as the file that contains the require line.

PART II

Definition by Choices

Chapter 12

Defining new types: a
bird’s-eye view

If you’re the sort of person who likes to look at the map before heading out on a trip, this
brief chapter should give you an idea of the road we’ll be travelling for the next fifteen
or twenty chapters. If, on the other hand, you’re the sort of person to whom the map
doesn’t make sense until you’ve seen some of the road itself, ignore this chapter for now,
but come back to it after a few more chapters.

We’ve learned a bunch of things you can do with images, a bunch of things you can do
with numbers, and a bunch of things you can do with strings. These are three important
data types that happen to be built into Racket, but for many problems they’re not enough
and we’ll need to define our own data types. There are several ways to do this, each with
a corresponding new way of writing functions.

First, a new data type can be a choice among two or more existing data types, and
functions will have to choose among two or more simpler expressions or functions.

Second, a new data type can have parts drawn from existing data types, in which case
functions will have to dissect data into their parts, and put together parts into new data.

Third, a new data type can (by combining the notions of “definition by choices” and
“definition by parts”) be defined in terms of itself; functions will likewise be defined in
terms of themselves.

Fourth, a new data type can be constructed by “abstraction”: observing similarities
and intentionally overlooking differences among several existing data types to create a
general data type that can be specialized to do the job of any of the original types, and
more; likewise, from several similar functions one can often construct a single general
function that does the job of all the original functions and more.

Over 400 years ago, the English philosopher John Locke wrote something eerily close
to this, although the match isn’t perfect:

The acts of the mind, wherein it exerts its power over simple ideas, are
chiefly these three:

1. Combining several simple ideas into one compound one, and thus all
complex ideas are made.

2. The second is bringing two ideas, whether simple or complex, together,
and setting them by one another so as to take a view of them at once,
without uniting them into one, by which it gets all its ideas of relations.

183

184 CHAPTER 12. DEFINING TYPES

3. The third is separating them from all other ideas that accompany them
in their real existence: this is called abstraction, and thus all its general
ideas are made.

I might add a fourth, “applying an idea to itself,” which has proven to be a powerful —
if easily misused — technique in mathematics, computer science, and philosophy.

Chapter 13

Booleans

13.1 A new data type

We’ve seen several data types so far: images, strings, numbers, and sub-types of number:
integers, fractions, inexact numbers, complex numbers. Each data type is suitable for
answering a different kind of question:

• images answer the question “what does . . . look like?”;

• strings answer questions like “what is your name?” or “what is the text of the
Gettysburg Address?”;

• integers answer questions like “how many . . . ?”;

• fractions and inexact numbers answer questions like “how much . . . ?”

Now consider “true/false” or “yes/no” questions: “is Joe older than Chris?”, “is your
name Philip?”, and so on. For each of these questions, there are only two possible answers:
yes and no. None of the data types above seems quite right for the purpose. So Racket,
like most programming languages, has a data type named “boolean”, which has exactly
two values, written true and false. You can type either of these into the Interactions
pane, hit ENTER, and you’ll get back the same value, just as if you had typed a number
or a quoted string. Note that true is different from "true": the former is a boolean, and
the latter is a string.

SIDEBAR:

The word “boolean” is named after the 19th-century mathematician George Boole,
who suggested that logical questions of truth and falsity could be addressed by the
techniques of algebra, using “numbers” that were restricted to the values 0 and 1
(representing false and true, respectively).

13.2 Comparing strings

Racket has a number of built-in functions that produce Booleans. The first one we’ll look
at is
string=? : string string -> boolean

185

186 CHAPTER 13. BOOLEANS

For example,
(check-expect (string=? "hello" "goodbye") false)

(check-expect (string=? "hello" "hello") true)

(check-expect (string=? "hello" "Hello") false)

(check-expect (string=? "hello" "hel lo") false)

(check-expect (string=? "hello" (string-append "hel" "lo")) true)

Note that the two strings have to be exactly the same, right down to capitalization,
spacing, and punctuation. Also note that, by convention, most functions that return
Booleans (like string=?) have names ending in a question mark. (Racket doesn’t force
you to do this, but it’s a good habit to follow, in order to get along with other Racket
programmers.)

So now you know how to tell whether two strings are exactly the same. You can also
test how two strings relate in alphabetical order:
; string<? : string string -> Boolean

; string<=? : string string -> Boolean

; string>? : string string -> Boolean

; string>=? : string string -> Boolean

Practice Exercise 13.2.1 Make up some examples involving string<?, string<=?,
string>?, and string>=?, and see whether they produce the answer you expect. Try
comparing a capitalized word like "DOG" with an uncapitalized one like "cat". Try com-
paring either of those with a string made up of punctuation marks, like "!#., &*", or a
string made up of digits, like "372.4".

SIDEBAR:

Sometimes it’s convenient to treat upper-case, lower-case, and mixed-case words
all the same. Racket also provides “case-independent” versions of each of these
functions:
; string-ci=? : string string -> Boolean

; string-ci<? : string string -> Boolean

; string-ci<=? : string string -> Boolean

; string-ci>? : string string -> Boolean

; string-ci>=? : string string -> Boolean

To see how these are used in practice, let’s write some simple functions.

Worked Exercise 13.2.2 Develop a function is-basketball? that takes in a string
representing the name of a game, and returns a Boolean indicating whether the game was
"basketball".

Solution: The contract is clearly
; is-basketball? : string(game) -> boolean

For examples, we note that there are two possible answers: true and false. To test
the program adequately, let’s make sure we have an example that produces true, and one
that produces false.
"Examples of is-basketball?:"

(check-expect (is-basketball? "basketball") true)

(check-expect (is-basketball? "cricket") false)

13.3. COMPARING NUMBERS 187

Next, we need to write a skeleton. The important decisions have already been made
in the contract, so

(define (is-basketball? game)

...)

For the inventory, we obviously need the parameter game. In addition, since the
problem specifically mentions the string "basketball", that string is likely to appear in
the function:
(define (is-basketball? game)

; game a string

; "basketball" another string

...)

Now, to fill in the function body, we notice that we have two strings (game and
"basketball") and we want a Boolean; conveniently enough, there’s a built-in function
string=? that takes in two strings and returns a Boolean. So let’s use it:

(define (is-basketball? game)

; game a string

; "basketball" another string

(string=? game "basketball")

)

Now we can test the function on our two examples, and it should work.

Exercise 13.2.3 Develop a function is-nintendo? that takes in a string and tells
whether it was "nintendo".

Exercise 13.2.4 Develop a function empty-string? that takes in a string and tells
whether it was "".

Exercise 13.2.5 Develop a function in-first-half? that takes in a (lower-case)
string and tells whether it’s in the first half of the alphabet (i.e. it comes before "n" in
alphabetical order)

Hint: You’ll need at least two examples: one in the first half of the alphabet, and one
in the second half. It’s also a good idea to have an example that’s "n" itself; this is called
a borderline example. What do you think is the “right answer” for this example?

13.3 Comparing numbers

Just as string=?, string<?, etc. allow us to compare strings, there are built-in functions
that allow us to compare numbers. Here are the most common ones:

188 CHAPTER 13. BOOLEANS

; = : number number -> Boolean

; Tells whether the two numbers have the exact same value.

; < : number number -> Boolean

; Tells whether the first number is less than the second.

; > : number number -> Boolean

; Tells whether the first number is more than the second.

; <= : number number -> Boolean

; Tells whether the first number is at most the second.

; >= : number number -> Boolean

; Tells whether the first number is at least the second.

Note that these functions, despite returning Booleans, do not have names ending in a
question-mark; their traditional mathematical names were so well-established that the
designers of Racket decided to keep those names at the expense of the Racket convention.

To get some practice with these functions, let’s start by trying some expressions:

(check-expect (= 3 4) false)

(check-expect (< 3 4) true)

(check-expect (> 3 4) false)

(check-expect (<= 3 4) true)

(check-expect (>= 3 4) false)

(define age 21)

(check-expect (> age 12) true)

(check-expect (< age 18) false)

(check-expect (= (+ 3 4) 5) false)

(check-expect (= (+ 3 4) 7) true)

Feel free to make up and try some more examples of your own.

Now let’s try writing some simple functions that use the built-in number comparison
operators.

Worked Exercise 13.3.1 Develop a function may-drive? that takes in the age of
a person and returns whether that person is old enough to drive a car legally (which in
most of the U.S. means “at least 16 years old”).

Solution: For the contract, we note that the function “takes in the age of a person”,
which sounds like it should be a number, “and returns whether . . . ” The word “whether”
in a problem statement almost always means a Boolean. So the contract should be

; may-drive? : number(age) -> Boolean

For the examples, we note first that there are two possible answers — true and
false — and therefore there must be at least two examples. Furthermore, there’s a
borderline situation between sub-ranges of inputs (as there was with in-first-half?

above), so we should also test the borderline case.

13.3. COMPARING NUMBERS 189

"Examples of may-drive?:"

(check-expect (may-drive? 15) false)

(check-expect (may-drive? 23) true)

(check-expect (may-drive? 16) true) ; borderline case

The skeleton is straightforward:

(define (may-drive? age)

...)

The inventory lists the parameter age and the literal 16:

(define (may-drive? age)

; age a number

; 16 a fixed number we’re likely to need

...)

Now we can fill in the body. We have two numbers, and we need a Boolean; con-
veniently enough, we know of several built-in functions (=, <, >, <=, >=) that take in
two numbers and return a Boolean. Let’s try >.

(define (may-drive? age)

; age a number

; 16 a fixed number we’re likely to need

(> age 16)

)

That wasn’t too bad. Now we test the function . . . and we see that it gets one of
the answers wrong ! In particular, it gets the “clear-cut” cases right, but it gets the
“borderline” example wrong. This is a common pattern; watch for it! It usually means
we’ve got the direction of the comparison right, but either we should have added an =
sign and didn’t, or we shouldn’t have but did. In this case, it means we should have used
>= rather than >.

(define (may-drive? age)

; age a number

; 16 a fixed number we’re likely to need

(>= age 16)

)

Now we test this again; it should work correctly for all cases.

Practice Exercise 13.3.2 Suppose we had mistakenly typed the < operator in the func-
tion body instead of > or >=. What pattern of right and wrong answers would we have
gotten? Try it and see whether your prediction was right.

Likewise, what pattern of right and wrong answers would we have gotten if we had
typed <= instead of >, >=, or <? Try it and see whether your prediction was right.

Now, suppose we had chosen the >= operator, but had its arguments in the opposite
order: (>= 16 age). What pattern of right and wrong answers would we have gotten?
Try it and see whether your prediction was right.

Watch for these patterns whenever you’re debugging a program that involves sub-
ranges of numbers or strings.

190 CHAPTER 13. BOOLEANS

Exercise 13.3.3 Develop a function may-drink? that takes in a person’s age and
returns whether the person is old enough to drink alcohol legally. (In most of the U.S.,
this means “at least 21 years old”.)

Exercise 13.3.4 Develop a function under-a-dollar? that takes in the price of an
item in dollars (e.g. 1.49 or .98) and tells whether it’s less than 1.00 .

Exercise 13.3.5 Develop a function is-17? that takes in a number and tells whether
it’s exactly 17.

13.4 Designing functions involving booleans

In the above examples, we’ve used the fact that the function returns a boolean to help
us choose test cases: you need at least one test case for which the right answer is true,
and at least one test case for which the right answer is false, or you haven’t tested the
function adequately. Furthermore, if the input consists of sub-ranges with borderlines
between them, you also need to test right at the borderline. We’ll incorporate this idea
into the design recipe as follows:

1. Write a contract (and perhaps a purpose statement).

2. Analyze input and output data types.

3. Write examples of how to use the function, with correct answers. If an input or
output data type consists of two or more cases, be sure there’s at least one example
for each case. If an input type involves sub-ranges, be sure there’s an example at
each borderline.

4. Write a function skeleton, specifying parameter names.

5. Write an inventory of available expressions, including parameter names and obvi-
ously relevant literals, along with their data types (and, if necessary, their values
for a specific example).

6. Fill in the function body.

7. Test the function.

We’ve added one new step: Analyze input and output data types. When we were
simply writing functions that took in or returned images or numbers, there wasn’t much
“analysis” to be done. But a function that returns a Boolean can be thought of as
distinguishing two sub-categories of input: those inputs for which the right answer is true,
and those for which it’s false. And in many cases there are even more sub-categories, as
we’ll see in Section 13.7. Identifying these sub-categories (and any borderlines between
them) early helps you choose good test cases.

Exercise 13.4.1 Develop a function much-older? that takes in two people’s ages and
tells whether the first is “much older” (which we’ll define as “at least ten years older”)
than the second.

Exercise 13.4.2 Develop a function within-distance? that takes in three numbers:
x, y, and distance. The function should return whether or not the point (x, y) is at most
the specified distance from the point (0, 0). The formula for the distance of a point to

(0, 0) is
√

x2 + y2.

Hint: You may want to write an auxiliary function to compute the distance.

13.5. COMPARING IMAGES 191

13.5 Comparing images

Just as we can compare strings or numbers to see whether they’re the same, we can also
compare two images to see whether they’re the same:

; image=? : image image -> Boolean

But images don’t have an “order”, so there are no image functions analogous to string<?,
string>?, etc..

Exercise 13.5.1 Develop a function is-green-triangle? that takes in an image
and tells whether it is exactly (triangle 10 "solid" "green").

13.6 Testing types

As we’ve seen, Racket has several built-in data types: numbers, strings, images, booleans,
etc. It also has built-in functions to tell whether something is of a particular type:

; number? : anything -> boolean

; tells whether its argument is a number.

; image? : anything -> boolean

; tells whether its argument is an image.

; string? : anything -> boolean

; tells whether its argument is a string.

; boolean? : anything -> boolean

; tells whether its argument is a boolean.

; integer? : anything -> boolean

; tells whether its argument is an integer.

...

You’ve already seen the image?, number?, and string? functions: we used them in the
check-with clause of an animation to specify what type the model is. In fact, check-with
can work on any function that has contract anything -> boolean: if you wanted to write
an animation with a Boolean model, you could say (check-with boolean?). We’ll see
more applications of this in Chapter 21.

Practice Exercise 13.6.1 Try the following expressions in the interactions pane. For
each one, predict what you think it will return, then see whether you were right. If not,
experiment some more until you understand what the function does. Make up some
similar examples of your own and try them similarly.

192 CHAPTER 13. BOOLEANS

(number? 3)

(number? 5/3)

(number? "3")

(number? "three")

(number? true)

(integer? 3)

(integer? 5/3)

(integer? "3")

(integer? "three")

(string? 3)

(string? "3")

(string? "three")

(image? 3)

(image? (circle 5 "solid" "green"))

(number? (+ 3 4))

(number? (> 3 4))

(boolean? (> 3 4))

(boolean? 3)

(boolean? false)

(boolean? true)

SIDEBAR:

Mathematicians use the word predicate to mean a function that returns a Boolean,
so sometimes you’ll hear Racket programmers referring to “type predicates”. A type
predicate is simply any one of these functions that tell whether something is of a
particular type. Another name for type predicate is discriminator.

Common beginner mistake

Students are often confused by the difference between string? and string=?, between
image? and image=?, etc. All of these functions return Booleans, but they do different
things.

The string=? function takes two arguments (which must be strings), and tells
whether they’re the same string. The string? function takes one argument (which
may be of any type), and tells whether it is a string at all.

Likewise, image=? tells whether two images are the same, while image? tells whether
something is an image at all.

And boolean=? (which you’ll almost never need!) tells whether two booleans are the
same, while boolean? tells whether something is a boolean at all.

Finally, = tells whether two numbers are the same, while number? tells whether
something is a number at all.

13.7 Boolean operators

Advertisers like to divide the world of consumers into age categories, and one of their
favorites is the “18-to-25 demographic”: these people are typically living on their own for
the first time, spending significant amounts of their own money for the first time, and
forming their own spending habits. If an advertiser can get a 19-year-old in the habit of

13.7. BOOLEAN OPERATORS 193

buying a particular brand of shampoo or canned soup, it may pay off in decades of sales.
For this reason, advertisers concentrate their work in places that 18-to-25-year-olds will
see it.

Worked Exercise 13.7.1 Develop a function that takes in somebody’s age, and de-
cides whether the person is in the 18-to-25 demographic.

Solution: The contract is easy:

; 18-to-25? : number (age) -> Boolean

Analyzing the data types tells us nothing new about the output type. The input is
more interesting: it could be thought of as “18-to-25” and “everything else”, but it seems
more natural to break it down into three categories: under-18, 18-to-25, and over-25.

We’ll need at least one example in each of these three categories, plus borderline
examples for both borderlines — 18 and 25.

"Examples of 18-to-25?:"

(check-expect (18-to-25? 15) false)

(check-expect (18-to-25? 18) true)

(check-expect (18-to-25? 20) true)

(check-expect (18-to-25? 25) true)

(check-expect (18-to-25? 27) false)

We chose the examples based on the data analysis, and figured out the “right answers”
by applying common sense to the problem: if the advertisers want “18-to-25-year-olds”,
they probably mean to include both 18-year-olds and 25-year-olds (even though somebody
may be described as “25 years old” right up to the day before turning 26).

The skeleton is straightforward:

(define (18-to-25? age)

...)

The inventory throws in a parameter and two literals:

(define (18-to-25? age)

; age a number

; 18 a fixed number we’ll need

; 25 another fixed number we’ll need

...)

In fact, we can predict some things we’ll want to do with the numbers: we’ll probably
want to check whether age is at least 18, and whether age is at most 25:

(define (18-to-25? age)

; age a number

; 18 a fixed number we’ll need

; 25 another fixed number we’ll need

; (>= age 18) a Boolean

; (<= age 25) a Boolean

)

But now we face a problem: we have two Booleans, both of which represent part of
the right answer, but neither of which is the whole right answer. We need to combine the
two, using a Boolean operator.

194 CHAPTER 13. BOOLEANS

A Boolean operator is a function that takes in one or more Booleans and returns a
Boolean. Racket has three common Boolean operators: and, or, and not. The and and
or operators each take in two or more Booleans; the not operator takes in exactly one.

Let’s try some examples of these in the Interactions pane:

(check-expect (or false false) false)

(check-expect (or false true) true)

(check-expect (or true false) true)

(check-expect (or true true) true)

(check-expect (or (= 3 5) (= (+ 3 4) 7)) true)

(check-expect (or (< 3 5) (= (+ 3 4) 5)) true)

(check-expect (or (> 3 5) (= (+ 3 4) 5)) false)

(check-expect (and false false) false)

(check-expect (and false true) false)

(check-expect (and true false) false)

(check-expect (and true true) true)

(check-expect (and (= 3 5) (= (+ 3 4) 7)) false)

(check-expect (and (< 3 5) (= (+ 3 4) 7)) true)

(check-expect (not (= 3 5)) true)

(check-expect (not (< 3 5)) false)

(check-expect (or false true false) true)

(check-expect (or false false false) false)

(check-expect (and false true false) false)

(check-expect (and true true true) true)

Now back to our problem. We have two Boolean expressions: one represents whether
age is at least 18, and the other represents whether age is at most 25. To find out whether
both of those things are true simultaneously, we need to combine the expressions using
and:
(define (18-to-25? age)

; age a number

; 18 a fixed number we’ll need

; 25 another fixed number we’ll need

; (>= age 18) a Boolean

; (<= age 25) a Boolean

(and (>= age 18)

(<= age 25))

)

Now we can test the function, and it should work correctly on all five examples.

Practice Exercise 13.7.2 What would have happened if we had used or instead of
and in defining the 18-to-25? function? Predict the pattern of right and wrong answers,
then change the function definition and check whether you were right.

Exercise 13.7.3 Develop a function teenage? that takes in a person’s age and re-
turns whether the person is at least 13 but younger than 20.

Exercise 13.7.4 Develop a function negative-or-over-100? that takes in a number
and returns whether it is either negative (i.e. less than zero) or over 100.

13.7. BOOLEAN OPERATORS 195

Exercise 13.7.5 Develop a function may-drive-but-not-drink? that takes in a
person’s age and tells whether the person is old enough to have a driver’s license (in most
of the U.S.) but not old enough to drink alcohol (in most of the U.S.).

Hint: Re-use previously-written functions!

Exercise 13.7.6 The game of “craps” involves rolling a pair of dice, and (in a simplified
version of the game) if the result is 7 or 11, you win. Develop a function named
win-craps? that takes in a number and tells whether it’s either a 7 or an 11.

Exercise 13.7.7 Develop a function named play-craps that takes a dummy argu-
ment, rolls two dice, adds them up, and returns true or false depending on whether you
won the roll.

Hint: Re-use previously defined functions!

SIDEBAR:

How would you test a function like play-craps? It ignores its argument, so all you
can see directly is that sometimes it returns true and sometimes false, regardless of
the argument. How much of the time should it return true? How many runs would
you need to make in order to tell whether it was behaving the way it should?

Exercise 13.7.8 Develop a function not-13? that takes a number and tells whether
it’s not exactly 13.

Exercise 13.7.9 Develop a function not-single-letter? that takes a string and
tells whether its length is anything other than 1.

Exercise 13.7.10 Develop a function over-65-or-teenage? that takes in a person’s
age and tells whether the person is either over 65 or in his/her teens.

Exercise 13.7.11 Develop a function lose-craps? that takes in a number and tells
whether it is not either 7 or 11. That is, the result should be false for 7 and 11, and
true for everything else.

Exercise 13.7.12 Develop a function is-not-red-square? that takes in an image
and tells whether it is anything other than a solid red square.

Hint: Use image-width to find out how wide the image is.

Exercise 13.7.13 Develop a function any-two-same-pics? that takes in three im-
ages and tells whether any two (or more) of them are exactly the same.

Hint: There are at least three different ways the answer could be true; test them all,
as well as at least one case in which the answer should be false.

196 CHAPTER 13. BOOLEANS

13.8 Short-circuit evaluation

Technically, and and or aren’t really functions in Racket but rather something called
special forms ; define is also a special form. The main difference, for now, is that every
argument to a function has to have a value, or the function call doesn’t make sense.
Obviously, define can’t work that way, because its whole purpose is to define a variable
or function that doesn’t already have a meaning. The and and or operators could have
been regular functions, but the designers of Racket chose to make them special forms in
order to get something called short-circuit evaluation.

The idea is, if the first argument of an or is true, you don’t really care what the rest
of the arguments are; you already know the answer. Suppose you had a variable named
x defined, and think about an expression like

(or (= x 0) (> (/ 7 x) 2))

If or were an ordinary function, DrRacket would compute the Boolean values of (= x

0) and (> (/ 7 x) 2), and then apply or to the results. If x = 0, the sub-expression
(/ 7 x) would crash (because you can’t divide by zero) before or ever got a chance to
do its job. Instead, DrRacket computes the Boolean value of (= x 0), and if it’s true,
or returns true immediately without even looking at its second argument (which doesn’t
have a value). Only if x 6= 0 does DrRacket try to compute (> (/ 7 x) 2), and if x 6= 0,
this expression is guaranteed to have a value so everything’s OK.

Similarly, if the first argument of an and is false, you already know the answer
and don’t need to even look at the rest of the arguments. Try typing each of the two
expressions

(and (> 2 3) y)

(and y (> 2 3))

in the Interactions pane of DrRacket. The first should return false; the second should
complain that it’s never heard of the variable y. (If you try these two expressions in
the Definitions pane and hit “Step”, “Check Syntax”, or “Run”, both will produce error
messages, because the Definitions pane checks that all variable names are defined before
they are used.)

For most purposes, you can ignore short-circuit evaluation. But on rare occasions, it
makes a difference to your programming: you can make a program run faster, or even
run without crashing, by putting the arguments of or or and in a different order.

13.9 Review of important words and concepts

Racket has a Boolean data type with two values — true and false — which is used
for yes/no questions. A number of built-in functions allow you to compare strings for
equality or order, compare numbers for equality or order, compare images for equality,
and combine two or more Booleans into one.

We’ve added a new step to the design recipe for functions: analyze the input and
output data types. For now, this means identifying interesting “sub-categories” of input
and output. Once you’ve done this, it helps you in choosing good test cases: make sure
to have at least one test case for each sub-category. In addition, if the sub-categories are
ranges with borderlines in between them, make sure to test the function at the borderlines.

If the function doesn’t pass all its tests, pay attention to patterns of right and wrong
answers : was it always wrong, or only sometimes? Did it work on the “clear-cut” cases
but not the borderlines? The borderlines but not the “clear-cut” cases? These patterns
give you valuable clues in figuring out what’s wrong with the program.

13.10. REFERENCE 197

A predicate is any function that returns a Boolean. In Racket, most such functions (by
convention) have names ending in a question mark. There are built-in type predicates —
functions that take in any type of argument, and tell whether or not it is, say, a number.
They tend to have obvious names: number?, image?, string?, boolean?, integer?, etc.

You can handle much more complicated and sophisticated categories of input by com-
bining Boolean-valued expressions using the Boolean operators and, or, and not.

13.10 Reference: Functions involving Booleans

Here are the new built-in functions (and special forms) we’ve discussed in this chapter:

• string=?

• string<?

• string<=?

• string>?

• string>=?

• string-ci=?

• string-ci<?

• string-ci<=?

• string-ci>?

• string-ci>=?

• =

• <

• >

• <=

• >=

• image=?

• image?

• number?

• string?

• boolean?

• boolean=?

• and

• or

• not

198 CHAPTER 13. BOOLEANS

Chapter 14

Animations with Booleans

The Boolean type allows us to add some new features to our animations. Most obviously,
we can use a Boolean as a model, just as we’ve already learned to use images, numbers,
and strings as models. Unfortunately, doing anything interesting with a Boolean model
requires conditionals, which are introduced in Chapter 15.

However, we can also use Booleans to stop an animation. This will give us practice
using Booleans before we get to conditionals.

14.1 Stopping animations

Consider the following problem.

Worked Exercise 14.1.1 Develop an animation that displays the word “antidises-
tablishmentarianism” in (say) 18-point blue letters. Every half second, the first letter of
the word is removed, so the display becomes “ntidisestablishmentarianism”, then “tidis-
establishmentarianism”, etc.

Solution: Identify the model: Every second we need to chop one letter off the string,
which we know how to do using substring, and we know how to convert a string to an
image with text, so let’s use a string as our model.

Identify the necessary handlers: Since the model isn’t an image, we’ll need a
draw handler with the contract

; show-string : string -> image

And since the model needs to change every half second, we’ll need a tick handler with
the contract

; chop-string : string -> string

Write the handlers: The show-string function is straightforward; here’s my an-
swer.

; show-string : string -> image

(check-expect (show-string "") (text "" 18 "blue"))

(check-expect (show-string "hello") (text "hello" 18 "blue"))

(define (show-string model)

; model a string

(text model 18 "blue"))

199

200 CHAPTER 14. ANIMATIONS WITH BOOLEANS

Once this works, we can go on to the chop-string function. Immediately we face a
problem: it’s not clear what should happen if its argument is the empty string.

; chop-string : string -> string

(check-expect (chop-string "a") "")

(check-expect (chop-string "hello") "ello")

; (check-expect (chop-string "") what to do here?)

So we’ll change the contract:

; chop-string : non-empty string -> string

Now the problematic example is no longer legal, so we can forget about it — at least for
now. The function definition looks like

(define (chop-string model)

; model a string

(substring model 1))

We test the function, and it works on all of our test cases.

Size and shape of window: If we don’t specify dimensions, the animation window
will be the size of the initial picture. Will that work? Well, the initial picture is simply the
word “antidisestablishmentarianism” in an 18-point font, and as the word gets shorter,
the picture can only get smaller, so it’ll still fit in the original animation window; we don’t
need to specify window size.

Call big-bang: The initial model is “antidisestablishmentarianism”, so . . .

(big-bang "antidisestablishmentarianism"

(check-with string?)

(on-draw show-string)

(on-tick chop-string 1/2))

This works beautifully until the string is reduced to empty, at which point . . . it

crashes! Remember, chop-string doesn’t work on an empty string. To avoid this
crash, we need a way to stop the animation before calling chop-string on an empty
string.

The picturing-programs library provides one more kind of “handler” that we didn’t
see in Chapter 6: a “stopping condition”. You’ll write (or use) a function with the
contract

; function-name : model -> boolean

and install it with

(stop-when function-name)

The animation will stop as soon as the function returns true.

In our case, the model is a string, and we want to stop as soon as the string is empty,
so here’s my definition:

14.1. STOPPING ANIMATIONS 201

; empty-string? : string -> boolean

(check-expect (empty-string? "") true)

(check-expect (empty-string? "m") false)

(check-expect (empty-string? "n") false)

(check-expect (empty-string? "hello") false)

(define (empty-string? model)

; model a string

; "" a fixed string

(string=? model ""))

Now we can use this to stop the animation as follows:

(big-bang "antidisestablishmentarianism"

(check-with string?)

(on-draw show-string)

(on-tick chop-string 1/2)

(stop-when empty-string?))

The animation works exactly as before, except that when the string is reduced to empty,
it stops quietly and peacefully instead of showing an ugly error message.

Note that empty-string? is called after the draw handler and before the tick handler.
As a result, you’ll see the string get gradually shorter, eventually down to nothing, but
then the animation will stop before calling chop-string on the empty string (which, as
we know, would crash).

Exercise 14.1.2 Recall the animation of Exercise 10.2.1, which initially displayed an
“a”, then “ab” a second later, then “abb”, and so on. Modify this animation so it stops
when the string reaches ten letters long (i.e. “abbbbbbbbb”).

Exercise 14.1.3 Modify the animation of Exercise 14.1.1 so that it stops when the
string is reduced to length 3 or less, rather than when it’s reduced to the empty string.
Try it with several different initial strings, including some that are already length 3 or
less.

Exercise 14.1.4 Modify the animation of Worked Exercise 6.4.1 so that the animation
ends when the image displayed (including white space) is wider than the window.

Exercise 14.1.5 Modify the animation of Exercise 6.4.3 so that the animation ends
when there’s nothing left to show in the window.

Exercise 14.1.6 Modify the animation of Exercise 6.4.4 so that the animation ends
when the image (a row of dots) is wider than the window.

Exercise 14.1.7 Modify the animation of Exercise 6.7.2 or 6.7.3 so that the animation
ends when the image (including white space) is wider or taller than the window.

Exercise 14.1.8 Modify the animation of Exercise 8.3.1 or 8.3.2 so that the animation
ends when the circle is wider or taller than the window.

Hint: Recall that in these animations, the model was a number representing radius;
the diameter is twice the radius. Be sure to test the program with a window that’s wider
than it is tall, or taller than it is wide.

202 CHAPTER 14. ANIMATIONS WITH BOOLEANS

Exercise 14.1.9 Modify your animation from Exercise 8.4.2 so that the animation ends
when the picture reaches the bottom of the window.

Exercise 14.1.10 The animation from Exercise 8.4.3 has a problem: it crashes if you
type fast enough to reduce the radius of the dot to less than zero. Modify this animation
so it never crashes, but rather stops gracefully when the radius gets too small.

Exercise 14.1.11 Your solution to Exercise 8.3.9 probably fills up the progress bar and
then just sits there, not making any visible change to the window but not stopping either.
(Or, if you did it differently, it may go past filling the progress bar, drawing a bar that’s
more than 100% full!)

Modify this animation so it stops gracefully when the progress bar reaches 100%.

Exercise 14.1.12 Modify the animation of Exercise 10.2.4 so that it counts only up to
30, and then stops.

14.2 Stopping in response to events

A stop-when handler works great when the condition for stopping the animation is easily
computed from the model. But in some situations, it’s more natural to stop the animation
in response to a tick, key, or mouse event, using a built-in function named stop-with.

; stop-with : model -> stopping-model

; Returns the same thing it was given, but marked so that

; when big-bang sees this result, it stops the animation.

; The draw handler will be called one last time on this value.

Worked Exercise 14.2.1 Modify exercise 10.2.5 so that it stops as soon as the user
presses a key on the keyboard. (For now it’s “any key”; we’ll see in Chapter 18 how to
tell if it was, say, the “q” key for “quit”.)

Solution: The model is the same as before: a number that starts at 0 and increases by
1 each second. We still need a tick handler (for the “increases by 1 each second”), and
we still need a draw handler (to display the number at the appropriate place), but now
we also need a key handler.

The key handler’s contract is

; key handler stop-on-key : number key -> number

Since we’re not worried about what key the user pressed, we really only need one test case:
if the key handler is called at all, it means the user pressed a key and the animation should
end, by calling stop-with on some model. Whatever argument we give to stop-with will
be given to the draw handler “one last time” to decide what picture should stay in the
animation window after the animation stops. In many cases, we can just give stop-with

the current model.

14.3. REVIEW 203

(check-expect (stop-on-key 24 "whatever")

(stop-with 24))

(define (stop-on-key model key)

; model number

; key whatever this is (ignore)

(stop-with model)

)

(big-bang 0

(check-with number?)

(on-tick add1 1)

(on-draw show-num-at-x 500 100)

(on-key stop-on-key))

Exercise 14.2.2 Choose a previously-written animation that didn’t have a key handler.
Modify it so that it stops as soon as the user types a key.

Exercise 14.2.3 Choose a previously-written animation that didn’t have a mouse han-
dler. Modify it so that it stops as soon as the user moves or clicks the mouse.

Common beginner mistake: stop-with is intended to be called from within a
handler; it is not a way of installing handlers, like on-tick, on-key, or stop-when. If
you call it as one of the arguments to big-bang, as in this example:

(big-bang 0

(check-with number?)

(on-tick add1)

(on-draw disk-of-size)

(stop-with 5)

)

you’ll get an error message saying that’s not a legal part of a “world description” (re-
member, big-bang “creates the world”).

In order to do more interesting things with stop-with, e.g. stop if the user clicks the
mouse in a particular part of the screen, or stop if the user types the “q” key, we’ll need
the techniques of the next few chapters.

14.3 Review of important words and concepts

For situations in which we want an animation to end as soon as the model meets a certain
condition, you can provide a stop-when handler — a function from model to Boolean —
and as soon as it’s true, the animation will end. Note that it is called after the draw
handler, but before the tick, key, and mouse handlers. This means the draw handler has
to be written to not crash even if the stopping condition is true, but the tick, key, and
mouse handlers may safely assume that the stopping condition is false.

If you want to end the animation in response to a tick, mouse, or key event, it may
be more natural to use stop-with from within a tick, mouse, or key handler.

204 CHAPTER 14. ANIMATIONS WITH BOOLEANS

Figure 14.1: Event handlers for animations

The big-bang function has the contract

; big-bang : model(start) handler ... -> number

tick handlers must have the contract

; function-name : model (old) -> model (new)

They are installed with (on-tick function-name interval). The interval
is the length of time (in seconds) between clock ticks; if you leave it out, the
animation will run as fast as it can.

key handlers must have the contract

; function-name : model (old) key -> model (new)

The “key” parameter indicates what key was pressed; we’ll see how to use it in
Chapter 18.

They are installed with (on-key function-name).

mouse handlers must have the contract

; function-name : model (old)

; number (mouse-x) number (mouse-y) event

; -> model (new)

The first parameter is the old model; the second represents the x coordinate,
indicating how many pixels from the left the mouse is; the third number represents
the y coordinate, indicating how many pixels down from the top the mouse is; and
the “event” tells what happened (the mouse was moved, the button was pressed
or released, etc.); we’ll see in Chapter 18 how to use this.

They are installed with (on-mouse function-name).

draw handlers must have the contract

; function-name : model (current) -> image

and are installed with (on-draw function-name width height). (If you leave
out the width and height arguments, the animation window will be the size of the
first image.)

An especially simple draw handler, show-it, is predefined: it simply returns the
same image it was given, and it’s useful if you need to specify the width and
height of the animation window but don’t want to write your own draw handler.

stop handlers must have the contract

; function-name : model (current) -> boolean

and are installed with (stop-when function-name).

model type checkers must have the contract

; function-name : anything -> boolean

and are installed with (check-with function-name).

If you’re using numbers as your model, use (check-with number?), if you’re
using strings, use (check-with string?), etc.

14.4. REFERENCE 205

It’s a good idea to include a check-with clause in every big-bang animation to tell
Racket (and future readers of your program) what type you think the model should be.
If one of your functions returns the wrong type, you’ll get a more informative and useful
error message that tells you what went wrong.

14.4 Reference: Built-in functions for making deci-
sions in animations

This chapter has introduced two new bits of syntax:

• stop-when

• stop-with

(Technically, stop-with is a function, while stop-when is a special form that works only
inside big-bang.)

206 CHAPTER 14. ANIMATIONS WITH BOOLEANS

Chapter 15

Conditionals

15.1 Making decisions

We saw in Chapter 13 how to write functions that answer yes/no questions, and we saw
in Chapter 14 how to use such a function as the stopping criterion for an animation. But
Booleans are used much more generally to make decisions about what computation to
do.

For example, imagine an e-commerce site that sells games and game equipment of
several different kinds: basketballs, baseballs, mitts, bats, Monopoly boards, chess boards
and pieces, Nintendo consoles, etc.. One part of the site might give a list of the names of
different games; a user would select one from the menu, and the site would then display
a picture of the selected game.

You know how to display pictures, but this application requires displaying one of
several pictures, depending on which menu item the user selected. The computer needs
to do something like the following:

If the user selected "basketball",

display the picture of a basketball.

If not, see whether the user selected "baseball";

if so, display the picture of a baseball.

If not, see whether the user selected "Monopoly";

if so, display the picture of a Monopoly set.

etc.

(We’ll solve this problem in Exercise 15.3.1.)

This is such a common pattern in programming that Racket (and most other lan-
guages) provides a construct to do it, called a conditional (or cond for short). A Racket
conditional includes a series of “question/answer” pairs: Racket evaluates the first ques-
tion, and if the result is true, it returns the first answer. If not, it goes on to the second
question: if the second question evaluates to true, it returns the second answer; if not,
it goes on to the third question, and so on.

207

208 CHAPTER 15. CONDITIONALS

Syntax Rule 6 Anything matching the following pattern is a legal expression:
(cond [question1 answer1]

[question2 answer2]

[question3 answer3]

...

[questionn answern]

)

as long as each of the questions is an expression of type Boolean, and each answer is an
expression.

Note that the questions and answers must come in pairs, surrounded by square brack-
ets. Each question/answer pair is sometimes called a “cond-clause”.

SIDEBAR:

In fact, you can use parentheses instead of the square brackets. To avoid confusion,
I prefer to use parentheses only for calling functions, as we’ve been doing so far, and
to use square brackets to group together each question/answer pair in a conditional.

Practice Exercise 15.1.1 Type the following into the Interactions pane:
(cond [(string=? "hello" "goodbye") "something is wrong!"]

[(string=? "snark" "snark") "this looks better"]

)

The result should be the string "this looks better".
Type (or copy-and-paste) the same three lines into the Definitions pane and hit “Run”;

you should get the same result.
Then hit “Step” instead of “Run”: note that it first evaluates the expression (string=?

"hello" "goodbye") to false, then throws away the answer "something is wrong!"

and goes on to the second question/answer pair.

Practice Exercise 15.1.2 Now try an example in which none of the questions comes
out true:
(cond [(string=? "hello" "goodbye") "something is wrong!"]

[(string<? "snark" "boojum") "this isn’t true either"]

[(< 5 2) "nor this"]

)

Type this into the Interactions pane; you should get an error message saying cond: all
question results were false.

Copy the same four lines into the Definitions pane and hit “Run”; you should get the
same error message.

Now try the Stepper; you’ll see it evaluate each of the three questions in turn to false,
discard each of the three answers, and then produce the error message.

Practice Exercise 15.1.3 Here’s an example in which a question other than the last
one evaluates to true:
(cond [(= (+ 2 5) (- 10 3)) "yes, this works"]

[(string=? "hello" "goodbye") "this shouldn’t happen"]

[(string<? "goodbye" "hello")

"this is true but it shouldn’t get here"]

)

Note that since the first question evaluates to true, Racket returns "yes, this works"

and never bothers to even evaluate the other two questions, as you can see by using the

15.1. MAKING DECISIONS 209

Stepper. This demonstrates that cond, like define, and, and or, is a special form rather
than a regular function.

Of course, nobody really uses conditionals directly in Interactions; they’re almost
always used inside a function. Let’s try a more realistic example:

Worked Exercise 15.1.4 Develop a function reply which recognizes any one of the
strings "good morning", "good afternoon", or "good night", and returns either "I

need coffee", "I need a nap", or "bedtime!" respectively. If the input isn’t any of
the three known strings, the function may produce an error message.

Solution: Contract:

; reply : string -> string

If we wished, we could be more specific about what input values are allowed, and what
results are possible:

; reply:string("good morning","good afternoon",or "good night")->

; string ("I need coffee", "I need a nap", or "bedtime!")

Examples: There are exactly three legal inputs, and exactly three legal outputs, so
to test the program adequately, we should try all three.

"Examples of reply:"

(check-expect (reply "good morning") "I need coffee")

(check-expect (reply "good afternoon") "I need a nap")

(check-expect (reply "good night") "bedtime!")

Skeleton: The input represents a greeting, so let’s use that name for the parameter:

(define (reply greeting)

...)

Inventory: As usual, we need the parameter greeting. Since there are three possible
cases, we can be pretty sure the function will need a conditional with three clauses, or
question/answer pairs:

(define (reply greeting)

; greeting a string

...)

Skeleton, revisited: Since there are three possible cases, we can be pretty sure the
function will need a conditional with three clauses, or question/answer pairs:

(define (reply greeting)

; greeting a string

(cond [... ...]

[... ...]

[... ...]

))

To complete the function definition, we need to fill in the “. . . ” gaps. I usually
recommend filling in either all the answers, then all the questions, or vice versa, depending
on which looks easier. In this case, we know exactly what the possible answers are, so
let’s fill them in first:

210 CHAPTER 15. CONDITIONALS

(define (reply greeting)

; greeting a string

(cond [... "I need coffee"]

[... "I need a nap"]

[... "bedtime!"]

))

We still need to fill in the questions, each of which should be a Boolean expression,
probably involving greeting. Under what circumstances should the answer be "I need

coffee"? Obviously, when greeting is "good morning". Filling this in, we get
(define (reply greeting)

; greeting a string

(cond [(string=? greeting "good morning") "I need coffee"]

[... "I need a nap"]

[... "bedtime!"]

))

We can do the same thing for the other two cases:
(define (reply greeting)

; greeting a string

(cond [(string=? greeting "good morning") "I need coffee"]

[(string=? greeting "good afternoon")"I need a nap"]

[(string=? greeting "good night") "bedtime!"]

))

Now test the function on the three examples we wrote earlier; it should work.

Incidentally, if you write a function definition with several cond-clauses and you pro-
vide test cases for only some of them, when you hit “Run” to see the results, the parts
of the program you tested will be colored black, and the parts you didn’t test will be
reddish-brown.

Practice Exercise 15.1.5 Try commenting out one or two of the test cases and hitting
“Run” to see this.

15.2 Else and error-handling

The reply function is unsatisfying in a way: if the input is anything other than one of
the three known greetings, the user gets the ugly error message cond: all question results
were false. It would be friendlier if we could write our program with an “anything else”
case, producing a more appropriate message like "I don’t understand" or "huh?" if the
input isn’t something we recognize.

Racket provides a keyword else for just this purpose. If you use else as the last
question in a cond, it will catch all cases that haven’t been caught by any of the earlier
questions. For example,
(define (reply greeting)

; greeting a string

(cond [(string=? greeting "good morning") "I need coffee"]

[(string=? greeting "good afternoon") "I need a nap"]

[(string=? greeting "good night") "bedtime!"]

[else "huh?"]

))

15.3. DESIGN RECIPE 211

When this function is applied to a string like "good evening", which doesn’t match
any of the known greetings, Racket will then go on to the last question, which is else so
Racket returns the corresponding answer "huh?" rather than the error message.

SIDEBAR:

Technically, the else keyword isn’t necessary: if you were to use true as the last
question, it would (obviously) always evaluate to true, so it too would catch all cases
that haven’t been caught by any earlier question. Try the above function with true

in place of else; it should work exactly as before.
However, else is considered easier to read and understand, so most Racket pro-

grammers use it in this situation.

By the way, else cannot appear anywhere in Racket except as the last question in a
cond.

Note that the else is not in parentheses : it is not a function, and it cannot be applied
to arguments. If you put it in parentheses, you’ll get an error message.

15.3 Design recipe for functions that make decisions

To write functions on data types defined by choices, we’ll add a few more details to the
design recipe.

1. Write a contract (and perhaps a purpose statement).

2. Analyze input and output data types: if either or both is made up of several choices,
figure out how many and how to describe them.

3. Write examples of how to use the function, with correct answers. If an input or
output data type is defined by choices, be sure there’s at least one example for each
choice. If an input type involves sub-ranges, be sure there’s an example at the
borderline(s).

4. Write a function skeleton, specifying parameter names.

5. Write an inventory of available expressions, including parameter names and obvi-
ously relevant literals, along with their data types (and, if necessary, their values
for a chosen example).

6. Add some details to the skeleton: if an input or output data type is defined by several
choices, write a cond with that many question/answer pairs, with “. . . ” for all the
questions and answers.

7. Fill in the function body. If the skeleton involves a cond, fill in either all the
answers or all the questions, whichever is easier, and then go back to fill in the
other column. If one of the choices is “anything else”, use else as the last question
in the cond.

8. Test the function.

To elaborate on step 7,

• if the answers are simple (e.g. a fixed set of known values), first fill in all the answers,
then go back and figure out what question should lead to each answer; or

212 CHAPTER 15. CONDITIONALS

• if the questions are simpler than the answers (e.g. if the answers are complex ex-
pressions, but the questions are simply matching a parameter against a fixed set
of known values), first fill in all the questions, then go back and figure out what
expression will produce the right answer for each one. In particular, if one of the
input choices is “anything else”, detect this with else as the last question.

Recall that Syntax Rule 6 says the first expression in each cond-clause must be an
expression of type Boolean, but it doesn’t say anything about what type(s) the second
expressions must be. In most cases, these should all be the same type as the return type
of the function you’re writing. For example, reply is supposed to return a string, so
the second expression in each cond-clause is a string; in the e-commerce application we
discussed earlier, the return type is a picture, so the second expression in each cond-clause
should be a picture.

Exercise 15.3.1 Develop a function choose-picture that takes in a string (either
"basketball", "baseball", "Monopoly", etc.; you can choose your own names if you
wish, but don’t choose more than about five) and returns a picture of that object (which
you should be able to find on the Web).

Exercise 15.3.2 Modify exercise 15.3.1 so that if the input isn’t any of the known
games, it produces a picture of a question mark (or a person looking puzzled, or something
like that).

Exercise 15.3.3 Develop a function named random-bw-picture that takes in a width
and a height, and produces a rectangle that size and shape, in which each pixel is randomly
either black or white.

Exercise 15.3.4 The town of Racketville needs a new computerized voting system. In
an early version of the system, we assume there are exactly 4 voters (we’ll see later how
to handle an arbitrary number of voters).
Develop a function count-votes-4 that takes in five strings. The first is the name of
a candidate, and the other four are votes which might or might not be for that candidate.
The function should return how many of the votes are for the specified candidate. For
example,
(check-expect

(count-votes-4 "Anne" "Bob" "Charlie" "Bob" "Hortense") 0)

; since there are no votes for Anne

(check-expect

(count-votes-4 "Anne" "Bob" "Anne" "Phil" "Charlie") 1)

(check-expect

(count-votes-4 "Anne" "Anne" "Bob" "Anne" "Mary") 2)

(check-expect

(count-votes-4 "Bob" "Anne" "Bob" "Charlie" "Bob") 2)

Hint: Write an auxiliary function that takes in two strings and returns either 1 (if they
match) or 0 (if they don’t).

Obviously, it’s a pain passing around four votes as parameters, and it would be even
worse if you had hundreds or thousands of votes. We’ll see how to handle larger numbers
of data in Chapter 22.

15.3. DESIGN RECIPE 213

Exercise 15.3.5 Develop a function smallest-of-3 that takes in three numbers and
returns the smallest of them.

There is a built-in function min which does this job for you; for this exercise, use
conditionals, not min or anything like it.

Exercise 15.3.6 Develop a function rough-age that takes in a number representing
a person’s age and returns one of the strings "child", "teenager", or "adult" as ap-
propriate. A “teenager” is at least 13 but less than 20 years old; a “child” is under 13;
and an “adult” is at least 20.

Exercise 15.3.7 Using build3-image, build a rectangular image 150 pixels wide by
100 pixels high which is yellow above the diagonal (from top-left to bottom-right corner)
and blue below the diagonal.

Exercise 15.3.8 Develop a function make-stripes that takes in a width and height
(in pixels), and produces a rectangle that size and shape in which all the even-numbered
rows are red and the odd-numbered rows are blue. The result should be a bunch of narrow
stripes.

Exercise 15.3.9 These stripes are really too narrow to see easily. Develop a function

make-wide-stripes that does the same thing only with each stripe 5 pixels high: rows
0-4 are red, 5-9 are blue, 10-14 are red, etc.

Exercise 15.3.10 Develop a function make-diag-stripes that takes in a width and
height (in pixels), and produces a rectangle that size and shape filled with stripes running
from upper-right to lower-left.

214 CHAPTER 15. CONDITIONALS

Exercise 15.3.11 Define a function simplify-colors that takes in an image and
produces an image the same size and shape: for each pixel in the given image, if it has
more red than green or blue, make the resulting pixel pure red; if it has more green than
red or blue, make it green; and if it has more blue than red or green, make it pure blue. In
case of ties, you can decide what to do: pick one of the three colors arbitrarily, or make
it white, or something like that.

Exercise 15.3.12 Come up with other cool things to do to images using conditionals.
Go wild.

15.4 Case study: bank interest

My bank offers savings accounts with a sliding scale of interest, depending on how much
money is in the account: if you have less than $500 in the account, you earn no interest;
for $500-$1000, you earn 1% per year interest; for $1000-$4000, you earn 2% per year,
and for $4000 and up, you earn 3% per year.

Worked Exercise 15.4.1 Develop a function bank-interest that computes the an-
nual interest on a savings account with a specified balance.

Solution: The function produces the amount of interest earned (a number), based on
the balance in the account (a number). And it doesn’t make sense, for purposes of this
problem, to have a bank balance below 0, so we’ll exclude that:

; bank-interest : number(balance) -> number

; assumes balance is at least 0

The input and output types are both numbers. The output type doesn’t break down
in any obvious way into categories, but the input type does: there are four sub-ranges,
0-$500, $500-$1000, $1000-$4000, and $4000-up.

So how many examples will we need? There are four sub-ranges, so we’ll need at least
four examples; there are also three borderlines, at $500, $1000, and $4000, which need
to be tested too. (If we wanted to be especially foolproof, we could test $0 and negative
numbers too, but I’ll skip that for this example.) So we need at least seven test cases:
one inside each sub-range, and one at each borderline.

"Examples of bank-interest:"

(check-expect (bank-interest 200) 0)

(check-expect (bank-interest 500) ?)

(check-expect (bank-interest 800) (* 800 .01)) ; or 8

(check-expect (bank-interest 1000) ?)

(check-expect (bank-interest 2500) (* 2500 .02)) ; or 50

(check-expect (bank-interest 4000) ?)

(check-expect (bank-interest 5000) (* 5000 .03)) ; or 150

15.4. CASE STUDY: BANK INTEREST 215

The “right answers” inside each sub-range are obvious: $800 is in the 1% range, so we
compute 1% of $800 and get $8, and so on. But the problem statement is rather vague
about the borderlines.

For the $500 borderline, the problem actually said “if you have less than $500 in the
account . . . ”, which suggests that exactly $500 should be treated as in the $500-$1000
category. Common sense agrees: if the bank paid no interest on a balance of $500, some
customer with a balance of exactly $500 would complain, there’d be a TV news story
about it, and the bank would come off looking petty and stingy. The other borderlines are
less clear in the problem statement, but for consistency, and for the same public-relations
reason as before, let’s assume that $1000 is treated as in the $1000-$4000 category, and
$4000 is treated as in the $4000-up category. So now we can fill in the rest of the right
answers:

"Examples of bank-interest:"

(check-expect (bank-interest 200) 0)

(check-expect (bank-interest 500) (* 500 .01)) ; or 5

(check-expect (bank-interest 800) (* 800 .01)) ; or 8

(check-expect (bank-interest 1000) (* 1000 .02)) ; or 20

(check-expect (bank-interest 2500) (* 2500 .02)) ; or 50

(check-expect (bank-interest 4000) (* 4000 .03)) ; or 120

(check-expect (bank-interest 5000) (* 5000 .03)) ; or 150

Note that each of these “right answers” is found by multiplying the balance by an
appropriate interest rate.

The skeleton is straightforward:

(define (bank-interest balance)

...)

The inventory is easy too:

(define (bank-interest balance)

; balance a number, in dollars

...)

Since the input type is one of four choices, we’ll probably need a four-clause cond . . . but
wait! All the “right answers” match the same “pattern”: multiply the balance by the
interest rate. So maybe this function should simply apply that formula, and leave the job
of choosing the right interest rate to an auxiliary function, which might look something
like this:

; bank-interest-rate : number -> number

"Examples of bank-interest-rate:"

(check-expect (bank-interest-rate 200) 0)

(check-expect (bank-interest-rate 500) 0.01)

(check-expect (bank-interest-rate 800) 0.01)

(check-expect (bank-interest-rate 1000) 0.02)

(check-expect (bank-interest-rate 2500) 0.02)

(check-expect (bank-interest-rate 4000) 0.03)

(check-expect (bank-interest-rate 5000) 0.03)

Let’s pretend for a moment that we had this bank-interest-rate function. Then
bank-interest would be quite simple: compute the interest rate, and multiply by the
balance.

216 CHAPTER 15. CONDITIONALS

(define (bank-interest balance)

; balance a number, in dollars

(* balance (bank-interest-rate balance))

)

We didn’t need the four-clause conditional after all.

Of course, we’re not done with the problem, since we haven’t actually written the
bank-interest-rate function. So let’s write it. The next step in writing it is a skeleton:

(define (bank-interest-rate balance)

...)

The inventory contains a parameter name:

(define (bank-interest-rate balance)

; balance a number, in dollars

...)

This time there’s no obvious “pattern” that all the right answers fit; we actually need
the conditional:

(define (bank-interest-rate balance)

; balance a number in dollars

(cond [... ...]

[... ...]

[... ...]

[... ...]

))

Next, we need to fill in the questions and answers. The answers are easy:

(define (bank-interest-rate balance)

; balance a number in dollars

(cond [... .00]

[... .01]

[... .02]

[... .03]

))

Next, under what conditions is the right answer 0? When the balance is under $500,
i.e. (< balance 500). The “$4000-and-up” case is similarly easy: (>= balance 4000):

(define (bank-interest-rate balance)

; balance a number in dollars

(cond [(< balance 500) .00]

[... .01]

[... .02]

[(>= balance 4000) .03]

))

The other two cases are a little trickier. The $500-$1000 bracket should include all the
numbers that are at least 500, but strictly less than 1000, and the $1000-$4000 bracket
should include all the numbers that are at least 1000, but strictly less than 4000. This
calls for and:

15.5. ORDERING CASES IN A CONDITIONAL 217

(define (bank-interest-rate balance)

; balance a number in dollars

(cond [(< balance 500) .00]

[(and(>= balance 500)

(< balance 1000)) .01]

[(and(>= balance 1000)

(< balance 4000)) .02]

[(>= balance 4000) .03]

))

We should now be able to test the bank-interest-rate function, and if it works, un-
comment and test the bank-interest function.

15.5 Ordering cases in a conditional

The program could be written somewhat shorter and simpler by taking advantage of
the order in which DrRacket evaluates the cases of a conditional: it looks at the second
question only if the first wasn’t true, looks at the third only if the second wasn’t true,
etc. If the first question, (< balance 500), isn’t true, then we know that (>= balance

500) must be true, so we don’t need to ask it. This simplifies the second question to (<

balance 1000). Likewise, if this isn’t true, then (>= balance 1000) must be true, so
we can simplify the third question to (< balance 4000). If this in turn isn’t true, then
the fourth question (>= balance 4000) must be true, so we can simplify it to just else.
The result is
(define (bank-interest-rate balance)

; balance a number in dollars

(cond [(< balance 500) .00]

[(< balance 1000).01]

[(< balance 4000).02]

[else .03]

))

This sort of simplification isn’t always a good idea. In the original definition, the order
of the cases in the cond doesn’t matter: we could scramble them up, as in

(define (bank-interest-rate balance)

; balance a number in dollars

(cond [(and (>= balance 500)

(< balance 1000)) .01]

[(and (>= balance 1000)

(< balance 4000)) .02]

[(>= balance 4000) .03]

[(< balance 500) .00]

))

and the function would work just as well, although it might be slightly harder to read.
This is because the cases don’t overlap: there’s no possible value of balance for which two
different questions would be true, so it doesn’t matter in what order we ask the questions.
By looking at any one of the cases, you can tell when it will happen.

However, in the “simplified” version above, the second question includes the first
question, the third includes the second, and the fourth includes everything. As a result, if

218 CHAPTER 15. CONDITIONALS

you scrambled the order of the cases in the “simplified” definition, you would get wrong
answers. And to understand when any one of the cases will happen, you need to read
not only that case but all the ones before it as well. This is no big deal for this program,
which has only four cases, but imagine a program with dozens or hundreds of cases, added
by several programmers over the course of weeks or months: to understand under what
circumstances the 46th case will happen, you would have to read the first 45 as well!

I generally recommend writing the questions of a conditional so that no two overlap,
and each one completely describes the situations in which it will happen. I have three
exceptions to this rule:

• if one of the cases really is best described as “anything else”, then I would use an
else as the last question;

• if there are only two cases, I would use else as the second question rather than
repeating the whole first question with a not around it (or, better, use another
Racket construct named if instead of cond — look it up!); and

• if I’m extremely concerned about the speed of the program, I’ll take full advantage
of the order of the questions to simplify the later ones, in order to save a few
microseconds.

Different teachers have different opinions on this: if your instructor prefers the version
that takes advantage of the order of questions, go ahead and do it that way.

Exercise 15.5.1 A carpet store needs a function to compute how much to charge its
customers. Carpeting costs $5/yard, but if you buy 100 yards or more, there’s a 10%
discount on the whole order, and if you buy 500 yards or more, the discount becomes 20%
on the whole order.

Develop a function carpet-price that takes in the number of yards of carpeting
and returns its total price.

Exercise 15.5.2 Develop a function named digital-thermometer that takes in a
temperature (in degrees Fahrenheit) and produces an image of the temperature as a num-
ber, colored either green (below 99◦), yellow (at least 99◦ but less than 101◦) or red (at
least 101◦).

For example,

(digital-thermometer 98.3)

98.3

(digital-thermometer 99.5)

99.5

(digital-thermometer 102.7)

102.7

Hint: To convert a number to a string, use number->string. However, if you try it
on a number like 98.6, you may get a fraction rather than a decimal. If you want it in
decimal form, first make it inexact, using exact->inexact.

Hint: Use an auxiliary function to choose the color.

Exercise 15.5.3 Develop a function named letter-grade that takes in a grade av-
erage on a 100-point scale and returns one of the strings "A", "B", "C", "D", or "F",
according to the rule

15.6. UNNECESSARY CONDITIONALS 219

• An average of 90 or better is an A;

• An average of at least 80 but less than 90 is a B;

• An average of at least 70 but less than 80 is a C;

• An average of at least 60 but less than 70 is a D;

• An average of less than 60 is an F.

Exercise 15.5.4 Three candidates (Anne, Bob, and Charlie) are running for mayor of
Racketville, which, by court order, has a new computerized voting system. Develop a

function named who-won that takes in three numbers (the number of votes for Anne, the
number of votes for Bob, and the number of votes for Charlie, respectively) and returns
a string indicating who won – either "Anne", "Bob", or "Charlie". If two or more
candidates tied for first place, the function should return "tie".

Exercise 15.5.5 Develop a function named 4-votes->winner that takes in four strings
representing votes, and returns the name of the winner (or "tie" if there was a tie). You
may assume that the only candidates in the race are "Anne", "Bob", and "Charlie" (this
makes it much easier!)

Hint: This should be short and simple if you re-use previously-defined functions.

Exercise 15.5.6 Some credit card companies give you a refund at the end of the year
depending on how much you’ve used the card. Imagine a company that pays back

• 0.25% of the first $500 you charge;

• 0.50% of the next $1000 you charge (i.e. anything you charge between $500 and
$1500);

• 0.75% of the next $1000 you charge (i.e. between $1500 and $2500);

• 1% of anything you charge over $2500.

For example, a customer who charged $400 would get back $1.00, which is 0.25% of $400.
A customer who charged $1400 would get back 0.25% of the first $500 (making $1.25),
plus 0.50% of the next $900 (i.e. $4.50), for a total refund of $5.75.

Develop a function card-refund to determine how much refund will be paid to a
customer who has charged a specified amount on the card.

15.6 Unnecessary conditionals

The above recipe may seem to contradict the way we wrote functions in Chapter 13: in
most of the problems in that chapter, there were two or more categories of input, and two
categories of output (true and false), yet we didn’t need any conditionals. For example,
recall Worked Exercise 13.3.1, whose definition was

(define (may-drive? age)

; age a number

; 16 a fixed number we’re likely to need

(>= age 16)

)

220 CHAPTER 15. CONDITIONALS

In fact, we could have written this one using a conditional too:

(define (may-drive? age)

; age a number

; 16 a fixed number we’re likely to need

(cond [(>= age 16) true]

[(< age 16) false]

))

and it would work perfectly well, but it’s longer and more complicated than the previous
version. Indeed, every function in Chapter 13 could have been written using a conditional,
and would be longer and more complicated that way.

Rule of thumb: Functions that return Boolean can usually be written more simply
without a conditional than with one.

Since string=?, =, and so on return Booleans, their results can be compared using
boolean=?:

(define (reply greeting)

; greeting a string

(cond [(boolean=? (string=? greeting "good morning") true)

"I need coffee"]

[(boolean=? (string=? greeting "good afternoon") true)

"I need a nap"]

[(boolean=? (string=? greeting "good night") true)

"bedtime!"]

))

This works perfectly well, and passes all its test cases, but it’s longer and more compli-
cated than necessary. Likewise

(define (not-teenager? age)

; age a number

(boolean=? (and (>= age 13) (< age 20)) false)

)

could be more briefly written as

(define (not-teenager? age)

; age a number

(not (and (>= age 13) (< age 20)))

)

or as

(define (not-teenager? age)

; age a number

(or (< age 13) (>= age 20)))

)

Rule of thumb: If you’re using boolean=?, you’re probably making things longer
and more complicated than they need to be.

(The only time I can imagine needing boolean=? is when I have two Boolean expres-
sions, and I don’t care whether either one is true or false as long as they match. This
isn’t very common.)

15.7. NESTED CONDITIONALS 221

For another example, recall Exercise 13.7.1, which we wrote as follows:

(define (18-to-25? age)

; 18 a fixed number we’ll need

; 25 another fixed number we’ll need

; (>= age 18) a Boolean

; (<= age 25) a Boolean

(and (>= age 18)

(<= age 25))

)

We could have written this using a conditional:

(define (18-to-25? age)

; age a number

; 18 a fixed number we’ll need

; 25 another fixed number we’ll need

; (>= age 18) a Boolean

; (<= age 25) a Boolean

(cond [(>= age 18) (<= age 25)]

[(< age 18) false])

)

or even (putting one conditional inside another)

(define (18-to-25? age)

; age a number

; 18 a fixed number we’ll need

; 25 another fixed number we’ll need

; (>= age 18) a Boolean

; (<= age 25) a Boolean

(cond [(>= age 18)(cond [(<= age 25) true]

[(> age 25) false])

[(< age 18) false])

)

but again, these definitions are longer and more complicated than the one that doesn’t
use a conditional.

15.7 Nested conditionals

Yes, you can put one conditional inside another. The “answer” part of each cond-clause
is allowed to be any expression, and a cond is an expression, so why not? In the example
above, it wasn’t necessary, and even made the program longer and harder to understand.
But there are situations in which nested conditionals are the most natural way to solve a
problem.

Worked Exercise 15.7.1 Imagine that you work for a company that sells clothes over
the Internet: a Web page has a menu from which customers can choose which item of
clothing, and which color, they’re interested in. For simplicity, let’s suppose there are
only three items of clothing: pants, shirt, and shoes. The pants are available in black
or navy; the shirt is available in white or pink; and the shoes are available in pink,
burgundy, or navy. Your company photographer has given you pictures of all seven of

222 CHAPTER 15. CONDITIONALS

these items, which you’ve copied and pasted into DrRacket under the variable names
black-pants, navy-pants, pink-shirt, white-shirt, pink-shoes, burgundy-shoes,
and navy-shoes.

Develop a function show-clothing that takes in two strings representing the item
of clothing and the color, and returns a picture of the item of clothing. If the requested
combination of item and color doesn’t exist, it should return an appropriate error message.

Solution: The contract is clearly
; show-clothing: string(item) string(color) -> image

But wait: sometimes the function is supposed to return an error message instead! There
are at least two ways we can handle this: we could either build an image of the error
message (using the text function), or we could change the contract to return “image or
string”. For now, we’ll opt for consistency and always return an image. (In Chapter 19,
we’ll see another way to handle this.)

There are seven legal examples, and to be really confident we should test them all:
(check-expect (show-clothing "pants" "black") black-pants)

(check-expect (show-clothing "pants" "navy") navy-pants)

(check-expect (show-clothing "shirt" "white") white-shirt)

(check-expect (show-clothing "shirt" "pink") pink-shirt)

(check-expect (show-clothing "shoes" "pink") pink-shoes)

(check-expect (show-clothing "shoes" "burgundy") burgundy-shoes)

(check-expect (show-clothing "shoes" "navy") navy-shoes)

In addition, we should have some illegal examples to test the handling of nonexistent
items, unrecognized colors, etc.
(check-expect (show-clothing "hat" "black")

(text "What’s a hat?" 12 "red"))

(check-expect (show-clothing "pants" "burgundy")

(text "We don’t have pants in burgundy" 12 "red"))

The skeleton is easy:
(define (show-clothing item color)

...)

The inventory is fairly straightforward too:
(define (show-clothing item color)

; item string

; color string

; "pants" string

; "shirt" string

; "shoes" string

; "black" string

; "navy" string

; "white" string

; "pink" string

; "burgundy" string

...)

(Writing an inventory entry for every one of these literal strings is really boring, and
if it’s OK with your instructor, feel free to skip this.) We may also need some other
expressions in order to build the error messages, but we’ll come back to that later.

We know that item is supposed to be either "pants", "shirt", or "shoes" (or “any-
thing else”), so the body of the function will need a conditional with four cases:

15.7. NESTED CONDITIONALS 223

(define (show-clothing item color)

; item string

; color string

(cond [(string=? item "pants") ...]

[(string=? item "shirt") ...]

[(string=? item "shoes") ...]

[else ...])

)

If the item is in fact "pants", the color can be either "black", "navy", or “anything
else”, which can be most naturally represented by another cond inside the first one:

(define (show-clothing item color)

; item string

; color string

(cond [(string=? item "pants")

(cond [(string=? color "black") ...]

[(string=? color "navy") ...]

[else ...])]

[(string=? item "shirt") ...]

[(string=? item "shoes") ...]

[else ...])

)

We can do the same thing for "shirt" and "shoes":

(define (show-clothing item color)

; item string

; color string

(cond [(string=? item "pants")

(cond [(string=? color "black") ...]

[(string=? color "navy") ...]

[else ...])]

[(string=? item "shirt")

(cond [(string=? color "pink") ...]

[(string=? color "white") ...]

[else ...])]

[(string=? item "shoes")

(cond [(string=? color "pink") ...]

[(string=? color "burgundy") ...]

[(string=? color "navy") ...]

[else ...])]

[else ...])

)

224 CHAPTER 15. CONDITIONALS

After figuring out all of these conditions, the legal answers are easy:

(define (show-clothing item color)

; item string

; color string

(cond [(string=? item "pants")

(cond [(string=? color "black") black-pants]

[(string=? color "navy") navy-pants]

[else ...])]

[(string=? item "shirt")

(cond [(string=? color "pink") pink-shirt]

[(string=? color "white") white-shirt]

[else ...])]

[(string=? item "shoes")

(cond [(string=? color "pink") pink-shoes]

[(string=? color "burgundy") burgundy-shoes]

[(string=? color "navy") navy-shoes]

[else ...])]

[else ...])

)

All that remains is constructing the error messages, which we can do using text and
string-append. But this function definition is getting pretty long already; since building
these error messages really is a completely different sort of job from what we’ve been
doing so far, let’s have it done by auxiliary functions. Here’s one to handle unrecognized
items:

; bad-item : string(item) -> image

(define (bad-item item)

; item string

; (string-append "What’s a " item "?") string

; 12 number (font size)

; "red" string (text color)

(text (string-append "What’s a " item "?") 12 "red")

)

"Examples of bad-item:"

(check-expect (bad-item "hat") (text) "What’s a hat?" 12 "red")

(check-expect (bad-item "belt") (text) "What’s a belt?" 12 "red")

The analogous function for unrecognized colors is left for you to do; see Exercise 15.7.2
below.

15.8. DECISIONS AMONG DATA TYPES 225

The final definition of show-clothing looks like
(define (show-clothing item color)

; item string

; color string

(cond [(string=? item "pants")

(cond [(string=? color "black") black-pants]

[(string=? color "navy") navy-pants]

[else (bad-color item color)])]

[(string=? item "shirt")

(cond [(string=? color "pink") pink-shirt]

[(string=? color "white") white-shirt]

[else (bad-color item color)])]

[(string=? item "shoes")

(cond [(string=? color "pink") pink-shoes]

[(string=? color "burgundy") burgundy-shoes]

[(string=? color "navy") navy-shoes]

[else (bad-color item color)])]

[else (bad-item item)])

)

Exercise 15.7.2 Write the bad-color function needed in the above example.

Exercise 15.7.3 Develop a function make-shape that takes in three strings: a shape
(either "circle" or "triangle"), a size (either "small", "medium", or "large"), and
a color (any color that DrRacket recognizes), and produces an appropriate image.

Note: Make sure that a “medium circle” and a “medium triangle” are about the same
size.

15.8 Decisions among data types

Most the functions we’ve written so far have expected one specific type of input, and
produced one specific type of output — number, string, image, boolean, etc. But some-
times a function needs to be able to handle input of several different types. We’ll see more
useful applications of this ability in the next few chapters, but for now simply imagine
a function that takes in a number, which a confused user mistakenly puts in quotation
marks. The user would get an unfriendly error message like
+: expects type <number> as 1st argument, given “4”; other arguments were: 3
It would be really nice if our program could figure out that by "4" the user probably
meant the number 4. Even if we didn’t want to go that far, or if there were nothing rea-
sonable our program could do with the incorrect input, it would be nice if our program
could produce a friendlier message like
This program expects a number, like 3. You typed a quoted string, “4”.
To do this, our program would need to recognize that the input was a string rather than
a number as expected.

The ability to make decisions based on the types of our inputs (which computer
scientists call polymorphism) will be useful in a number of ways. In Chapter 19 we’ll

226 CHAPTER 15. CONDITIONALS

see how to produce friendly error messages like the above. But first, how do we detect
different types?

Recall from Chapter 13 that Racket has built-in type predicates, functions that take in
any type of input (including types you haven’t seen yet) and return either true or false
depending on whether the input is of that particular type. For example,

; number? : anything -> boolean

; image? : anything -> boolean

; string? : anything -> boolean

; boolean? : anything -> boolean

; integer? : anything -> boolean

...

With these functions in hand, and the decision-making ability provided by cond, one
can easily write functions that operate differently on different types of inputs.

Worked Exercise 15.8.1 Develop a function classify that tells what type its in-
put is, by returning one of the strings "image", "string", "number", or "other" as
appropriate.

(The only “other” type you’ve seen so far is boolean, but we’ll see more in the next
few chapters.)

Solution: The contract is

; classify : anything -> string

In the data analysis step, we observe that not just any string can be produced; the
result is always one of four choices, so a more informative contract would be
; classify : anything -> string

; ("image", "string", "number", or "other")

For that matter, the input is indeed “anything”, but we’re interested in which of four
categories it falls into (image, string, number, or anything else), so we could even write

; classify : anything (image, string, number, or anything else) ->

; string ("image", "string", "number", or "other")

(Again, we could write an inventory template for this, but we don’t expect to be writing
lots of functions that divide the world up in this particular way, so we won’t bother.)

Since the input and output data types each fall into four categories, there should be
at least four examples:

"Examples of classify:"

(check-expect (classify (circle 5 "solid" "green")) "image")

(check-expect (classify "hello there") "string")

(check-expect (classify 74) "number")

(check-expect (classify true) "other")

The skeleton is simple:

(define (classify thing)

...)

15.8. DECISIONS AMONG DATA TYPES 227

For the inventory, we normally start by listing parameters and labeling each one with
its type. In this case, we don’t know what data type thing is.

(define (classify thing)

; thing anything

...)

However, we know that there are four categories, both of input and of output, so we
can reasonably guess that the body of the function will involve a cond with four clauses:

(define (classify thing)

; thing anything

(cond [... ...]

[... ...]

[... ...]

[... ...]

)

)

The next step in writing a function involving conditionals is normally to fill in either
all the questions or all the answers, whichever is easier. We know that the answers are
"image", "string", and so on, so we can fill them in easily:

(define (classify thing)

; thing anything

(cond [... "image"]

[... "string"]

[... "number"]

[... "other"]

)

)

We still need to fill in the questions. The only expression we have available to work with
is the parameter thing, so we must ask questions about it. Under what circumstances is
the right answer "image"? Obviously, when thing is an image. Conveniently, the image?
function tests this. We can test the other types similarly.

(define (classify thing)

; thing anything

(cond [(image? thing) "image"]

[(string? thing) "string"]

[(number? thing) "number"]

[else "other"]

)

)

Note the else in the last clause, which catches any input that hasn’t matched any of
the previous criteria.

Exercise 15.8.2 Define a function named size that takes in a number, a string, or
an image, and returns “how big it is”. For a number, this means the absolute value of

228 CHAPTER 15. CONDITIONALS

the number. For a string, it means the length of the string. For an image, it means the
number of pixels, i.e. the width times the height.

Exercise 15.8.3 Define a function named big? that takes in either a number or a
string, and tells whether the argument is “big”. What does “big” mean? For numbers,
let’s say it means at least 1000, and for strings, let’s say it’s any string of length 10 or
more.

Hint: The function needs to handle two kinds of input, and for each kind of input there
are two possible answers and a “borderline”, so you’ll need six test cases.

Exercise 15.8.4 Develop a function named same? that takes in two arguments, each
of which is either a number or a string, and tells whether they’re “the same”. If one is a
number and the other a string, they’re obviously not “the same”; if both are numbers, you
can compare them using =; and if both are strings, you can compare them using string=?.

There’s actually a built-in function equal? that does this and more: it compares any
two objects, no matter what types, to tell whether they’re the same. You may not use it in
writing Exercise 15.8.4. You may use it in the rest of the book (except where I specifically
tell you not to), but in most cases it’s a better idea to use something more specific like
=, string=?, key=?, etc. because if you accidentally violate a contract and call one of
these on the wrong type of input, you’ll get an error message immediately rather than
the program going on as if everything were OK. Eventually it would probably produce
wrong answers, which are much harder to track down and fix than error messages.

Exercise 15.8.5 Develop a function named smart-add that takes two parameters and
adds them. The trick is that the parameters can be either numbers (like 17) or strings of
digits (like "17"); your function has to be able to handle both.

Hint: There are two parameters, each of which could be either of two types, so you’ll
need at least four examples.

15.9 Review of important words and concepts

Much of the power of computers comes from their ability to make decisions on their own,
using conditionals. A Racket conditional consists of the word cond and a sequence of
question/answer clauses: it evaluates each question in turn is evaluated, and as soon as
one comes out true, it returns the value of the corresponding answer. If none of the
questions evaluates to true, you get an error message. If you want to avoid this error
message, you can add another question/answer clause at the end, with the question being
simply the word else, which guarantees that if none of the previous answers was true,
this one will be. This is often used for error-handling.

In order to design functions that make decisions, we add some details to the skeleton
and body steps of the design recipe: we write the skeleton of a cond, with the right
number of cases, and then fill in the questions and the answers (I recommend either all
the questions, then all the answers, or vice versa, depending on which is easier).

Functions that return boolean can usually be written shorter and simpler without a
conditional than with one. Almost any time you use the boolean=? function, you could
have accomplished the same thing more simply without it.

15.10. REFERENCE 229

If a function has two or more inputs that each come in multiple categories, or if a
type has sub-categories of a specific category, often the most natural way to write the
function is with nested conditionals : the answer part of a conditional is itself another
whole conditional. However, if you find yourself doing this, there may be a shorter and
simpler way that doesn’t require nested conditionals.

People normally write Racket functions to take in particular types of arguments,
but you can also design a function to be more flexible, checking for itself what types
its arguments were and handling them appropriately. Every built-in Racket type has a
discriminator function, also known as a type predicate, whose name is the name of the
type, with a question-mark at the end (e.g. number?, string?, image?) which takes in
anything and tells whether or not it is of that type. You can use these discriminator
functions in a conditional to write polymorphic functions, functions that work differently
on different types of inputs.

15.10 Reference: Built-in functions for making deci-
sions

In this chapter, we’ve introduced one new function: equal?, which takes in two parameters
of any types and tells whether they’re the same. In general, it’s a good idea to use
something more specific, like string=? or =, because you’ll catch mistakes faster that
way.

This chapter also introduced the Syntax Rule 6, with the reserved words cond and
else. (A reserved word is a word whose meaning is built into the Racket language and
can’t be changed, but which isn’t called like a function. In particular, the reserved word
else can only appear as the last question in a cond.)

For the common case of a cond with only two cases, the second of which is else,
there’s a shorter form:

(if question answer-if-true answer-if-false)

Look it up in the Help Desk.

230 CHAPTER 15. CONDITIONALS

Chapter 16

New types and templates

16.1 Definition by choices

In Exercise 15.1.4, the contract said the input and output types were both string. This
is a bit over-simplified. In fact, the input is supposed to be one of three possibilities, and
the output will also be one of three possibilities.

In a sense, we’ve invented two new data types greeting and answer :

; A greeting is one of the strings "good morning",

; "good afternoon", or "good night"

; An answer is one of the strings "I need coffee",

; "I need a nap", or "bedtime!"

; reply : greeting -> answer

; test cases as before

; definition as before

This may not seem important yet, but thinking of the input and the output as new
data types actually helps us write the program. Since the input and output types are both
three-way choices, there must be at least three test cases — one for each possibility —
and the body of the method is probably a three-clause conditional. Furthermore, if we
ever write another function that takes in or returns the greeting or answer type, it too
will need at least three test cases, and its body will probably also involve a three-clause
conditional.

The notion of defining a new data type as one of a specified set of choices is called
“definition by choices”. The predefined Boolean type can also be thought of as defined
by choices: it has two choices, true and false, and as we’ve already seen, any function
that returns a Boolean should have at least two test cases, one returning true and one
returning false.

16.2 Inventories and templates

Suppose we were writing several functions that each took in a greeting, but all returned
different kinds of things. The examples and function definitions would all look pretty
similar: there would be three examples, using "good morning", "good afternoon", and

231

232 CHAPTER 16. NEW TYPES AND TEMPLATES

"good night" respectively, and the function definition would involve a conditional with
three clauses, each question comparing the parameter with a different one of these strings.

Since so much of the code is identical from one function to another, it might save
time to write the identical part once and for all. We’ll put it in #| ...|# comments, for
reasons that will become clear shortly.

#|

(check-expect (function-on-greeting "good morning") ...)

(check-expect (function-on-greeting "good afternoon") ...)

(check-expect (function-on-greeting "good night") ...)

(define (function-on-greeting greeting)

; greeting a greeting, as defined above

(cond [(string=? greeting "good morning") ...]

[(string=? greeting "good afternoon") ...]

[(string=? greeting "good night") ...]

))

|#

This isn’t a “real” function, obviously — the answers to the cond-clauses aren’t filled in,
and we don’t even know what types they should be, much less the right answers — but
rather a template for functions that take in a greeting. The template includes everything
we can say about the function and its test cases just by knowing the input data type.

Now, every time you want to write a real function that takes in that data type, simply
copy-and-paste everything between the #| and |#, change the name of the function, and
you’re 90% done.

Worked Exercise 16.2.1 Write a template for functions that operate on bank bal-
ances, as defined in Exercise 15.4.1.

Then use this template to write two functions: bank-interest-rate (as before)
and customer-type, which categorizes customers as "rich", "moderate", "poor", or
"college student" depending on the size of their bank account, using the same dividing
lines.

Solution: We’ll start by defining the new data type bank-balance:

; A bank-balance is a number, in one of the categories

; 0-500 (not including 500); 500-1000 (not including 1000);

; 1000-4000 (not including 4000); and 4000-up.

Obviously, there are four choices. The template looks like

16.2. INVENTORIES AND TEMPLATES 233

#|

(check-expect (function-on-bank-balance 200) ...)

(check-expect (function-on-bank-balance 500) ...)

(check-expect (function-on-bank-balance 800) ...)

(check-expect (function-on-bank-balance 1000) ...)

(check-expect (function-on-bank-balance 2000) ...)

(check-expect (function-on-bank-balance 4000) ...)

(check-expect (function-on-bank-balance 7500) ...)

(define (function-on-bank-balance balance)

; balance a bank-balance

(cond [(< balance 500) ...]

[(and (>= balance 500)

(< balance 1000) ...]

[(and (>= balance 1000)

(< balance 4000) ...]

[(>= balance 4000) ...]

))

|#

The contract for bank-interest is

; bank-interest-rate : bank-balance ->

number (either 0, 0.01, 0.02, or 0.03)

Next, copy-and-paste the template and change the name of the function:

(check-expect (bank-interest-rate 200) ...)

(check-expect (bank-interest-rate 500) ...)

(check-expect (bank-interest-rate 800) ...)

(check-expect (bank-interest-rate 1000) ...)

(check-expect (bank-interest-rate 2000) ...)

(check-expect (bank-interest-rate 4000) ...)

(check-expect (bank-interest-rate 7500) ...)

(define (bank-interest-rate balance)

; balance a bank-balance

(cond [(< balance 500) ...]

[(and (>= balance 500)

(< balance 1000) ...]

[(and (>= balance 1000)

(< balance 4000) ...]

[(>= balance 4000) ...]

))

Replace the ... in the examples with the right answers for the problem you’re trying
to solve:

234 CHAPTER 16. NEW TYPES AND TEMPLATES

(check-expect (bank-interest-rate 200) 0.00)

(check-expect (bank-interest-rate 500) 0.01)

(check-expect (bank-interest-rate 800) 0.01)

(check-expect (bank-interest-rate 1000) 0.02)

(check-expect (bank-interest-rate 2000) 0.02)

(check-expect (bank-interest-rate 4000) 0.03)

(check-expect (bank-interest-rate 7500) 0.03)

Finally, replace the ... in the cond-clause answers with the right answers for the
problem you’re trying to solve:

(define (bank-interest-rate balance)

; balance a bank-balance

(cond [(< balance 500) 0.00]

[(and (>= balance 500)

(< balance 1000) 0.01]

[(and (>= balance 1000)

(< balance 4000) 0.02]

[(>= balance 4000) 0.03]

))

This should pass all its tests.

Now for customer-type. The contract is

; customer-type : bank-balance -> string

; ("rich", "moderate", "poor", or "college student")

By copying the template and changing the function name, we get

(check-expect (customer-type 200) ...)

(check-expect (customer-type 500) ...)

(check-expect (customer-type 800) ...)

(check-expect (customer-type 1000) ...)

(check-expect (customer-type 2000) ...)

(check-expect (customer-type 4000) ...)

(check-expect (customer-type 7500) ...)

(define (customer-type balance)

; balance a bank-balance

(cond [(< balance 500) ...]

[(and (>= balance 500)

(< balance 1000) ...]

[(and (>= balance 1000)

(< balance 4000) ...]

[(>= balance 4000) ...]

))

We fill in the right answers in the examples:

16.3. OUTVENTORIES AND TEMPLATES 235

(check-expect (customer-type 200) "college student")

(check-expect (customer-type 500) "poor")

(check-expect (customer-type 800) "poor")

(check-expect (customer-type 1000) "moderate")

(check-expect (customer-type 2000) "moderate")

(check-expect (customer-type 4000) "rich")

(check-expect (customer-type 7500) "rich")

and then in the body of the function:

(define (customer-type balance)

; balance a bank-balance

(cond [(< balance 500) "college student"]

[(and (>= balance 500)

(< balance 1000) "poor"]

[(and (>= balance 1000)

(< balance 4000) "moderate"]

[(>= balance 4000) "rich"]

))

This should pass all its test cases.

16.3 Outventories and templates

Likewise, suppose we were writing several functions that each returned an answer. They
would probably all look like
#|

(check-expect (function-returning-answer ...) "I need coffee")

(check-expect (function-returning-answer ...) "I need a nap")

(check-expect (function-returning-answer ...) "bedtime!")

(define (function-returning-answer whatever)

(cond [... "I need coffee"]

[... "I need a nap"]

[... "bedtime!"]

))

|#

Again, this obviously isn’t a “real function”, since this time the questions aren’t filled in;
it’s only a template for functions that return a result of a particular type. It doesn’t have
an inventory, since we don’t even know what type the input is, but it has what we might
call an “outventory”: the expressions likely to be needed to construct the right kind of
answer.

Whereas an “inventory” answers the question “what am I given, and what can I do
with it?”, an “outventory” answers the question “what do I need to produce, and how can
I produce it?”. To use the cooking analogy, the “outventory” for a batch of cookies would
involve observing that the last step of the process is baking, so we’d better find a cookie
sheet and preheat the oven. Just as one can write a template based on an inventory, one
can also write a template based on an outventory.

236 CHAPTER 16. NEW TYPES AND TEMPLATES

When you’re writing a real function, you may have to choose between a template based
on the input type and one based on the output type. In general, use the more complicated
one. If the input type is more complicated than the output type, its template will be
more detailed so you’ll have less work left to do yourself. On the other hand, if the output
type is more complicated than the input type (which happens less often), you should use
an output-based template because it’ll do more of the work for you.

16.4 Else and definition by choices

When we introduced an else case into Exercise 15.1.4, we were effectively changing the
contract and data analysis: the function no longer took in one of three specific strings,
but rather those three or “any other string”. In other words, the type definitions became
something like

; A safe-greeting is one of four possibilities: "good morning",

; "good afternoon", "good evening", or any other string.

; A safe-answer is one of four possibilities: "I need coffee",

; "I need a nap", "bedtime!", or "huh?".

Technically, we could write the contract as

; replay : string -> safe-answer

because the function now accepts any string, but it’s more useful to think of it as

; reply : safe-greeting -> safe-answer

since safe-greeting ’s four possibilities tell us how to choose test cases: we need a "good

morning", a "good afternoon", a "good evening", and some other string. The four
possibilities of the input type also tell us how to write the body of the function: a four-
way conditional, checking whether the input is "good morning", "good afternoon",
"good evening", or any other string (which we can handle naturally using else); we
need only to fill in the answers.

Alternatively, we could use the four cases of the result type safe-answer to tell us
that we’ll need four test cases — one returning each of the four legal answers. The
outventory gives us a conditional with four clauses, with answers "I need coffee", "I
need a nap", "bedtime!", and "huh?"; we need only to fill in the questions.

16.5 A bigger, better design recipe

At this point I often find that students get confused between designing a function and
designing a data type. Indeed, designing a function often requires that you design one
or more data types first. The recipe in Figure 16.5 starts with the difference between
function and data type, and then gives a series of steps for each one.

Exercise 16.5.1 Re-do some of the problems from Chapter 15 in this style.

16.6 Review of important words and concepts

When we write a function that makes decisions, it often helps to think of the input and/or
output type as a new data type defined by choices. This helps us choose test cases, and
helps again in getting from a function skeleton to a complete function body.

16.6. REVIEW 237

Figure 16.1: Design recipe, with definition by choices
Are you defining a function or a type?

Functions are analogous to verbs
in human languages: they represent
actions that happen to particular
things (the arguments) at a partic-
ular time.
For example, + and beside

are predefined functions, while
checkerboard2 and cube are
user-defined functions.

Data types are like improper nouns (e.g. “com-
puter”, “student”, “program”) in human lan-
guages: they represent a kind of thing. Racket’s
built-in data types include “number”, “boolean”,
“string”, “image”, etc. and you can define others
like “bank-balance” and “letter-grade”.
A data type is not “called” at any particular time
on any particular arguments, and it doesn’t “re-
turn” a result; it just is.

Write a contract (and perhaps a
purpose statement)

Identify the choices: how many distinct cate-
gories or values are there, and how can you detect
each one? Are there borderlines to worry about?

Write examples of function calls,
with correct answers, e.g. using
check-expect. If you have a tem-
plate for the input or output data
type, use it as a starting point for
the examples, skeleton and inven-
tory.

Write examples of the new data type, one for
each category. You don’t need “correct answers”,
since the examples are the “correct answers”.
If your data type consists of sub-ranges, make
sure to include examples at the boundaries.

Write a function skeleton and in-
ventory. If you have a template for
the input or output data type, use
it as a starting point.

If you expect to write more than one function
taking in the new type, write an inventory

template.
If you expect to write more than one function
returning the new type, write an outventory

template.
Fill in the function body. If it
isn’t obvious how to put together
the pieces to get a right answer, try
an inventory with values first.
Proofread for errors that you can
spot yourself
Check Syntax for syntax errors
that the computer can spot
Test the program to make sure it
produces correct answers

238 CHAPTER 16. NEW TYPES AND TEMPLATES

If we expect to be writing several functions with the same input type or the same
output type, it may save us time to write a function template: a function skeleton, with
an inventory and/or outventory, but no actual code. A template should say as much
as you can say about the function by knowing only its input and output types, but not
knowing what specific problem it’s supposed to solve. Once you’ve written one, you can
copy-and-paste it as a starting point for every function you need to write that has that
input type or that output type.

16.7 Reference

No new functions or syntax rules were introduced in this chapter.

Chapter 17

Animations that make
decisions

17.1 String decisions

Worked Exercise 17.1.1 Develop an animation of a simple traffic light. It should
initially show a green disk; after 5 seconds, it should change to yellow; after another 5
seconds, to red; after another 5 seconds, back to green, and so on.

Solution: The first step in writing an animation is deciding what handlers we’ll need.
This problem doesn’t mention the mouse or the keyboard, but does mention regularly-
scheduled events, so we’ll need a tick handler and a draw handler. And as usual, it’s a
good idea to have a check-with clause.

The next step is choosing an appropriate data type for the model. The model repre-
sents the current state of the animation, and every 5 seconds we’ll need to make a decision
to choose the next state of the model.

There are several different data types we could use for this animation, and we’ll
compare them in Exercise 17.1.4. For now, let’s say our model is a string representing
the current color. There are three possible values of the model — "green", "yellow",
and "red" — so we could formalize this with the definition by choices

; A light-color is any of the strings "green", "yellow", or "red".

The next step in designing a new data type is to write down some examples: in our
case, they’re obviously "green", "yellow", and "red".

We might need to write several functions involving this type, so we’ll write an inventory
template:

239

240 CHAPTER 17. ANIMATIONS THAT MAKE DECISIONS

#|

(check-expect (function-on-light-color "green") ...)

(check-expect (function-on-light-color "yellow") ...)

(check-expect (function-on-light-color "red") ...)

(define (function-on-light-color c)

(cond [(string=? c "green") ...]

[(string=? c "yellow") ...]

[(string=? c "red") ...]

))

|#

and an “outventory” template:

#|

(check-expect (function-returning-light-color ...) "green")

(check-expect (function-returning-light-color ...) "yellow")

(check-expect (function-returning-light-color ...) "red")

(define (function-returning-light-color c)

(cond [... "green"]

[... "yellow"]

[... "red"]

))

|#

This animation changes every five seconds, so we need a tick handler. Its contract must
be model → model. Since “model” for our purposes means “light-color”, our contract
will look like

; change-light : light-color -> light-color

This function both takes in and returns a “light-color”, so we can use both the input-
based and output-based templates for “light-color” to help us write the function.

The input and output templates agree that we need at least three examples. The
input template says there should be one taking in each of the three colors, and the output
template says there should be one returning each of the three colors. Fortunately, we can
meet both of these requirements as follows:

(check-expect (change-light "green") "yellow")

(check-expect (change-light "yellow") "red")

(check-expect (change-light "red") "green")

The inventory template says

(define (change-light color)

; color light-color

(cond [(string=? color "green") ...]

[(string=? color "yellow") ...]

[(string=? color "red") ...]

))

while the output template says each of the three colors should appear in the answer part
of a cond-clause. We can satisfy both of them as follows:

17.1. STRING DECISIONS 241

(define (change-light color)

; color light-color

(cond [(string=? color "green") "yellow"]

[(string=? color "yellow") "red"]

[(string=? color "red") "green"]

)

)

and the definition is finished (once it passes its tests).
By the way, if we had decided to start with the output-based template rather than

the input-based template, we would have gotten

(define (change-light color)

; color light-color

(cond [... "green"]

[... "yellow"]

[... "red"]

))

and then filled in the appropriate questions to get to each answer; the final result would
be the same.

We still need a draw handler. Let’s name it show-light, since that’s what it does.
The contract of a draw handler is always something : model → image, and we’ve already
decided that “model” for our purposes means “light-color”, so our contract will be

show-light : light-color -> image

Since this function takes in a “light-color” parameter, the input template for “light-
color” should help us write it. Filling in the answers for the examples, we get
(check-expect (show-light "green") (circle 30 "solid" "green"))

(check-expect (show-light "yellow") (circle 30 "solid" "yellow"))

(check-expect (show-light "red") (circle 30 "solid" "red"))

For the skeleton and inventory, the template suggests

(define (show-light color)

; color light-color

(cond [(string=? color "green") ...]

[(string=? color "yellow") ...]

[(string=? color "red") ...]

))

but a look at the “right answers” in the examples shows that they all match a simple
pattern, so there’s an easier way:

(define (show-light color)

; color light-color

(circle 30 "solid" color)

)

This is not only shorter and simpler than doing a cond, but more flexible: the show-light
function will now work equally well on orange, purple, and pink lights, should we ever
decide to include those colors in the light-color data type.
Hint: Inventory templates and outventory templates give you good advice in writing
function definitions, but don’t follow them slavishly: sometimes there’s an easier way.

242 CHAPTER 17. ANIMATIONS THAT MAKE DECISIONS

We can now test the show-light function and, assuming it works, we’re done with
our draw handler.

The model is a string, so we’ll use (check-with string?). (If we wanted to be even
safer, we could write a light-color? function that checks whether its argument is not
only a string, but specifically either "red", "yellow", or "green". See Exercise 17.1.3.)
The time interval is obviously 5 seconds. As we The starting model must be either
"green", "yellow", or "red"; let’s start with "green". We can now run the animation
as follows:

(big-bang "green"

(check-with string?)

(on-draw show-light)

(on-tick change-light 5)

)

Exercise 17.1.2 Develop an animation that cycles among several pictures of your
choice, changing pictures every two seconds to produce a “slide show” effect.

Hint: If you use the same pictures as in Exercise 15.3.1, you can re-use a previously-
written function to do much of the work for you.

Exercise 17.1.3 Modify the change-light function from Exercise 17.1.1 so that when
the input is "red", it returns "purple". (It should now fail one of its test cases.) What
happens when you run the animation?

Develop a function light-color? that takes in anything and tells whether it is
one of the three values "red", "yellow", or "green".

Run the animation again with light-color? as the check-with handler. What
happens this time?

Hint: Be sure to test light-color? on all three legal light-colors, and on a string
that isn’t a light-color (e.g. "beluga"), and on a non-string (e.g. 7). And remember
the rule of thumb: functions that return a Boolean can usually be written more simply
without a conditional than with one. But you may need to take advantage of short-circuit
evaluation (remember section 13.8).

Exercise 17.1.4 Develop a traffic-light animation like Exercise 17.1.1, but using an
image as the model.

Develop a traffic-light animation like Exercise 17.1.1, but using a number as the
model (say, 1=green, 2=yellow, 3=red).

Discuss the advantages and disadvantages of each of these three choices.

Exercise 17.1.5 Develop an animation that cycles among three shapes — a green
circle, a yellow triangle, and a blue square — every time the mouse is moved or clicked.
Try to make all three shapes approximately the same size.

Exercise 17.1.6 Modify the animation of Exercise 17.1.1 so that it more nearly re-
sembles a real traffic light (in most of the U.S, anyway): it’ll have three bulbs arranged
vertically, of which the top one is either red or black; the middle one is either yellow or

17.1. STRING DECISIONS 243

black; and the bottom one is either green or black. At every moment, exactly one of the
three bulbs is “on”, and the other two are black.

Hint: You may find it helpful to write a helper function which, given a color, finds the
y-coordinate of the center of that color’s light. (They all have the same x-coordinate.)

Worked Exercise 17.1.7 Develop an animation that shows a red triangle for two
seconds, then a green triangle for two seconds, then a blue triangle for two seconds, and
then stops.

Solution: The first step in designing an animation is always deciding what handlers you
need. In this case, we obviously have to deal with time, so we need a tick handler. We
need to stop, so we need either a stop-when handler or a stop-with inside one of the
other handlers; we’ll discuss both options. We always need a draw handler, and we should
probably have a check-with clause.

So what should the model be? We have at least two plausible alternatives: an image
(the red, green, or blue triangle) or a string (either "red", "green", or "blue"). In either
case, we’ll have to make a decision based on the current model. We know how to make
decisions on images, but comparing strings is usually much more efficient, so we’ll choose
as our model a string restricted to these three choices.

244 CHAPTER 17. ANIMATIONS THAT MAKE DECISIONS

; A shape-color is one of the strings "red", "green", or "blue".

#|

(check-expect (function-on-shape-color "red") ...)

(check-expect (function-on-shape-color "green") ...)

(check-expect (function-on-shape-color "blue") ...)

(define (function-on-shape-color c)

(cond [(string=? c "red") ...]

[(string=? c "green") ...]

[(string=? c "blue") ...]

))

(check-expect (function-returning-shape-color ...) "red")

(check-expect (function-returning-shape-color ...) "green")

(check-expect (function-returning-shape-color ...) "blue")

(define (function-returning-shape-color ...)

(cond [... "red"]

[... "green"]

[... "blue"]

))

|#

As usual, we’ll need a draw handler to convert the model to an image. Assuming we
use stop-when to decide when to stop, we can now write contracts for all the handlers:

; draw handler show-triangle : shape-color -> image

; tick handler next-color : shape-color -> shape-color

; stop handler finished? : shape-color -> boolean

Let’s look at the finished? function first — the function that decides whether the
animation should stop yet. When should the animation stop? Two seconds after the blue
triangle appears. Which means the finished? function has to recognize whatever the
model is at that time.

So what is the model at that time? This isn’t obvious. It has to be a legal shape-color,
so it must be either "red", "green", or "blue". And whatever it is, as soon as the model
becomes that, the finished? function will return true and the animation will end. But
we don’t want the animation to end immediately on turning red, or green, or blue; we
want it to wait two seconds after the triangle turns blue.

So maybe stop-when isn’t the way to do this, and we should instead eliminate the
finished? function and call stop-with from inside one of the other handlers.

The show-triangle function is straightforward, and left as an exercise for the reader.
As for next-color, there are three possible examples: "red", "green", and "blue".

The next color after red is green, the next color after green is blue . . . but what is the
next color after blue? Two seconds after the triangle turns blue, the animation should
stop, leaving the triangle still blue. So . . .

(check-expect (next-color "red") "green")

(check-expect (next-color "green") "blue")

(check-expect (next-color "blue") (stop-with "blue"))

The input template gives us a three-clause conditional with answers to fill in. The
answers are straightforward from the above test cases, giving us

17.2. NUMERIC DECISIONS 245

(define (next-color old-color-name)

; old-color-name shape-color

(cond [(string=? old-color-name "red") "green"]

[(string=? old-color-name "green") "blue"]

[(string=? old-color-name "blue") (stop-with "blue")]

))

Once this is tested, you can run the animation by calling

(big-bang "red"

(check-with string?)

(on-draw show-triangle)

(on-tick next-color 2))

(To be even safer, we could write a shape-color? function, and use that instead of
string? in the check-with clause. This is left as an exercise for the reader.)

Exercise 17.1.8 Modify the animation of Exercise 17.1.7 to stop immediately after
turning blue.

Hint: I know of two ways to do this: one is similar to the above but calls stop-with in
different circumstances, and the other uses a stop-when handler instead of the stop-with
call in next-color. Try both.

Exercise 17.1.9 Modify your animation from exercise 17.1.2 so that each picture is
shown only once; after showing the last picture for two seconds, the animation ends.

17.2 Numeric decisions

Exercise 17.2.1 Modify your animation from Exercise 10.2.4 so that it only counts up
to 59, then starts over at 0.

Exercise 17.2.2 Write an animation that places a dot at the mouse location every
time the mouse is moved or clicked. The color of this dot should be red if the x coordinate
is more than the y coordinate, and green otherwise.

Hint: You may find that the answers in this conditional are two complex expressions,
exactly the same except for the color. You can make your function shorter and simpler
by moving the conditional inside this expression, so the answers in the conditional are
just color names.

Exercise 17.2.3 Write an animation like that of Exercise 8.5.3, but coloring each dot
either red, green, or blue, at random.

Hint: Try writing a helper function that returns one of the three color names at random.

Exercise 17.2.4 Write an animation a bit like Exercise 8.5.3 and a bit like Exer-
cise 17.2.2: at every time interval, it adds a dot at a random location, but the dot should
be red if x > y and green otherwise.

246 CHAPTER 17. ANIMATIONS THAT MAKE DECISIONS

Hint: Since the coordinates need to be generated randomly once, but used twice (once
for choosing color, and once for positioning the dot), write a helper function that takes
in the x-coordinate, y-coordinate, and previous image, and adds an appropriately-colored
dot at the specified location; call this function on the results of two random calls. This
function may in turn require another helper function that takes in the x and y coordinates
and returns the appropriate color.

Exercise 17.2.5 Modify the animation of Exercise 17.2.4 so each dot is green if it is
within a distance of 50 pixels of the center of the window, and red if it is beyond that
distance.

Exercise 17.2.6 Modify one of your previous animations by placing a rectangular “Quit”
button (a rectangle overlaid with the text “Quit”) near the bottom of the window. If the
user moves or clicks the mouse inside the button, stop the animation. (We’ll see in
chapter 18 how to respond only to mouse-clicks.)

Hint: You might want to write a helper function in-quit-button? which takes in
the x and y coordinates of the mouse and tells whether they represent a point inside the
rectangle where you put the “Quit” button.

17.3 Review of important words and concepts

Using conditionals inside the handlers of an animation allows the animations to do much
more interesting things. It’s not always clear what type to use as the model, as in
exercise 17.1.1: each possibility has advantages and disadvantages. That’s part of what
makes programming interesting.

17.4 Reference: New Functions

No new functions or syntax rules were introduced in this chapter.

Chapter 18

Of Mice and Keys

18.1 Mouse handlers

Recall that the contract for a mouse-handling function must be

; model(old) number(x) number(y) event -> model(new)

but we didn’t explain earlier what an “event” was. Guess what: it’s a string. Specifically,
it will always be one of the strings in Figure 18.1. And since you already know how to

Figure 18.1: Types of mouse events in DrRacket
"button-down" The user pressed the mouse button.
"button-up" The user released the mouse button.
"move" The user moved the mouse, with the mouse button not
pressed.
"drag" The user dragged the mouse while holding the mouse
button down.
"enter" The user moved the mouse into the animation window.
"leave" The user moved the mouse out of the animation window.

compare strings, you can write mouse handlers that respond differently to different user
actions.

The obvious data analysis for a mouse-handling function would say that the fourth
parameter is one of six choices. However, in practice we are usually only interested in
one or two of the six, ignoring all the rest; this allows us to considerably simplify our
functions. Here’s an example:

Worked Exercise 18.1.1 Write an animation that starts with a blank screen, and
adds a small dot at the mouse location every time the mouse button is pressed.

Solution: Our first question in writing an animation is always what handlers we’ll need.
There’s no mention of time or keyboard, but we’ll obviously need a mouse handler, and
as usual we’ll need a draw handler and a check-with handler.

The next question is what type the model should be. We’re adding dots, and may even-
tually have dozens or hundreds of them; this problem may remind you of problems 8.5.3

247

248 CHAPTER 18. OF MICE AND KEYS

and 17.2.3. As in those problems, the most reasonable model is an image showing all the
dots added so far. (In Chapter 22, we’ll see another way to handle this.)

Since the model is an image itself, and that image is all we want to show, we can use
show-it as our draw handler rather than writing our own.

The mouse handler has the usual contract:

; add-dot-on-mouse-down :

; image(old) number(x) number(y) string(event-type) -> image(new)

An event can be any of six possible strings, which would suggest an six-way definition
by choices. However, we’re only interested in the "button-down" event, so the fourth
parameter really falls into one of two categories: either "button-down" or “any other
string”; the input template looks like

#|

(check-expect (function-on-mouse-press "button-down") ...)

(check-expect (function-on-mouse-press "button-up") ...)

(define (function-on-mouse-press event-type)

(cond [(string=? event-type "button-down") ...]

[else ...]

))

|#

We won’t bother with an output template because we seldom need to produce a mouse
event.

A simple example starts with an empty-scene as the old image. Since there are two
categories for the fourth parameter (and no interesting “categories” for the other three),
we’ll need at least two examples:

(define WIDTH 300)

(define HEIGHT 200)

(define BACKGROUND (empty-scene WIDTH HEIGHT))

(define DOT (circle 3 "solid" "green"))

(check-expect (add-dot-on-mouse-down BACKGROUND 35 10 "button-down")

(place-image DOT 35 10 BACKGROUND))

(check-expect (add-dot-on-mouse-down BACKGROUND 35 10 "move")

BACKGROUND)

To make sure the program is actually adding a dot to the given image, we should also
try it with a different first argument.

(define OTHER-BACKGROUND

(ellipse 50 30 "solid" "red")

(check-expect (add-dot-on-mouse-down OTHER-BACKGROUND 35 10 "button-down")

(place-image DOT 35 10 OTHER-BACKGROUND))

(check-expect (add-dot-on-mouse-down OTHER-BACKGROUND 35 10 "button-up")

OTHER-BACKGROUND)

The skeleton and inventory are straightforward, if lengthy:

18.1. MOUSE HANDLERS 249

(define (add-dot-on-mouse-down old x y event-type)

; old an image

; x a number (the x coordinate)

; y a number (the y coordinate)

; event-type a string (either "button-down" or not)

; DOT a fixed image we’ll need

...)

Next, the template gives us

(define (add-dot-on-mouse-down old x y event-type)

; old an image

; x a number (the x coordinate)

; y a number (the y coordinate)

; event-type a string (either "button-down" or not)

; DOT a fixed image we’ll need

(cond [(string=? event-type "button-down") ...]

[else ...]

)

)

We still need to fill in the answers. The answer in the else case is simple: if the
event type is not "button-down", we shouldn’t do anything, and should simply return
the picture we were given. The answer in the "button-down" case is more complicated,
but we know the place-image function is useful for adding things to an existing picture.
It takes in the image to add (in our case, DOT), two numeric coordinates (obviously x and
y), and the picture to add to (in our case, old). The final definition is

(define (add-dot-on-mouse-down old x y event-type)

; old an image

; x a number (the x coordinate)

; y a number (the y coordinate)

; event-type a string (either "button-down" or not)

; DOT a fixed image we’ll need

(cond [(string=? event-type "button-down")

(place-image DOT x y old)]

[else old]

)

)

Once this works, we can try it in an animation as follows:

(big-bang BACKGROUND

(check-with image?)

(on-draw show-it)

(on-mouse add-dot-on-mouse-down))

Does it work the way you expect? Does it work as it should?

Exercise 18.1.2 Modify this animation so it adds a dot whenever the mouse button is
released, rather than whenever it is pressed. As a user, do you like this version better or
worse?

250 CHAPTER 18. OF MICE AND KEYS

Exercise 18.1.3 Modify this animation so it adds a dot whenever the mouse is dragged
(i.e. moved while holding the mouse button down). The result should be a sort of “sketch-
pad” program in which you can draw lines and curves with the mouse.

Exercise 18.1.4 Modify this animation so it adds a green dot whenever the mouse
button is pressed, and a red dot whenever the mouse button is released.

Hint: You’re now interested in two of the event types, so there are now three interesting
categories of input.

Exercise 18.1.5 Modify the animation of Exercise 17.2.6 so that it stops only if it gets
a "button-up" event inside the button.

Exercise 18.1.6 Modify exercise 18.1.1 so that rather than adding a pure-red dot, it
adds a drop of red dye at the mouse location. The dye adds a certain amount to the red
component of the picture, varying with distance from where it was dropped: for example,
if it added 100 to the red component right at the mouse location, it might add 50 to the
neighboring pixels, 33 to the pixels 2 units away, 25 to the pixels 3 units away, and so
on. The green and blue components of the picture should be unchanged.

Hint: Use map3-image.

18.2 Key handlers

Recall from chapter 6 that the contract for a key-handling function must be

; key-handler : model key-event -> model

Chapter 6 was fuzzy on what this “key” parameter is. In fact, it’s a string: if a user types
“w”, your key handler will be called with the string "w", and so on. There are also some
special keyboard keys, described in Figure 18.2. For convenience, DrRacket provides a
built-in function named key=? which is just like string=? except that it works only on
key-events (this can be useful because if you mistakenly call it on something that isn’t a
key-event at all, it’ll produce an error message immediately rather than letting you go on
with a mistake in your program).

Worked Exercise 18.2.1 Develop an animation of a picture (say, a calendar) that
moves left or right by 1 pixel when the user presses the left or right arrow key (respectively).
It should ignore all other keys.

Solution: What handlers do we need? We obviously need to respond to key presses, so
we need a key handler. We might or might not need a draw handler, depending on the
model type.

So what type should the model be? We’ve handled similar problems in the past in one
of two ways: an image, moving left with crop-left and moving right with beside and
rectangle, or a number, moving left with sub1 and moving right with add1. The latter
is more efficient, and has the advantage that we can move off the left-hand edge of the
screen and come back. So let’s use a number to represent the x-coordinate of the image.

This tells us that the key handler’s contract is

; handle-key : number(x) key-event -> number(new x)

18.2. KEY HANDLERS 251

Figure 18.2: Special keyboard keys
Key on keyboard key-event

left arrow "left"

right arrow "right"

down arrow "down"

up arrow "up"

clear (on number pad) "clear"

shift "shift"

control "control"

caps lock "capital"

num lock "num lock"

page up "prior"

page down "next"

end "end"

home "home"

help "help"

esc "escape"

F1, F2, etc. "f1", "f2", etc.
+ (on number pad) "add"

- (on number pad) "subtract"

∗ (on number pad) "multiply"

/ (on number pad) "divide"

enter (on number pad) "numpad-enter"

252 CHAPTER 18. OF MICE AND KEYS

And we’ll need a draw handler with contract

; calendar-at-x : number(x) -> image

The calendar-at-x function is exactly the same as we’ve used in several previous exer-
cises, so I’ll leave it to the reader. Now, about that handle-key function. . .

Data analysis: the first parameter is a number, about which there’s not much to say.
The second parameter could be a lot of different things, but the only categories we’re
interested in are "left", "right", and anything else (in which case we ignore it). We
could write explicit templates for this data type, but we don’t expect to be writing lots
of functions on it so we’ll skip that step.

We’ll need at least three examples: one with "left", one with "right", and one
key-event that’s not either of those: at least three examples in all. Note that if the key
isn’t "left" or "right", we ignore it by returning a new model that’s exactly the same
as the old one.
(check-expect (handle-key 10 "D") 10)

(check-expect (handle-key 10 "left") 9)

(check-expect (handle-key 10 "right") 11)

The skeleton and inventory are straightforward:

(define (handle-key x key)

; x number

; key key-event (i.e. string)

...)

Since there are three main categories ("left", "right", and anything else) of input,
we’ll need a cond with three clauses, with questions to check which one key is:

(define (handle-key x key)

; x number

; key key-event (i.e. string)

(cond [(key=? key "right") ...]

[(key=? key "left") ...]

[else ...]

)

)

Now that we’ve filled in all the questions, we need to fill in the answers. If key is
anything other than "left" or "right", this is easy: return the same x-coordinate we
were given, unchanged. In the "left" case, we want to subtract 1 from it, and in the
"right" case, we want to add 1 to it.

(define (handle-key x key)

; x number

; key key-event (i.e. string)

; "left" a fixed string we’ll need

; "right" another fixed string we’ll need

(cond [(key=? key "right") (+ x 1)]

[(key=? key "left") (- x 1)]

[else x]

)

)

18.3. KEY RELEASE 253

Once we’ve tested this and confirmed that the function works on its own, we can run
the animation as follows:

(define WIDTH 400)

(define HEIGHT 100)

(define (calendar-at-x x)

...

)

(big-bang (/ WIDTH 2)

(check-with number?)

(on-draw calendar-at-x)

(on-key handle-key))

Exercise 18.2.2 Modify the above animation so it also responds to some ordinary char-
acters: the picture moves 5 pixels to the right in response to the “>” key, and 5 pixels to
the left in response to the “<” key.

Exercise 18.2.3 Modify the above animation so it stops when the user types the letter
“q”.

Exercise 18.2.4 Develop an animation of a disk whose radius increases by 1 when the
user presses the up-arrow key, and decreases by 1 when the user presses the down-arrow
key.

Exercise 18.2.5 Develop an animation that allows the user to “type” into the ani-
mation window: every time the user types an ordinary character, that character is added
to the right-hand end of the animation window. The program will ignore arrow keys,
function keys, etc.

Hint: See Exercise 10.2.1 for some ideas, and use string-length to check whether the
key is an ordinary character (i.e. the key-event is a one-character string). Be sure to test
your program with arrow keys as well as ordinary characters.

18.3 Key release

Key handlers are triggered whenever the user presses a key. Sometimes you want some-
thing to happen when the user releases a key instead. To handle this situation, you can
install an on-release handler, which is just like an on-key handler except that it’s called
when the key is released rather than when it’s pressed. It has contract

; handle-release : model key-event -> model

The key-event tells you what key was just released.

Exercise 18.3.1 Modify some of the key-based animations from this chapter so they
trigger on key release rather than on key press.

Exercise 18.3.2 Develop an animation which shows the currently-pressed key for just
as long as you hold it down; then it disappears when you release it.

254 CHAPTER 18. OF MICE AND KEYS

18.4 Review of important words and concepts

A mouse handler takes in, as its fourth argument, a mouse-event, a string which is one of
six standard choices, indicating whether the mouse was pressed, released, moved, dragged,
etc.. A mouse handler, therefore, has as its body a cond with up to six cases, handling
each different kind of mouse action. More commonly, the handler will only test for one
or two kinds of mouse action, then use an else clause to handle “all the rest”.

A key handler takes in, as its second argument, a key-event, a string which is one
of several dozen standard choices: single-character strings for ordinary keys, and special
strings like "left", "help", etc.for special keys. As a convenience for writing key han-
dlers, there’s a built-in function key=? which works on only these strings, and produces
an error message on anything else. If your key handler needs to respond only to a short
list of specific keys, you can write it using a cond with a bunch of key=? questions.
If you need to handle “all special keys” in one way and “all ordinary keys” in another
way, you may need to do something cleverer, like use the fact that all ordinary keys are
one-character strings and all the special ones have longer names.

18.5 Reference: Built-in functions for mouse and key
handling

One new function was introduced in this chapter: key=?
We also introduced big-bang’s on-release clause, which works just like on-key ex-

cept that it’s triggered by releasing a key rather than pressing one.

Chapter 19

Handling errors

19.1 Error messages

Recall Exercise 11.6.1, in which you built pictures of houses. Once build-house was
working, one could then build a whole village by writing something like
(place-image (build-house ...) 30 200

(place-image (build-house ...) 105 220

(place-image (build-house ...) 130 60

(empty-scene 300 300))))

Now suppose some foolish user provides a width or height that isn’t a positive number:
you’ll get an unfriendly error message like
rectangle: expected <positive number> as second argument, given: -30 .
You’d like to make this friendlier by giving the user a more informative message like
House height must be > 0
instead. One way to do this would be for build-house to return that string as its value.

Of course, this violates the contract of build-house, which said it returns an image.
No problem: now that we know about mixed data types, we can change the contract:
; build-house : number number string -> image-or-string

We’ll need some extra examples to test that it produces the appropriate string in the
appropriate cases; I’ll leave that to you. Finally, the body of the function will have an
extra conditional somewhere:
...

(cond [(> height 0) ...]

[else "House height must be > 0."])
But now when you try to build a village as before, you get the error message
place-image: expected <image> as first argument, given “House height must be > 0”

What happened? The build-house function promised, in its original contract, to
return an image, and place-image only works on images so it relies on this promise.
Now we’ve broken that promise by returning a string instead, so other programs that use
build-house don’t work any more. You could fix this by putting a conditional everywhere
that build-house is used, to check whether it returned an image or a string, but that’s a
royal pain, and would make your build-house function much more inconvenient to use.

The problem is that normally, the build-house function returns an image, which is
what place-image expects; the only time build-house returns a string is when something
is very wrong and it doesn’t make sense to call place-image at all. So the ideal solution

255

256 CHAPTER 19. HANDLING ERRORS

would be for build-house to produce an error message and never return to place-image

at all. (In Java, C++, and some other languages, this is referred to as “throwing an
exception”.) There’s a built-in function named error that does this. It uses a new data
type that we haven’t seen before: symbol. We’ll discuss it more in Chapter 29, but for
now, think of it as a function name with an apostrophe in front (but not at the end!).

The error function has contract
; error : object ...-> nothing

; The first argument is normally a symbol: the name of the function

; that discovered the error, with an apostrophe in front.

; Any additional arguments go into the error message too.

; The function doesn’t return, but stops the program.

Worked Exercise 19.1.1 Modify the build-house function so that if the width or height
is less than 0, it produces an appropriate error message and doesn’t return to its caller.

Solution: We don’t need to change the contract, since if build-house returns at all, it
will still return an image. We need to add some additional test cases:

(build-house 0 100 "blue") "should produce an error message:"

"build-house: House width must be > 0."
(build-house 100 0 "red") "should produce an error message:"

"build-house: House height must be > 0."

The skeleton and inventory don’t change, but the body now looks like
...

(cond [(<= width 0)

(error ’build-house "House width must be > 0.")]
[(<= height 0)

(error ’build-house "House height must be > 0.")]
[else

...])

In testing this function, you should get an error message in response to the first “bad”
test case. Indeed, you’ll never even see the "should produce an error message:" be-
cause the program stops before getting that far in the definitions pane. Likewise, you’ll
never get to the second “bad” test case at all, so you don’t know whether it works cor-
rectly. One way to handle this is to test one “bad” test case, then once it works, comment
it out and run again to test the next one. A better way to handle it is described below.

19.2 Testing for errors

You’re already familiar with the check-expect, check-within, check-member-of, and
check-range functions, which compare the actual answer from some expression with what
you say it “should be”. There’s another function, check-error, which “expects” the
expression to crash with a specific error message, and checks that this actually happens.

; check-error : test-expression string -> nothing

; Checks whether evaluation of the test-expression produces

; the specified string as an error message

19.3. WRITING USER-PROOF FUNCTIONS 257

For example, the above “bad” test cases could be rewritten as
(check-error (build-house 0 100 "blue")

"build-house: House width must be > 0.")
(check-error (build-house 100 0 "red")

"build-house: House height must be > 0.")
and you don’t need to comment out either of them, since check-error catches the first

error, checks that it’s correct, and goes on to the next.
Note that check-error will complain if the expression produces the wrong error

message, or even if it doesn’t produce an error message: try

(check-error (error ’whatever "this error message")

"that error message")

(check-error (+ 3 4) "something went wrong")

19.3 Writing user-proof functions

Exercise 19.3.1 Modify the solution to Exercise 15.1.4 so that if the input to reply isn’t
any of the known strings, it produces an error message and never returns, rather than
returning "huh?".

Exercise 19.3.2 Modify the solution to Exercise 9.2.3 so that if the input is an empty
string, it produces the error message chop-first-char: can’t chop from an empty string
and never returns.

Exercise 19.3.3 Modify the solution to Exercise 9.2.4 so that if the input is an empty
string, it produces the error message first-char: can’t get first character of an empty
string and never returns.

Exercise 19.3.4 Develop a function safe-double that takes in a number, a string,
a boolean, or an image. If the input is a number, the function doubles it and returns the
result. If the input is anything else, the function produces an appropriate error message,
e.g.
safe-double: This function expects a number, like 3; you gave it a picture.
or (even cooler)
safe-double: This function expects a number, like 3; you gave it the quoted string “five”.

Hint: The second example calls for inserting the actual string you were given into your
error message. This can be done using string-append, or using the format function,
which I haven’t told you about yet. If you wish, look it up and rewrite the function that
way.

19.4 Review of important words and concepts

A function contract is a binding promise; if you don’t return the type of result you
said you would return, other people’s programs will crash, and they’ll blame you. But
sometimes things go wrong, and there is no value of the promised return type that would
be correct. In this case, often the best answer is to “throw an exception”: to bail out of
any functions that have called this one, and display an error message in the Interactions
pane. The error function does this job for you; the check-error function in the testing
teachpack helps you test it.

258 CHAPTER 19. HANDLING ERRORS

19.5 Reference: Built-in functions for signaling and
testing errors

In this chapter, we introduced two new built-in functions:

• error

• check-error

(Technically, check-error is a special form rather than a function.)
We also mentioned the format function, which you are invited to look up for yourself.

PART III

Definition by Parts

Chapter 20

Using Structures

20.1 The posn data type

Recall Exercise 18.2.1, in which a picture moved left or right in response to the left and
right arrow keys, respectively. An obvious modification would be to have it move up or
down in response to those arrow keys; this could be easily done by deciding that the
model represented the y coordinate rather than the x coordinate. So how would we
combine these two, allowing the picture to move up, down, left, and right in response to
the appropriate arrow keys?

This is harder than it seems at first. For the left/right animation, our model was the
x coordinate of the picture; for the up/down animation, it would be the y coordinate.
But if the picture is to move in both dimensions, the model needs to “remember” both
the x and y coordinates; it needs to hold two numbers at once.

Before explaining how to do this in Racket, let me give an analogy. Last week I went
to the grocery store. I like grapefruit, so I picked up a grapefruit in my hand. Then
another grapefruit in my other hand. Then another, which I sorta cradled in my elbow...
and another, and another, and a quart of milk, and a pound of butter. I made my way to
the checkout counter, dumped them all on the conveyor belt, paid for them, picked them
up, cradling them one by one between my arms, and carried them precariously out to the
car.

What’s wrong with this picture? Any sensible person would say “don’t carry them
all individually; put them in a bag!” It’s easier to carry one bag (which in turn holds
five grapefruit, a quart of milk, and a pound of butter) than to carry all those individual
items loose.

The same thing happens in computer programming: it’s frequently more convenient to
combine several pieces of information in a package than to deal with them all individually.
In particular, if we want an animation to “remember” both an x and a y coordinate (or, as
we’ll see in the next chapter, any two or more pieces of information), we need to package
them up into a single object that can be “the model”.

Since (x, y) coordinate pairs are so commonly used in computer programming, Dr-
Racket provides a built-in data type named posn (short for “position”) to represent
them. A posn can be thought of as a box with two compartments labelled x and y, each
of which can hold a number. There are four predefined functions involving posns:

261

262 CHAPTER 20. USING STRUCTURES

; make-posn : number(x) number(y) -> posn

; posn-x : posn -> number(x)

; posn-y : posn -> number(y)

; posn? : anything -> boolean

To create a posn, we call the make-posn function, telling it what numbers to put in
the x compartment and the y compartment: (make-posn 7 12), for example, creates and
returns a posn whose x coordinate is 7 and whose y coordinate is 12. For convenience in
playing with it, however, we’ll store it in a variable. Type the following into the DrRacket
Interactions pane:

(define where (make-posn 7 12))

where ; (make-posn 7 12)

Now we can use the posn-x function to retrieve the x coordinate, and posn-y to retrieve
the y coordinate:

(posn-x where) ; should be 7

(posn-y where) ; should be 12

This may not look very exciting — after all, we just put 7 and 12 into the x and y
compartments, so it’s not surprising that we can get 7 and 12 out of them. But in a
realistic program, the numbers would come from one place (perhaps the user providing
arguments to a function, or clicking a mouse) and be used in a completely different place
(such as a draw handler).

Practice Exercise 20.1.1 Create (in the Interactions pane) several variables contain-
ing different posns. Extract their x and y coordinates and make sure they are what you
expected.

Try the posn? function on these variables, and on some expressions that use make-posn
directly (e.g. (make-posn 13 5)), and on some things that aren’t posns.

Common beginner mistakes

I’ve seen a lot of students write things like

(make-posn here)

(posn-x 7)

(posn-y 12)

(do-something-with here)

I know exactly what the student was thinking: “First I create a posn named here,
then I say that its x coordinate is 7, and its y coordinate is 12, and then I can use it.”
Unfortunately, this isn’t the way the functions actually work: the make-posn function
does not define a new variable, and the posn-x and posn-y functions don’t change the x
and y coordinates of “the” posn.

To put it another way, the above example doesn’t obey the contracts. The make-posn

function does not take in a posn, much less a new variable name; it takes in two numbers,
and returns a posn. The posn-x and posn-y functions do not take in a number; they
take in a posn and return a number. A correct way to do what this student meant is

(define here (make-posn 7 12))

(do-something-with here)

or, more simply,

(do-something-with (make-posn 7 12))

20.2. DEFINITION BY PARTS 263

20.2 Definition by parts

In Chapter 16 we learned about “defining a new data type by choices,” and in Section 15.8
we saw more examples of definition by choices, of the form “a W is either an X, a Y, or
a Z,” where X, Y, and Z are previously-defined types.

Another way to define a new data type from previously-defined types is “definition
by parts,” and posns are our first example. A posn has two parts, both of which are
numbers (a previously-defined type). In Chapter 21, we’ll see more examples of definition
by parts.

20.3 Design recipe for functions involving posns

Suppose the contract for a function specifies that it takes in a posn.
The data analysis (at least for the posn parameter) is already done: a posn consists of

two numbers, x and y. (Although we may have more to say about the numbers themselves,
or about other parameters, or about the output type.)

The examples will require creating some posns on which to call the function. There
are two common ways to do this: either store the posn in a variable, as above, and use
the variable name as the function argument, or use a call to make-posn as the function
argument. Both are useful: the former if you’re going to use the same posn in several
different test cases, and the latter if you’re just making up one-shot examples.

(define where (make-posn 7 12))

(check-expect (function-on-posn where) ...)

(check-expect (function-on-posn (make-posn 19 5)) ...)

The skeleton and inventory will look familiar, with the addition of a few expressions
you’re likely to need in the body:

(define (function-on-posn the-posn)

; the-posn a posn

; (posn-x the-posn) a number (the x coordinate)

; (posn-y the-posn) another number (the y coordinate)

...)

So here’s a complete template for functions taking in a posn

#|

(define where (make-posn 7 12))

(check-expect (function-on-posn where) ...)

(check-expect (function-on-posn (make-posn 19 5)) ...)

(define (function-on-posn the-posn)

; the-posn a posn

; (posn-x the-posn) a number (the x coordinate)

; (posn-y the-posn) another number (the y coordinate)

...)

|#

In writing the body, you can now use the-posn directly, and (more commonly) you can
use the expressions (posn-x the-posn) and (posn-y the-posn) to refer to its individual
coordinates.

264 CHAPTER 20. USING STRUCTURES

20.4 Writing functions on posns

So now let’s write some actual functions involving posns.

Worked Exercise 20.4.1 Develop a function named right-of-100? that takes in a
posn representing a point on the screen, and tells whether it is to the right of the vertical
line x = 100. (For example, we might have a 200-pixel-wide window, and want to do one
thing for positions in the right half and something else for positions in the left half.)

(One might reasonably ask “This function only actually uses the x coordinate; why
does it take in a posn?” There are at least two answers. First, sometimes the program has
a posn handy, and doesn’t want to take the extra step of extracting the x coordinate from
it to pass to right-of-100?. Second and more important, what the function actually
uses is the function’s business, not the business of whoever is calling it. I shouldn’t have
to think about how to solve a problem myself in order to call a function whose job is
to solve that problem. I should instead give the function whatever information it might
need, and it will pick out the parts that it does need.)

Solution: The contract is

; right-of-100? : posn -> boolean

Data analysis: there’s not much to say about the output type, boolean, except that
it has two values, so we’ll need at least two examples. The input type is posn, which
consists of two numbers x and y. Of these, we’re only interested in the x coordinate for
this problem; in particular, we’re interested in how the x coordinate compares with 100.
It could be smaller, greater, or equal, so we’ll actually need three examples: one with
x < 100, one with x = 100, and one with x > 100. Note that although this function
doesn’t actually use the y coordinate, it still has to be there.

(check-expect (right-of-100? (make-posn 75 123)) false)

(check-expect (right-of-100? (make-posn 102 123)) true)

(check-expect (right-of-100? (make-posn 100 123)) false)

; borderline case

The template gives us most of the skeleton and inventory. And since it’s hard to imag-
ine solving this problem without using the number 100, we’ll put that into the inventory
too:
(define (right-of-100? the-posn)

; the-posn a posn

; (posn-x the-posn) a number (the x coordinate)

; (posn-y the-posn) another number (the y coordinate)

; 100 a fixed number we’ll need

...)

Body: We don’t actually need (posn-y where) in this problem, so we can drop it from
the inventory. Of the remaining available expressions, there’s a posn and two numbers.
The obvious question to ask is whether one of those numbers (the x coordinate) is larger
than the other (100):

(> (posn-x where) 100)

This expression returns a Boolean, so we could use it in a cond to make a decision. . . but
this function is supposed to return a Boolean, so a cond is probably overkill. In fact, if

20.4. WRITING FUNCTIONS ON POSNS 265

this expression is true, the function should return true, and if this expression is false, it
should return false, so we can just use this expression itself as the body:

(define (right-of-100? the-posn)

; the-posn a posn

; (posn-x the-posn) a number(x)

; (posn-y the-posn) a number(y)-------------------------------

; 100 a fixed number we know we’ll need

(> (posn-x the-posn) 100)

)

When we test this function on the three examples we wrote earlier, it works.

Common beginner mistakes

Many students think of a posn as the same thing as two numbers, so if I had written the
right-of-100? function above, they would call it in either of the following ways:

(right-of-100? (make-posn 75 112))

(right-of-100? 75 112)

In fact, only the first of these passes a syntax check in Racket. The right-of-100?

function defined above expects one parameter of type posn, not two parameters of type
number. Try each of the function calls above, and see what happens.

Exercises: writing functions on posns

Exercise 20.4.2 Develop a function named above-diagonal? that takes in a posn

representing a point on the screen, and tells whether it’s above the diagonal line x = y.

Hint: Remember that in computer graphics, positive y-values are usually down, so
this diagonal line is from the top-left to bottom-right of the window. Pick some specific
positions, described in (x, y) coordinates, and decide whether they’re above the diagonal
or not; then generalize this to a test that tells whether any posn is above the diagonal
(by looking at its x and y coordinates).

Worked Exercise 20.4.3 Write a function named distance-to-top-left that takes
in a posn representing a point on the screen, and computes the straight-line distance from
this point to the top-left corner (i.e. coordinates (0, 0)) of the screen, in pixels.

Hint: The formula for the distance is
√

x2 + y2.

Solution: Contract:

; distance-to-top-left: posn -> number

Data analysis: we already know what posn and number mean, and there are no sub-
categories of either one to worry about, only arithmetic.

For the examples, we’ll start with really easy ones we can do in our heads, then work
up to gradually more complicated ones that require a calculator. Note that since there
are square roots involved, the answers may be inexact, so we use check-within rather
than check-expect.

266 CHAPTER 20. USING STRUCTURES

(check-within (distance-to-top-left (make-posn 0 0)) 0 .1)

(check-within (distance-to-top-left (make-posn 6 0)) 6 .1)

(check-within (distance-to-top-left (make-posn 0 4.3)) 4.3 .1)

(check-within (distance-to-top-left (make-posn 3 4)) 5 .1)

; 32 + 42 = 9 + 16 = 25 = 52

(check-within (distance-to-top-left (make-posn 4 7)) 8.1 .1)

; 42 + 72 = 16 + 49 = 65 > 82

Skeleton and inventory (from the template):

(define (distance-to-top-left the-point)

; the-point a posn

; (posn-x the-point) a number (x)

; (posn-y the-point) a number (y)

...)

Body: We have two numeric expressions, (posn-x the-point) and
(posn-y the-point), which represent the x and y coordinates respectively. We need
to square each of them:

(define (distance-to-top-left the-point)

; the-point a posn

; (posn-x the-point) a number (x)

; (posn-y the-point) a number (y)

; (sqr (posn-x the-point)) a number (x2)

; (sqr (posn-y the-point)) a number (y2)
...)

Note that there’s getting to be a fuzzy line between inventory and body: we’ve added
these expressions in comments, because they’re not the final body but we know they’re a
step along the way.

Then we need to add those two squares:

(define (distance-to-top-left the-point)

; the-point a posn

; (posn-x the-point) a number (x)

; (posn-y the-point) a number (y)

; (sqr (posn-x the-point)) a number (x2)

; (sqr (posn-y the-point)) a number (y2)
; (+ (sqr (posn-x the-point))

; (sqr (posn-y the-point))) a number (x2 + y2)
...)

and finally square-root that, using sqrt:

20.4. WRITING FUNCTIONS ON POSNS 267

(define (distance-to-top-left the-point)

; the-point a posn

; (posn-x the-point) a number (x)

; (posn-y the-point) a number (y)

; (sqr (posn-x the-point)) a number (x2)

; (sqr (posn-y the-point)) a number (y2)
; (+ (sqr (posn-x the-point))

; (sqr (posn-y the-point))) a number (x2 + y2)
(sqrt (+ (sqr (posn-x the-point))

(sqr (posn-y the-point))))

)

We can now test this on the examples we wrote earlier, and it should work.

Of course, as you get more comfortable with writing functions on posns, you won’t
need to write down all these intermediate steps, and can simply write

(define (distance-to-top-left the-point)

(sqrt (+ (sqr (posn-x the-point))

(sqr (posn-y the-point))))

)

instead. But for now, I’d like you to use the inventory; discuss with your instructor when
you can get away with skipping it.

Exercise 20.4.4 Develop a function named coordinate-difference which takes in
a posn and gives back the difference between the coordinates (which tells you, in a sense,
how far the point is from the diagonal line x = y).

Hint: The answer should never be negative, so use the built-in abs (absolute-value)
function to ensure this.

Exercise 20.4.5 Develop a function named distance that takes in two posns (call
them here and there), and computes the straight-line distance between them. The for-
mula is

√

(xhere − xthere)2 + (yhere − ythere)2)

Hint: Since your function will have two parameters here and there, both of which are
posns, the skeleton will include

; here a posn

; there a posn

; (posn-x here) a number(x coordinate of here)

; (posn-y here) a number(y coordinate of here)

; (posn-x there) a number(x coordinate of there)

; (posn-y there) a number(y coordinate of there)

Exercise 20.4.6 Develop a function named posn=? that takes in two posns and tells
whether they’re the same (i.e. they have the same x coordinate and the same y coordinate).

268 CHAPTER 20. USING STRUCTURES

Hint: Be sure your examples include two posns that are the same, two that differ only
in x, two that differ only in y, and two that differ in both x and y coordinates.

You may not use the built-in equal? function to solve this problem.

Exercise 20.4.7 Develop a function named distance-to-origin that takes in either
a number or a posn and tells how far it is from the appropriate “origin”. For numbers,
that’s 0; for posns, that’s (make-posn 0 0).

20.5 Functions that return posns

Since posn is a data type, like number, image, etc., you can write functions that return a
posn too. Such functions will almost always use make-posn somewhere in the body. In
other words, the output template for posn looks like this:

#|

(check-expect (function-returning-posn ...) (make-posn 3 8))

...

(define (function-returning-posn ...)

(make-posn)

)

|#

Worked Exercise 20.5.1 Develop a function named diagonal-point that takes in
a number and returns a posn whose x and y coordinate are both that number.

Solution: Contract:

; diagonal-point : number -> posn

Data analysis: the input is a number, about which there’s not much to say. The
output is a posn, which has two numeric parts x and y.

Examples:

(check-expect (diagonal-point 0) (make-posn 0 0))

(check-expect (diagonal-point 3.7) (make-posn 3.7 3.7))

Skeleton/inventory (from the output template for posn):

(define (diagonal-point coord)

; coord a number

(make-posn)

)

At this point we’ll apply the “inventory with values” technique.

(define (diagonal-point coord)

; coord a number 3.7

; right answer a posn (make-posn 3.7 3.7)

(make-posn)

)

20.5. FUNCTIONS THAT RETURN POSNS 269

Body: The “inventory with values” makes this really easy: the only reasonable way we
can get (make-posn 3.7 3.7) from a parameter coord with the value 3.7 is (make-posn
coord coord), so that becomes the body:

(define (diagonal-point coord)

; coord a number 3.7

; right answer a posn (make-posn 3.7 3.7)

(make-posn coord coord)

)

We run the test cases on this definition, and it works.

The “inventory with values” technique tends to be more useful the more complicated
the function’s result type is. It doesn’t really help when the result type is Boolean, it helps
a little when the result type is a number, even more when the result type is a string or an
image, and it’s extremely helpful for functions that return a posn or the other complex
data types we’ll see in the next few chapters.

Exercise 20.5.2 Develop a function named swap-x-y that takes in a posn and returns
a new posn with the coordinates swapped: the x coordinate of the output should be the y
coordinate of the input, and vice versa.

Hint: This function both takes in and returns a posn, but they’re not the same posn,
so you’ll need to use both the input and output templates for posn.

Exercise 20.5.3 Develop a function named scale-posn that takes in a number and
a posn, and returns a posn formed by multiplying the number by each of the coordinates
of the input posn.

For example,

(check-expect (scale-posn 3 (make-posn 2 5)) (make-posn 6 15))

Exercise 20.5.4 Develop a function named add-posns that takes in two posns and
returns a new posn whose x coordinate is the sum of the x coordinates of the two inputs,
and whose y coordinate is the sum of the y coordinates of the two inputs.

Exercise 20.5.5 Develop a function named sub-posns that takes in two posns and
returns a new posn whose x coordinate is the difference of the x coordinates of the two
inputs, and whose y coordinate is the difference of the y coordinates of the two inputs.

Exercise 20.5.6 Redefine the distance function from Exercise 20.4.5 to be much shorter
and simpler, by re-using functions you’ve already seen or written in this chapter.

Hint: You should be able to do this in two fairly short lines of Racket code.

Exercise 20.5.7 Develop a function named choose-posn that takes in a string and
two posns. The string should be either "first" or "second". The choose-posn function
should return either the first or the second of its two posns, as directed by the string.

Hint: Although this function returns a posn, it can be written without using make-posn

(except for the examples); indeed, it’s much shorter, simpler, and easier without us-
ing make-posn. This situation doesn’t happen often, but it does happen, so don’t use
make-posn blindly.

270 CHAPTER 20. USING STRUCTURES

20.6 Writing animations involving posns

Now we can finally solve the problem that started this chapter.

Worked Exercise 20.6.1 Write an animation of a picture that moves up, down, left,
and right in response to the "up", "down", "left", and "right" arrow keys. It should
ignore all other keys.

Solution: The model has to represent both the x and y coordinates of the object, so
we’ll use a posn. Since the model is a posn, we’ll need a draw handler with contract

; show-picture : posn -> image

and a key handler with contract

; handle-key : posn key -> posn

Draw handler

Let’s do the show-picture function first. We have its contract already, and there’s not
much to say about the data types.

(define WIDTH 300)

(define HEIGHT 300)

(define BACKGROUND (empty-scene WIDTH HEIGHT))

(define DOT (circle 3 "solid" "blue"))

...

(check-expect (show-picture (make-posn 15 12))

(place-image DOT 15 12 BACKGROUND))

(check-expect (show-picture (make-posn 27 149))

(place-image DOT 27 149 BACKGROUND))

The skeleton and inventory are similar to those we’ve seen before involving posns:

(define (show-picture where)

; where a posn

; (posn-x where) a number(x)

; (posn-y where) a number(y)

; DOT a fixed image (to be placed)

; BACKGROUND a fixed image (to use as background)

...)

Now let’s try the “inventory with values” technique, using the “moderately compli-
cated” example of (make-posn 27 149).
(define (show-picture where)

; where a posn (make-posn 27 149)

; (posn-x where) a number(x) 27

; (posn-y where) a number(y) 149

; DOT a fixed image (to be placed)

; BACKGROUND a fixed image (to use as background)

; right answer an image (place-image DOT 27 149 BACKGROUND)

...)

This makes the body pretty easy:

20.6. WRITING ANIMATIONS INVOLVING POSNS 271

(define (show-picture where)

; where a posn (make-posn 27 149)

; (posn-x where) a number(x) 27

; (posn-y where) a number(y) 149

; DOT a fixed image (to be placed)

; BACKGROUND a fixed image (to use as background)

; right answer an image (place-image DOT 27 149 BACKGROUND)

(place-image DOT

(posn-x where) (posn-y where)

BACKGROUND)

)

We can test this on the known examples, and it works.

Key handler

Now for the key handler. Recall that the contract is

; handle-key : posn key -> posn

where “key” is really a string, but limited to certain specific strings. In this problem
we’re interested in four specific keys — "left", "right", "up", and "down" — plus “any
other key,” which we’ll ignore.

(check-expect (handle-key (make-posn 12 19) "e") (make-posn 12 19))

; ignore "e" by returning the same model we were given

(check-expect (handle-key (make-posn 12 19) "left") (make-posn 11 19))

; move left by decreasing the x coordinate

(check-expect (handle-key (make-posn 12 19) "right") (make-posn 13 19))

(check-expect (handle-key (make-posn 12 19) "up") (make-posn 12 18))

; remember that positive y-values are down

(check-expect (handle-key (make-posn 12 19) "down") (make-posn 12 20))

The skeleton is easy. The inventory will show the expressions we have available (based
on the data type posn):

(define (handle-key where key)

; where a posn

; key a string

; (posn-x where) a number(x)

; (posn-y where) a number(y)

...)

We could also add the “outventory” line

; (make-posn some-number-x some-number-y)

because we know that handle-key is supposed to return a posn.

There are four specific values of key that we care about: "up", "down", "left", and
"right". So we’ll need a conditional with five cases: one for each of these, and one for
“anything else”.

272 CHAPTER 20. USING STRUCTURES

(define (handle-key where key)

; where a posn

; key a key

; (posn-x where) a number(x)

; (posn-y where) a number(y)

(cond [(key=? key "up") ...]

[(key=? key "down") ...]

[(key=? key "left") ...]

[(key=? key "right") ...]

[else ...]

)

...)

We still need to fill in the answers. In the “ignore” case, we can simply return where

unchanged:

(define (handle-key where key)

; where a posn

; key a key

; (posn-x where) a number(x)

; (posn-y where) a number(y)

(cond [(key=? key "up") ...]

[(key=? key "down") ...]

[(key=? key "left") ...]

[(key=? key "right") ...]

[else where]

))

The other four cases all require producing a posn that’s similar to where, but moved
slightly in either the x or the y dimension. The formulæ for these may be obvious to you,
but in case they’re not, let’s try an “inventory with values” for each case.

(define (handle-key where key)

; where a posn (make-posn 12 19)

; key string

; (posn-x where) a number(x) 12

; (posn-y where) a number(y) 19

(cond [(key=? key "up") ; right answer (make-posn 12 18)

]

[(key=? key "down") ; right answer (make-posn 12 20)

]

[(key=? key "left") ; right answer (make-posn 11 19)

]

[(key=? key "right") ; right answer (make-posn 13 19)

]

[else where]

))

From these “right answers”, it’s pretty easy to write the formulæ using make-posn:

20.6. WRITING ANIMATIONS INVOLVING POSNS 273

(cond [(key=? key "up") ; right answer (make-posn 12 18)

(make-posn (posn-x where) (- (posn-y where) 1))]

[(key=? key "down") ; right answer (make-posn 12 20)

(make-posn (posn-x where) (+ (posn-y where) 1))]

[(key=? key "left") ; right answer (make-posn 11 19)

(make-posn (- (posn-x where) 1) (posn-y where))]

[(key=? key "right") ; right answer (make-posn 13 19)

(make-posn (+ (posn-x where) 1) (posn-y where))]

[else where]

))

Alternatively, we could realize that moving up, moving down, moving left, and moving
right can all be thought of as the same problem: adding something to both dimensions of
the posn, and we’ve already written a function to do that, in Exercise 20.5.4. So assuming
you’ve done that exercise, we can solve the problem as follows:

(cond [(key=? key "up") ; right answer (make-posn 12 18)

(add-posns where (make-posn 0 -1))]

[(key=? key "down") ; right answer (make-posn 12 20)

(add-posns where (make-posn 0 1))]

[(key=? key "left") ; right answer (make-posn 11 19)

(add-posns where (make-posn -1 0))]

[(key=? key "right") ; right answer (make-posn 13 19)

(add-posns where (make-posn 1 0))]

[else where]

))

which is shorter and clearer.
In either case, after testing this, we can put together the animation:

(big-bang (make-posn (/ WIDTH 2) (/ HEIGHT 2))

(check-with posn?)

(on-draw show-picture)

(on-key handle-key))

Exercise 20.6.2 You may notice that four of the five cases in the final version of the
definition share the pattern

(add-posns where some-posn)

Even the remaining example could be fit into this pattern by adding (make-posn 0 0).
This common pattern suggests that the function definition could be simplified by “factoring
out” the add-posns, moving it outside the cond so the cond decides only what to use as
the second argument to add-posns. Try this. Compare the length of the resulting function
with the length of the function definition in Exercise 20.6.1 above.

Exercise 20.6.3 Develop an animation of a dot that jumps randomly around the
window: every half second, it disappears from where it was and appears at a completely
random location with 0 ≤ x ≤ WIDTH and 0 ≤ y ≤ HEIGHT.

Hint: This is easier than Exercise 20.6.1, since you don’t need to worry about what key
was pressed.
Use a posn as the model. You can get this to work with an image as the model, but
Exercise 20.6.4 builds on this one, and it’s much easier if you use a posn as the model.

274 CHAPTER 20. USING STRUCTURES

Exercise 20.6.4 Modify Exercise 20.6.3 so that if the user clicks the mouse on the
dot (i.e. within a distance of 3 from its current center), the animation ends with the
message “Congratulations!” This forms a sort of video-game, which will get harder if you
shorten the time between ticks.

The following five exercises list several fun features to add to these animations. They’re
independent of one another; you can do any or all of them, in whatever order you wish.

Exercise 20.6.5 Modify Exercise 20.6.1 or 20.6.3 so that if the user types the letter
“q”, the animation ends.

Exercise 20.6.6 Modify Exercise 20.6.1 or 20.6.3 so that whenever the user clicks
the mouse, the dot jumps immediately to the mouse location .

Exercise 20.6.7 Modify Exercise 20.6.1 or 20.6.3 so that the display is a green dot
if it’s within 50 pixels from the center of the window (i.e. (make-posn (/ WIDTH 2) (/

HEIGHT 2)), and a red dot if it’s farther away.

Hint: Re-use a function we’ve seen earlier in this chapter.

Exercise 20.6.8 Modify Exercise 20.6.1 so that in addition to responding to arrow
keys, the dot moves slowly and randomly around the screen every half second: with equal
probability, it moves up one pixel, down one pixel, left one pixel, or right one pixel.

Hint: You’ll obviously need to use random. Since all four random choices result in
adding something to the current posn, you could write a helper function choose-offset

that takes in a number (either 0, 1, 2, or 3) and returns the appropriate posn to add. Al-
ternatively, you could write a function random-offset that takes in a dummy parameter,
ignores it, picks a random number (either 0, 1, 2, or 3), and returns the appropriate posn
to add. The latter approach is easier to use, but harder to test.

Exercise 20.6.9 Modify Exercise 20.6.1 so that if the dot reaches an edge of the
window, it “wraps around”. That is, if it’s at x coordinate 0, and tries to move left, its
x coordinate becomes WIDTH; if it’s at x coordinate WIDTH and tries to move right, its x
coordinate becomes 0. Likewise, if the y coordinate is 0 and it tries to move up, the y
coordinate becomes HEIGHT, while if the y coordinate is HEIGHT and the dot tries to move
down, it jumps to y coordinate 0.

Hint: It may be easiest to just move the posn, without worrying about whether it’s
outside the window, and then call a helper function that takes in the “attempted” position
of the dot and returns a “corrected” position with 0 ≤ x ≤ WIDTH and 0 ≤ y ≤ HEIGHT.

20.7. COLORS 275

20.7 Colors

20.7.1 The color data type

The posn type is just one example of a structure, about which we’ll learn more in Chap-
ter 21. The posn type wraps up two numbers that need to travel together and must be
kept in the right order (the position (3, 5) is very different from (5, 3)).

Recall from Section 7.8 that the color of each pixel in an image is represented by three
numbers: the red, green, and blue components. This is another classic situation that calls
for a structure: three pieces of information that always travel together and need to be
kept in the correct order. And in fact, DrRacket has a predefined structure named color,
for which the following functions are predefined:
; make-color : number(r) number(g) number(b) [number(alpha)] -> color

; color-red : color -> number

; color-green : color -> number

; color-blue : color -> number

; color-alpha : color -> number

; color? : anything -> boolean

You’ve been using make-color since Chapter 3 to put together colors, but now you can
also use color-red, color-green, color-blue, and color-alpha to take them apart.

As before, each of the color components should be an integer from 0 through 255,
and (as you know), the alpha component defaults to 255 if you leave it out. For exam-
ple, (make-color 0 0 0) is black, (make-color 255 255 255) is white, (make-color
0 200 250) is a light greenish blue, etc.

Most of the functions in Chapter 3 that accept a color name also accept a color, so
for example one could write

(overlay (text "hello" 20 (make-color 200 200 50))

(ellipse 100 60 "solid" (make-color 50 50 200)))

Practice Exercise 20.7.1 Play with this.

Exercise 20.7.2 Write an animation that displays a large disk whose color changes
with the clock and the mouse position: the x coordinate of the mouse should control the
amount of red, the y coordinate should control the amount of blue, and the clock should
control the amount of green.

Hint: As in Section 7.8.3, use min to make sure you never pass numbers larger than
255 to make-color.

There’s a built-in function color? which tells whether something is a color, and a
built-in function color=? which tells whether two colors are the same.

Exercise 20.7.3 Suppose the color=? function weren’t already provided. How could you
write it yourself? Develop a function my-color=? that takes in two color structs and
tells whether they’re the same.

Exercise 20.7.4 Extend the function my-color=? so that each argument can be either
a color or a string (color name). You’ll need at least eight test cases: the first argument
can be a string or a color, the second argument can be a string or a color, and the right
answer can be true or false. Your function should also not crash if it’s given a string
that isn’t a recognized color name:

276 CHAPTER 20. USING STRUCTURES

(check-expect (color=? "forest green" (make-color 34 139 34))

true)

(check-expect (color=? (make-color 58 72 14) (make-color 58 72 14))

true)

(check-expect (color=? "plaid" "orange")

false)

20.7.2 Building images pixel by pixel

Recall the build3-image function of Section 7.8. There’s a simpler version, build-image,
which takes in one function rather than three:

; build-image : number(width) number(height) function -> image

; The function argument to build-image must have the contract

; whatever : number(x) number(y) -> color

For example, Exercise 7.8.1 can be re-done using build-image as follows:

; red-gradient-pixel : number(x) number(y) -> color

(check-expect (red-gradient-pixel 0 53) (make-color 0 0 0))

(check-expect (red-gradient-pixel 7 45) (make-color 35 0 0))

(check-expect (red-gradient-pixel 50 17) (make-color 250 0 0))

(define (red-gradient-pixel x y)

; x a number

; y a number

(make-color (* 5 x) 0 0))

(build-image 50 50 red-gradient-pixel)

Exercise 20.7.5 Re-do some of the exercises from Section 7.8 using build-image in-
stead of build3-image.

20.7.3 Building images pixel by pixel from other images

Similarly, there’s a map-image function that’s like map3-image, but takes in only one
function:

; map-image : function image -> image

; The function argument must have contract

; whatever : number(x) number(y) color -> color

Exercise 20.7.6 Re-do some of the exercises from Section 7.8 using map-image instead
of map3-image.

Exercise 20.7.7 Develop a function replace-green-white which replaces every pure-
green pixel in an image with a pure-white pixel.

Hint: This will be easier than it would be with map3-image because you can use
color=?.

20.8. REVIEW 277

Exercise 20.7.8 Develop a function replace-with-white which takes in a color and
an image, and replaces every pixel in the image that is the specified color with white. In
other words, if we had this function, we could write replace-green-white as

(define (replace-green-white pic)

(replace-with-white "green" pic))

Hint: The helper function in this case needs to know what color to replace, i.e. the
color parameter of replace-with-white. One way to do this is to build-image/extra

or map-image/extra (look them up).

SIDEBAR:

It would be nice to generalize the function still farther to replace-colors, which
takes in two colors and an image and replaces every pixel of the image that is the
first color with the second color. Unfortunately, that would mean the helper function
depends on two pieces of information from replace-color. One way to do that is
to define a struct that contains two colors, as in Chapter 21, and use this struct

as the “extra” parameter to map-image/extra. We’ll see another, more general, way
in Chapters 27 and 28.

The get-pixel-color function allows you to get the color of any pixel in a given
image, rather than only the one at the same location as the pixel you’re currently com-
puting.

Practice Exercise 20.7.9 Look it up in the Help Desk. Play with it. Go wild.

20.8 Review of important words and concepts

Sometimes an animation (or other kind of program) needs to store several pieces of data
together in a “package”; we call this definition by parts. DrRacket has a predefined data
type posn to represent (x,y) coordinate pairs, perhaps the most common example of this
situation. There are several predefined functions — make-posn, posn-x, posn-y, posn? —
that work with posns. When writing a function that takes in a posn, the inventory should
list not only the parameter itself but the x and y parts of the parameter.

The “inventory with values” technique is especially helpful for functions with a com-
plicated return type like posn, the other structures in the next chapter, lists, etc.)

One can also write functions that return a posn, typically (though not always) using
make-posn inside the body of the function.

An animation can use a posn as its model; this gives you a great deal more power to
write fun animations that move around the screen.

Another built-in structure type is color. If you think of a posn as a box with two
compartments labelled x and y, then a color is a box with three compartments labelled
red, green, and blue. The map-image, build-image, etc. functions allow you to operate
on the colors of an image.

20.9 Reference: Built-in functions on posns and colors

In this chapter we’ve introduced or mentioned the following built-in functions:

• make-posn

278 CHAPTER 20. USING STRUCTURES

• posn-x

• posn-y

• posn?

• make-color

• color-red

• color-green

• color-blue

• color?

• color=?

• map-image

• build-image

• map-image/extra

• build-image/extra

• get-pixel-color

Chapter 21

Inventing new structures

21.1 Why and how

Chapter 20 showed how to store two numbers — an x coordinate and a y coordinate —
in a single object of type posn. This enabled us to write animations that “remember” a
two-dimensional position, and can change either or both of the coordinates.

Likewise, we saw how to store three numbers — the red, green, and blue components
of a color — in an object of type color.

But what if you have more than three pieces of information to remember? Or what
if one of them isn’t a number? The posn and color data types won’t help you much in
those situations.

Let’s review what a posn is, then see how to generalize the idea.

• A posn is a package containing two “parts” (also known as fields or instance vari-
ables) named x and y, each of which is a number.

• posn itself is a data type (like number or image), but there may be many instances
of this data type. For example, 2/3, 5, and -72541 are all instances of number, while
(make-posn 3 4) and (make-posn 92 -3/4) are both instances of posn.

• There’s a built-in function named make-posn that takes in two numbers and puts
them together into a posn package. (Computer scientists call this a constructor.)

• There are two built-in functions named posn-x and posn-y that pull out the in-
dividual numbers from such a package. (Computer scientists call these getters or
selectors.)

• There’s a built-in function named posn? that takes in any Racket object and tells
whether or not it is a posn. (Computer scientists call this a discriminator.)

Exercise 21.1.1 What are the parts, fields, constructor, selectors, and discriminator
of the color data type?

If we were trying to represent something other than a two-dimensional coordinate pair
or an RGB color, we might need more fields, and they might have different names and
types. We would still need a “constructor” function that takes in the values of the parts
and puts them together into a package. We would still need several “getter” functions
(one for each “part”) that retrieve the individual parts from a package. And we would

279

280 CHAPTER 21. INVENTING NEW STRUCTURES

still need a “discriminator” function which tells us whether a given object is this kind of
package at all.

Racket provides a way to define other data types analogous to posn, with fields,
constructor, getters, and discriminator. Here’s the syntax rule:

Syntax Rule 7 Anything matching the pattern

(define-struct struct-name (field-name-1 ... field-name-n))

is a legal expression, as long as struct-name is a previously undefined name. (The field-
names may or may not already be defined elsewhere; it doesn’t matter.)

The expression has no value, but the side effect of defining a new data type struct-name
and several functions with contracts

; make-struct-name : n objects -> struct-name

; struct-name -field-name-1 : struct-name -> object

; ...

; struct-name -field-name-n : struct-name -> object

; struct-name ? : object -> boolean

There’s a lot going on in there, so let’s see how it applies to the two structs we’ve
already seen — posn and color. The posn type happens to be predefined in the HtDP
languages of DrRacket, but if it weren’t, we could define it ourselves as follows:

(define-struct posn (x y))

The struct-name is posn. There are two fields, named x and y. So we’ve defined a
new data type named posn, as well as the following functions:

; make-posn : object(x) object(y) -> posn

; posn-x : posn -> object

; posn-y : posn -> object

; posn? : object -> boolean

which (mostly) agrees with what we learned in the previous chapter.

Exercise 21.1.2 How would you define the color type if it weren’t predefined?

There’s one difference between these contracts and those you learned in Chapter 20:
the “parts” of a posn here are just “objects”, rather than specifically numbers. In fact,
you can build a posn whose “x coordinate” is a string and whose “y coordinate” is an
image, and you won’t get any error messages — but as soon as you try to use that posn
in a function that expects the coordinates to be numbers, it’ll crash. To avoid this, we
agree to follow the convention that the coordinates in a posn are always numbers, so in
practice the contracts really are

; make-posn : number(x) number(y) -> posn

; posn-x : posn -> number

; posn-y : posn -> number

; posn? : object -> boolean

exactly as we learned in the previous chapter.

Worked Exercise 21.1.3 Define a structure to represent a person, with first and last
names and age.

21.1. WHY AND HOW 281

Solution: The structure has three parts, which can naturally be called first, last, and
age. We’ll agree to the convention that first and last are both strings, while age is a
number. So the struct definition looks like

(define-struct person (first last age))

This has the effect of defining a new data type person, along with the functions

; make-person : string(first) string(last) number(age) -> person

; person-first : person -> string

; person-last : person -> string

; person-age : person -> number

; person? : object -> boolean

To see that this definition actually works, we put the define-struct line (and, ideally,
the comments about function contracts) in the definitions pane, hit “Run”, and we can
now use the person type as follows:

> (make-person "Joe" "Schmoe" 19)

(make-person "Joe" "Schmoe" 19)

> (define author (make-person "Stephen" "Bloch" 46))

> (define lambda-guy (make-person "Alonzo" "Church" 107))

> (person-first author)

"Stephen"

> (person-last author)

"Bloch"

> (person-last lambda-guy)

"Church"

> (person-first lambda-guy)

"Alonzo"

> (person-first (make-person "Joe" "Schmoe" 19))

"Joe"

> (person-age lambda-guy)

107

> (person? author)

true

> (person? "Bloch")

false

> (person? (make-person "Joe" "Schmoe" 19))

true

SIDEBAR:

Alonzo Church (1903-1995) invented a model of computation called the “lambda
calculus” (no relation to the “calculus” that’s about derivatives and integrals) which
later became the inspiration for the Lisp, Scheme, and Racket languages. This is
why there’s a Greek letter lambda (λ) in the DrRacket logo; we’ll learn more about
lambda in Chapter 28. He was also my advisor’s advisor’s advisor; so there.

Note that you don’t need to define the make-person, person-first, person-last,
person-age, or person? functions; they “come for free” with define-struct. We wrote
down their contracts only so we would know how to use them.

282 CHAPTER 21. INVENTING NEW STRUCTURES

21.2 A Recipe for Defining a Struct

Back in Chapter 5, we learned a step-by-step recipe for defining a function, and in Chap-
ter 10 we learned a step-by-step recipe for writing an animation. A step-by-step recipe
for defining a struct is in Figure 21.1.

Figure 21.1: Design recipe for defining a struct

1. Identify the parts of the desired data types: how many parts should it have,
and what are their names and their types?

2. Write a define-struct according to Syntax Rule 7.

3. Write down (in comments) the contracts for the functions that “come for free”:

• a constructor, whose name is make- followed by the name of the struct;

• several getters or selectors (one for each field) whose names are the name of
the struct, a hyphen, and the name of one of the fields;

• a discriminator whose name is the name of the struct, followed by a question
mark.

4. Write some examples of objects of the new data type.

5. Write input and output templates for functions that work on the new type.

Worked Exercise 21.2.1 Define a data type to represent an employee of a business,
including the employee’s name (we won’t bother with first and last names), ID number,
and salary.

Solution:

Identify the parts

; An employee has three parts: name, id, and salary.

; The name is a string, while id and salary are numbers.

Write a define-struct

(define-struct employee (name id salary))

Write contracts for the functions that “come for free”

; make-employee:

string(name) number(id) number(salary) -> employee

; employee-name: employee -> string

; employee-id: employee -> number

; employee-salary: employee -> number

; employee?: object -> boolean

21.2. DESIGN RECIPE 283

Write examples of the new data type

(make-employee "Joe" 348 42995)

(make-employee "Mary" 214 49500)

(define emp1 (make-employee "Bob" 470 36000))

(define emp2 (make-employee "Chris" 471 41000))

(check-expect (employee-name emp1) "Bob")

(check-expect (employee-id emp2) 471)

(check-expect (employee-salary emp2) 41000)

(check-expect (employee-salary (make-employee "Mary" 214 49500))

49500)

(check-expect (employee? emp1) true)

(check-expect (employee? "Mary") false)

Write templates

The input template is

#|

(check-expect (function-on-employee emp1) ...)

(check-expect (function-on-employee

(make-employee "Joe" 348 42995))

...)

(define (function-on-employee emp)

; emp an employee

; (employee-name emp) a string

; (employee-id emp) a number

; (employee-salary emp) a number

...)

|#

and the output template

#|

(check-expect (function-returning-employee ...) emp1)

(check-expect (function-returning-employee ...)

(make-employee "Joe" 348 42995))

(define (function-returning-employee ...)

(make-employee) ; name, id, salary

)

|#

Common beginner mistakes

Students often get confused between define-struct and make-person (and other con-
structors like make-employee).

By way of analogy, imagine an inventor who has invented a new kind of cell phone.
The inventor probably doesn’t actually build cell phones herself; instead, she produces
blueprints, diagrams, etc. for how the new kind of cell phone is supposed to go together.

284 CHAPTER 21. INVENTING NEW STRUCTURES

Based on these blueprints and diagrams, somebody builds a factory which then builds
millions of individual cell phones.

In our setting, define-struct is like the inventor. The make-person, make-employee,
etc. functions are like factories: they don’t even exist until the inventor has done her work,
but then they can be used to build as many instances of person or employee respectively
as you wish.

I often see students write things like

(define-struct employee (name id salary))

(define emp1 (make-employee "Bob" 470 36000))

(check-expect emp1-salary 36000)

(check-expect (emp1-salary employee) 36000)

There is no variable or function named emp1-salary, nor is there a variable named
employee, so the last two lines both produce error messages. But there is a function
named employee-salary, which takes in an employee object; the student probably meant

(check-expect (employee-salary emp1) 36000)

Another pitfall: the same student writes

(check-expect (employee-salary "Bob") 36000)

What’s wrong with this? Well, there is a function named employee-salary, but its
contract specifies that it takes in an employee, not a string. What this student is trying
to do is look up a previously-defined employee by one of its field values; we’ll learn how
to do this in Section 22.6.

21.3 Exercises on Defining Structs

Exercise 21.3.1 Define a structure named my-posn to represent an (x, y) coordinate
pair. The result should behave just like the built-in posn, except for its name.

Exercise 21.3.2 Define a data type to represent a CD in your audio library, including
such information as the title, performer, what year it was recorded, and how many tracks
it has.

Exercise 21.3.3 Define a data type to represent a candidate in an election. There should
be two fields: the candidate’s name and how many votes (s)he got.

Exercise 21.3.4 Define a data type to represent a course at your school, including the
name of the course, the name of the instructor, what room it meets in, and what time it
meets. (For now, assume all courses start on the hour, so you only need to know what
hour the course starts.)

Hint: You’ll need to decide whether a “room” is best represented as a number or a
string.

Exercise 21.3.5 Define a data type to represent a basketball player, including the player’s
name, what team (s)he plays for, and his/her jersey number.

21.4. WRITING FUNCTIONS ON USER-DEFINED STRUCTS 285

Exercise 21.3.6 Define a data type to represent a dog (or a cat if you prefer), with a
name, age, weight, and color.

Exercise 21.3.7 Define a data type to represent a mathematical rectangle, whose prop-
erties are length and width.

Hint: There’s already a function named rectangle, so if you try to write

(define-struct rectangle ...)

you’ll probably get an error message. Name your struct rect instead.

Hint: This data type has nothing to do with images. A rect has no color, it is not
outlined or solid, it has no position, etc.; it has only a length and a width.

Exercise 21.3.8 Define a data type to represent a time of day, in hours, minutes, and
seconds. (Assume a 24-hour clock, so 3:52:14 PM would have hours=15, minutes=52,
seconds=14.)

21.4 Writing functions on user-defined structs

Writing functions using a struct you’ve defined yourself is no more difficult than writing
functions using posns.

Worked Exercise 21.4.1 Define a function that takes in an employee (from Exer-
cise 21.2.1) and tells whether or not the employee earns over $100,000 per year.

Solution: Before you type any of this stuff, make sure you’ve got the definition of the
employee data type, and perhaps its examples, in the definitions pane. The following
stuff should all appear after that definition.

Contract:

; earns-over-100k? : employee -> boolean

Examples:

(check-expect

(earns-over-100k? (make-employee "Phil" 27 119999)) true)

(check-expect

(earns-over-100k? (make-employee "Anne" 51 100000))

false ; (borderline case)

(check-expect (earns-over-100k? emp1) false)

; assuming the definition of emp1 from before

286 CHAPTER 21. INVENTING NEW STRUCTURES

Skeleton and inventory:

(define (earns-over-100k? emp)

; emp employee

; (employee-name emp) string

; (employee-id emp) number

; (employee-salary emp) number

; 100000 fixed number

...)

Body:

We don’t actually need the employee name or id, only the salary.

(define (earns-over-100k? emp)

; emp employee

; (employee-name emp) string

; (employee-id emp) number

; (employee-salary emp) number

; 100000 fixed number

(> (employee-salary emp) 100000)

)

Testing:

Hit “Run” and see whether the actual answers match what you said they “should be”.

Exercise 21.4.2 Choose a function you’ve already written that operates on posn, and
rewrite it to operate on a my-posn instead.

Exercise 21.4.3 Develop a function rec-before-1980? that takes in a CD and returns
true or false depending on whether it was recorded before 1980.

Exercise 21.4.4 Develop a function older? that takes in two person structs and tells
whether the first is older than the second.

Exercise 21.4.5 Develop a function person=? that takes in two person structs and tells
whether they have the exact same name and age. You may not use the built-in equal?

function to solve this problem.

Exercise 21.4.6 Develop a function same-team? that takes in two basketball-player
structs and tells whether they play for the same team.

Exercise 21.4.7 Develop a function full-name that takes in a person struct and returns
a single string containing the person’s first and last names, separated by a space.

Exercise 21.4.8 Develop a function rect-area that takes in a rect struct and returns
the area of the rectangle (i.e. length times width).

21.5. FUNCTIONS RETURNING USER-DEFINED STRUCTS 287

Exercise 21.4.9 Develop a function larger-rect? that takes in two rect structs and
tells whether the first has a larger area than the second.

Hint: Copying the input template for the rect structure will take care of one of the
two parameters; for the other, you’ll need to copy the inventory again and change the
parameter name.

Exercise 21.4.10 Develop a function seconds-since-midnight that takes in a time-
of-day struct and returns how many seconds it has been since midnight.

Exercise 21.4.11 Develop a function seconds-between that takes in two time-of-day
structs and returns the difference between them, in seconds.

Hint: For example, the time 11:01:14 is 124 seconds after the time 10:59:10.

Exercise 21.4.12 Develop a function named who-won that takes in three candidate struc-
tures (from Exercise 21.3.3) and returns the name of the one with the most votes, or the
word “tie” if two or more of them tied for first place.

Hint: Obviously, this resembles Exercise 15.5.4, but it doesn’t assume that the can-
didates’ names are always “Anne”, “Bob”, and “Charlie”; it’ll work with any names.

21.5 Functions returning user-defined structs

Just as you can write a function to return a posn or a color, you can also write a function
that returns a name, cd, employee, or any other type you’ve defined. As in Section 20.5,
you’ll usually (but not always!) need a make-whatever in the body of your function. Use
the output template.

Worked Exercise 21.5.1 Define a function change-salary that takes in an employee
(from Exercise 21.2.1) and a number, and produces a new employee just like the old one
but with the salary changed to the specified number.

Solution:

Contract:

; change-salary : employee number -> employee

Examples:

(check-expect

(change-salary (make-employee "Joe" 352 65000) 66000)

(make-employee "Joe" 352 66000))

(check-expect

(change-salary (make-employee "Croesus" 2 197000) 1.49)

(make-employee "Croesus" 2 1.49))

288 CHAPTER 21. INVENTING NEW STRUCTURES

Skeleton and Inventory

Since this function both takes in and returns an employee, we can use both the input
and output templates to help us write it.

(define (change-salary emp new-salary)

; emp employee

; (employee-name emp) string

; (employee-id emp) number

; (employee-salary emp) number

; new-salary number

(make-employee))

Since this function returns something of a complex data type, we’ll use an inventory

with values:

(define (change-salary emp new-salary)

; emp employee (make-employee "Joe" 352 65000)

; (employee-name emp) string "Joe"

; (employee-id emp) number 352

; (employee-salary emp) number 65000

; new-salary number 66000

; right answer employee (make-employee "Joe" 352 66000)

(make-employee))

This makes the Body fairly obvious:

(define (change-salary emp new-salary)

; emp employee (make-employee "Joe" 352 65000)

; (employee-name emp) string "Joe"

; (employee-id emp) number 352

; (employee-salary emp) number 65000

; new-salary number 66000

; right answer employee (make-employee "Joe" 352 66000)

(make-employee (employee-name emp)

(employee-id emp)

new-salary)

)

Now test the function and see whether it works correctly on both examples.

Exercise 21.5.2 Develop a function change-jersey that takes in a basketball player
struct and a number and produces a basketball player with the same name and team as
before, but the specified jersey number.

Exercise 21.5.3 Develop a function birthday that takes in a person struct and returns
a person with the same first and last name, but one year older.

Exercise 21.5.4 Develop a function change-name-to-match that takes in two person
structs and returns a person just like the first one, but with the last name changed to
match the second one.

21.6. ANIMATIONS USING USER-DEFINED STRUCTS 289

Exercise 21.5.5 Develop a function raise-salary-percent that takes in an employee
structure and a number, and produces a copy of the employee with the specified percentage
increase in salary.

Exercise 21.5.6 Develop a function add-a-vote that takes in a candidate structure and
adds one to his/her vote count.

Exercise 21.5.7 Develop a function swap-length-width that takes in a rect structure
and produces a new rect whose length is the width of the given rect, and vice versa.

21.6 Animations using user-defined structs

Worked Exercise 21.6.1 Write an animation of a picture that moves steadily to the
right or left, say 3 pixels per second; if the user presses the right-arrow key, the picture
starts moving to the right, and if the user presses the left-arrow key, the picture starts
moving to the left.

Solution:

Handlers

Since the picture needs to “move steadily” at a fixed rate per second, we’ll need a tick
handler. Since it needs to respond to key presses, we’ll need a key handler. And as usual,
we’ll need a check-with handler and a draw handler.

Model

Since the picture only needs to move left and right, we need only the x coordinate of its
location (we’ll probably want to define a named constant for its y coordinate). However,
we also need to keep track of which direction it’s moving — left or right — so that a
tick handler can move it in the appropriate direction every second. One way to do that
is with a string which will always be either "left" or "right". So our model needs to
have two fields, which we can call x (a number) and dir (a string). We’ll name such a
data structure a moving-x.

Combining this English-language description with a define-struct, we get

; A moving-x consists of x (a number) and

; dir (a string, either "left" or "right")

(define-struct moving-x (x dir))

which gives us the following functions “for free”:

; make-moving-x : number string -> moving-x

; moving-x-x : moving-x -> number

; moving-x-dir : moving-x -> string

; moving-x? : object -> boolean

Some examples of the new data type:

(define state1 (make-moving-x 10 "right"))

(define state2 (make-moving-x 29 "left"))

(check-expect (moving-x-x state1) 10)

(check-expect (moving-x-dir state2) "left")

290 CHAPTER 21. INVENTING NEW STRUCTURES

An input template:

#|

(define (function-on-moving-x current)

; current moving-x

; (moving-x-x current) number

; (moving-x-dir current) string

...)

|#

And an output template:

#|

(define (function-returning-moving-x whatever)

(make-moving-x))

|#

Contracts for handlers

We’ll need a draw handler, a tick handler, and a key handler, with contracts

; handle-draw : moving-x -> image

; handle-tick : moving-x -> moving-x

; handle-key : moving-x key -> moving-x

Writing the draw handler

We already have a contract. To make the examples easy, we can revive the calendar-at-x
function from Chapter 8 and say

(check-expect (handle-draw state1) (calendar-at-x 10))

(check-expect (handle-draw state2) (calendar-at-x 29))

The skeleton and inventory are easy from the input template:

(define (handle-draw current)

; current moving-x

; (moving-x-x current) number

; (moving-x-dir current) string

...)

If you already see what to do, great. If not, we’ll add an “inventory with values”:

(define (handle-draw current)

; current moving-x (make-moving-x 10 "right")

; (moving-x-x current) number 10

; (moving-x-dir current) string "right"

; right answer image (calendar-at-x 10)

...)

This makes the body easy:

21.6. ANIMATIONS USING USER-DEFINED STRUCTS 291

(define (handle-draw current)

; current moving-x (make-moving-x 10 "right")

; (moving-x-x current) number 10

; (moving-x-dir current) string "right"

; right answer image (calendar-at-x 10)

(calendar-at-x (moving-x-x current))

)

Test this function on the above test cases before going on. Once it works, and if it’s
OK with your instructor, you might want to take out the “scratch work”, leaving only
the real code, which is quite short:

(define (handle-draw current)

(calendar-at-x (moving-x-x current))

)

Writing the tick handler

We already have a contract. Since the speed of motion is a fixed number, let’s define a
constant for it:

(define SPEED 3)

And since part of the input data type has two cases ("left" and "right"), we’ll need
at least two examples, one for each. To be really bulletproof, we should also have a case
that handles illegal moving-x objects:

(check-expect (handle-tick (make-moving-x 10 "right"))

(make-moving-x (+ 10 SPEED) "right"))

(check-expect (handle-tick (make-moving-x 29 "left"))

(make-moving-x (- 29 SPEED) "left"))

(check-error (handle-tick (make-moving-x 53 "fnord"))

"handle-tick: Direction is neither left nor right!")

For the skeleton and inventory, we copy the template, change the name, and add some
special values:

(define (handle-tick current)

; current moving-x

; (moving-x-x current) number

; (moving-x-dir current) string

; SPEED fixed number

; "left", "right" fixed strings

...)

Clearly, we’ll need to do something different depending on whether the current di-
rection is "left" or "right", so we’ll need a conditional with those two cases (plus an
error-handling case). To figure out what to do in each case, let’s copy the relevant parts
of the inventory into each case and do an “inventory with values” for each:

292 CHAPTER 21. INVENTING NEW STRUCTURES

(define (handle-tick current)

; ...

(cond [(string=? (moving-x-dir current) "left")

; (moving-x-x current) number 29

; (moving-x-dir current) string "left"

; right answer moving-x

; (make-moving-x (- 29 SPEED) "left")

...

]

[(string=? (moving-x-dir current) "right")

; (moving-x-x current) number 10

; (moving-x-dir current) string "right"

; right answer moving-x

; (make-moving-x (+ 10 SPEED) "right")

...

]

[else (error ’handle-tick

"Direction is neither left nor right!")]

)

)

Which makes the “answer” part of each cond-clause pretty easy:

(define (handle-tick current)

; ...

(cond [(string=? (moving-x-dir current) "left")

; (moving-x-x current) number 29

; (moving-x-dir current) string "left"

; right answer moving-x

; (make-moving-x (- 29 SPEED) "left")

(make-moving-x (- (moving-x-x current) SPEED) "left")

]

[(string=? (moving-x-dir current) "right")

; (moving-x-x current) number 10

; (moving-x-dir current) string "right"

; right answer moving-x

; (make-moving-x (+ 10 SPEED) "right")

(make-moving-x (+ (moving-x-x current) SPEED) "right")

]

[else (error ’handle-tick

"Direction is neither left nor right!")]

)

)

Test this function on the above test cases before going on.

Again, if you delete the scratch work, the function definition is fairly short:

21.6. ANIMATIONS USING USER-DEFINED STRUCTS 293

(define (handle-tick current)

(cond [(string=? (moving-x-dir current) "left")

(make-moving-x (- (moving-x-x current) SPEED) "left")

]

[(string=? (moving-x-dir current) "right")

(make-moving-x (+ (moving-x-x current) SPEED) "right")

]

[else (error ’handle-tick

"Direction is neither left nor right!")]

)

)

Writing the key handler

We already have a contract. One of the inputs is a key, which for our purposes can be
broken down into "left", "right", and anything else.

(check-expect (handle-key state1 "up") state1)

(check-expect (handle-key state1 "right") state1)

; since state1 is already going right

(check-expect (handle-key state1 "left")

(make-moving-x 10 "left"))

(check-expect (handle-key state2 "right")

(make-moving-x 29 "right"))

For the skeleton and inventory, we have a choice: since the function takes in both a
moving-x and a key, we could use the template for either one. In fact, we’ll probably
need elements of both:

(define (handle-key current key)

; current moving-x

; (moving-x-x current) number

; (moving-x-dir current) string

; key string

; "left", "right" fixed strings

(cond [(key=? key "left") ...]

[(key=? key "right") ...]

[else ...]

)

)

The “else” case is easy: return current without modification. For the other two, we
can use an “inventory with values”:

294 CHAPTER 21. INVENTING NEW STRUCTURES

(cond [(key=? key "left")

; (moving-x-x current) number 10

; (moving-x-dir current) string "right"

; right answer moving-x (make-moving-x 10 "left")

...]

[(key=? key "right")

; (moving-x-x current) number 10

; (moving-x-dir current) string "right"

; right answer moving-x (make-moving-x 10 "right")

...]

[else current]

)

)

To fill in the first of the “. . . ” gaps, we clearly need (make-moving-x (moving-x-x

current) key). For the second, there are two places we could get a "right" from:
(moving-x-dir current) and key. Which one should we use? One way to decide would
be to do another “inventory with values”, using an example that was traveling to the
left . . . but since we’ve already said (make-moving-x (moving-x-x current) key) in
the "left" case, it seems plausible to do the same thing in the "right" case:

(cond [(key=? key "left")

; (moving-x-x current) number 10

; (moving-x-dir current) string "right"

; right answer moving-x (make-moving-x 10 "left")

(make-moving-x (moving-x-x current) key)]

[(key=? key "right")

; (moving-x-x current) number 10

; (moving-x-dir current) string "right"

; right answer moving-x (make-moving-x 10 "right")

(make-moving-x (moving-x-x current) key)]

[else current]

)

)

Notice that we’re returning the exact same expression in the "left" and "right"

cases. Recognizing this, we can simplify the program by combining them into one:

(define (handle-key current key)

; ...

(cond [(or (key=? key "left") (key=? key "right"))

(make-moving-x (moving-x-x current) key)]

[else current]

)

)

Test this before going on.

Running the animation

Now that we know each of the handlers works by itself, we can put them together:

21.7. STRUCTS CONTAINING OTHER STRUCTS 295

(big-bang

(make-moving-x (/ WIDTH 2) "right") ; start at middle, moving right

(check-with moving-x?)

(on-draw handle-draw)

(on-tick handle-tick 1)

(on-key handle-key)

)

which, when I test it, works as it’s supposed to.

Exercise 21.6.2 Modify the animation of Exercise 21.6.1 so that if the x coordinate be-
comes less than 0, the direction switches to "right", and if the x coordinate becomes more
than WIDTH, the direction switches to "left" — in other words, the picture “bounces” off
the walls.

Exercise 21.6.3 Modify the animation of Exercise 20.6.4 so that it keeps track of how
many clicks you’ve done before successfully clicking on a dot. Once you do, it should
replace the contents of the animation window with something like "Congratulations!

It took you 13 clicks to hit a dot."

Hint: Your model needs to “remember” the current x and y coordinates of the dot,
as well as how many clicks there have been so far (initially zero). The tick handler will
generate a new set of random coordinates but keep the click count unchanged. The mouse
handler will add one to the click count, but leave the coordinates unchanged (unless the
click was close enough, in which case it builds an appropriate stop-with message using
number->string and string-append).

Hint: This is easier to do using stop-with than stop-when.

21.7 Structs containing other structs

In Exercise 21.6.3, you probably defined a struct with three fields: x, y, and clicks.
Two of the three happen to be the exact same fields as in a posn, so an alternative way
to define this struct would be as two fields, one of which is a posn. (Fields of a struct
can be any type, even another struct.) This has some advantages: any function you’ve
previously written to work on posns can be re-used without change. It also has some dis-
advantages: building an example is more tedious, e.g. (make-click-posn (make-posn

3 4) 5) rather than (make-click-posn 3 4 5).

Exercise 21.7.1 Modify the animation of Exercise 21.6.3 to use this sort of a model.
It should behave exactly as before. Is the code shorter or longer? Easier or harder to
understand?

(If you did Exercise 21.6.3 using a nested struct, try it with three fields instead. Is the
code shorter or longer? Easier or harder to understand?)

Exercise 21.7.2 Define a data type placed-circ to represent a mathematical circle with
its two-dimensional location. It should have a posn for its center, and a number for its
radius.

296 CHAPTER 21. INVENTING NEW STRUCTURES

Exercise 21.7.3 Define a data type placed-rect to represent a mathematical rectangle
with its two-dimensional location. It should have a posn for the “top-left corner” (a
common way of representing rectangles in computer graphics), and two numbers for the
width and height.

Exercise 21.7.4 Define a function circs-overlap? that takes in two placed-circ

structures and tells whether they overlap.

Hint: Use the distance between their centers, together with their radii.

Exercise 21.7.5

Write an animation in which a particular (small) pic-
ture moves with the mouse over a (large) background
picture, and every time the user clicks and releases
the mouse button, the small picture is added to the
background picture at that location. For example, if
the small picture were a smiley-face, you could place
a bunch of smiley-faces in various places around the
background picture, with a smiley-face always moving
with the mouse so you can see what it’ll look like in
advance.

Exercise 21.7.6 Write an animation of a dot that moves around the screen at a constant
speed until it hits the top, left, right, or bottom edge of the window, at which time it
“bounces off”.

Hint: You’ll need a posn to represent the current location, plus two numbers (or a posn,
if you prefer) to represent the current velocity — how fast is it moving to the right, and
how fast is it moving down? When you hit a wall, one component of the velocity should
be reversed, and the other should stay as it was. You may find it easier to break your tick
handler into three functions: one to move the dot, one to decide whether it should bounce
in the x dimension, and one to decide whether it should bounce in the y dimension.

Exercise 21.7.7 Modify the animation of Exercise 21.7.6 so that if you press any of the
arrow keys, it accelerates the dot in that direction (that is, it changes the velocity, not
the location). You now have a rocket-ship simulation.

Exercise 21.7.8 Modify the animation of Exercise 21.7.6 so that every second, the dot
slows down a little bit (call it friction) — say, 5% per second. You now have a billiards
simulation.

Exercise 21.7.9 Modify Exercise 18.2.5 (typing into the animation window) so there’s
a vertical-bar cursor showing where you’re currently typing. The right-arrow key should
move the cursor one character to the right (unless it’s already at the end of the text),
left-arrow one character to the left (unless it’s already at the beginning), any ordinary
character you type should be inserted into the text where the cursor is (and the cursor
should move to the right), and the key ”backspace” should delete the character just before
the cursor.

21.8. DECISIONS ON TYPES, REVISITED 297

Hint: You’ll need to define a structure to represent both the string that appears in the
window and the location of the cursor. One good way to do this is to store two strings:
the text before the cursor and the text after the cursor.

Exercise 21.7.10

Write an animation with a “palette” containing four
colored panels (say, red, green, blue, and white) down
the left-hand side, and a “picture region”, initially all
white, filling the rest of the animation window. When
you click on any of the colored panels, a dot of that
color starts moving with your mouse, and when you
click the mouse anywhere in the picture region, the
dot is left there; then you can go on and add more
dots of that color, or pick up a different color and
add some different-colored dots.

21.8 Decisions on types, revisited

In section 15.8, we learned to define a new data type “by choices”, e.g. “an X is either a
Y or a Z”. But in that chapter, Y and Z were always predefined types like string, number,
image, etc.. The technique of “definition by choices” becomes more useful when Y and Z
are themselves defined “by parts”, i.e. structs.

Recall that to write a function on a type defined by choices, we needed discriminator
functions (e.g. number?, string?, image?) to tell which type something was. Conve-
niently enough, define-struct gives you a discriminator function for the newly-defined
type, with the obvious name (posn?, person?, employee?, candidate?, . . .).

Worked Exercise 21.8.1 Define a data type named placed-shape which is either a
placed-circ (from Exercise 21.7.2) or a placed-rect (from Exercise 21.7.3).

Develop a function perimeter which works on a placed-shape and returns the
length of the boundary of the shape.

Develop a function move-shape that takes in a placed-shape and two numbers dx
and dy, and returns another placed-shape just like the given one but moved by dx in the
x dimension and dy in the y dimension.

Solution: The data definition is simply “A placed-shape is either a placed-circ or a
placed-rect.” However, for this definition to be useful, we need some examples of the data
type, and we need templates. Examples are easy: any placed-circ or any placed-rect

will do (and to test a function on placed-shape, we should have at least one of each).
Depending on exactly how you did Exercises 21.7.2 and 21.7.3, this could look like

(define shape-1 (make-placed-circ (make-posn 3 8) 5))

(define shape-2 (make-placed-rect (make-posn 15 21) 12 8))

The input template looks like

298 CHAPTER 21. INVENTING NEW STRUCTURES

#|

(define (function-on-placed-shape s)

(cond [(placed-circ? s) (function-on-placed-circ s)]

[(placed-rect? s) (function-on-placed-rect s)]

))

|#

where function-on-placed-circ and function-on-placed-rect indicate functions
written based on the input templates for those data types. If these functions are fairly
short and simple, it may be more practical to combine all three into one, following a
combined template like

#|

(define (function-on-placed-shape s)

(cond [(placed-circ? s)

; s placed-circ

; (placed-circ-center s) posn

; (placed-circ-radius s) number

...]

[(placed-rect? s)

; (placed-rect-top-left s) posn

; (placed-rect-width s) number

; (placed-rect-height s) number

...]

))

|#

Again, some of the details may vary depending on how you did Exercises 21.7.2 and
21.7.3.

We can also write an output template:

#|

(define (function-returning-placed-shape ...)

(cond [... (function-returning-placed-circ ...)]

[... (function-returning-placed-rect ...)]

))

|#

As with the input template, if the relevant functions returning a placed-circ and a placed-
rect are short and simple, it makes more sense to combine them all into one template:

#|

(define (function-returning-placed-shape ...)

(cond [... (make-placed-circ)]

[... (make-placed-rect)]

))

|#

To define the perimeter function, we have a choice: either we write three sepa-
rate functions circ-perimeter, rect-perimeter, and perimeter, each of which is fairly
short, or we combine them into one larger function. We’ll do both here, so you can see
the advantages and disadvantages of each approach.

21.8. DECISIONS ON TYPES, REVISITED 299

; circ-perimeter : placed-circ -> number

(define empty-circ (make-placed-circ (make-posn 0 0) 0))

(define circ-1 (make-placed-circ (make-posn 10 4) 1))

(check-within (circ-perimeter empty-circ) 0 .01)

(check-within (circ-perimeter circ-1) 6.28 .01)

(check-within (circ-perimeter shape-1) 31.4 .1)

(define (circ-perimeter c)

; c placed-circ

; (placed-circ-center c) posn

; (placed-circ-radius c) number

(* pi 2 (placed-circ-radius c)))

Note that since the formula for the perimeter of a circle involves π, which can be
represented only approximately in a computer, the answer is approximate so we use
check-within rather than check-expect.

; rect-perimeter : placed-rect -> number

(define empty-rect (make-placed-rect (make-posn 0 0) 0 0))

(define horiz-line (make-placed-rect (make-posn -1 0) 2 0))

(define square-2

(make-placed-rect (make-posn 1 1) (sqrt 2) (sqrt 2)))

(check-expect (rect-perimeter empty-rect) 0)

(check-expect (rect-perimeter horiz-line) 4)

(check-within (rect-perimeter square-2) 5.66 .01)

(check-expect (rect-perimeter shape-2) 40)

(define (rect-perimeter r)

; r placed-rect

; (placed-rect-top-left r) posn

; (placed-rect-width r) number

; (placed-rect-height r) number

(* 2 (+ (placed-rect-width r) (placed-rect-height r))))

The function on placed-shapes is now fairly simple:

; perimeter : placed-shape -> number

(check-within (perimeter empty-circ) 0 .01)

(check-within (perimeter empty-rect) 0 .01)

(check-within (perimeter circ-1) 6.28 .01)

(check-within (perimeter square-2) 5.66 .01)

(check-within (perimeter shape-1) 31.4 .1)

(check-within (perimeter shape-2) 40 .1)

(define (perimeter s)

(cond [(placed-circ? s) (circ-perimeter s)]

[(placed-rect? s) (rect-perimeter s)]

))

If we wanted to write the whole thing as one big function, it would look more like this
(the contract and examples are unchanged):

300 CHAPTER 21. INVENTING NEW STRUCTURES

(define (perimeter s)

(cond [(placed-circ? s)

; s placed-circ

; (placed-circ-center s) posn

; (placed-circ-radius s) number

(* pi 2 (placed-circ-radius s))]

[(placed-rect? s)

; s placed-rect

; (placed-rect-top-left s) posn

; (placed-rect-width s) number

; (placed-rect-height s) number

(* 2 (+ (placed-rect-width s) (placed-rect-height r)))]

))

If you were sure you would only need the perimeter function, not the more specific
versions of it for the placed-circ and placed-rect types, and if you were confident
of your programming skills, the single-function solution would probably be quicker and
easier to write. On the other hand, three little functions are generally easier to test and
debug (one at a time!) than one big function, and they can be individually re-used. For
example, if in some future problem you wanted the perimeter of something you knew
was a placed-circ, not a placed-rect, you could use circ-perimeter rather than the
more general, but slightly less efficient, perimeter. In the long run, you should know
both approaches.

For the move-shape function, we need at least two examples — a rectangle and a
circle:

(check-expect

(move-shape (make-placed-circ (make-posn 5 12) 4) 6 -3)

(make-placed-circ (make-posn 11 9) 4))

(check-expect

(move-shape (make-placed-rect (make-posn 19 10) 8 13) -5 6)

(make-placed-rect (make-posn 14 16) 8 13))

The move-shape function both takes in and returns a placed-shape, so we’ll use
both input and output templates.

(define (move-shape it dx dy)

; it placed-shape

; dx number

; dy number

(cond [(placed-circ? it) (function-returning-placed-circ ...)]

[(placed-rect? it) (function-returning-placed-rect ...)]

))

We could write two other functions move-placed-circ and move-placed-rect, but this
time let’s try a single-function solution. The templates give us the following:

21.8. DECISIONS ON TYPES, REVISITED 301

(define (move-shape it dx dy)

; it placed-shape

; dx number

; dy number

(cond [(placed-circ? it)

; (placed-circ-center it) posn

; (placed-circ-radius it) number

(make-placed-circ)]

[(placed-rect? it)

; (placed-rect-top-left it) posn

; (placed-rect-width it) number

; (placed-rect-height it) number

(make-placed-rect)]

))

The width and height of the rectangle shouldn’t change, and the radius of the circle
shouldn’t change, but we need a new top-left corner for the rectangle, and a new center
for the circle. The obvious way to get these is with add-posns (Exercise 20.5.4):

(define (move-shape it dx dy)

; it placed-shape

; dx number

; dy number

(cond [(placed-circ? it)

; (placed-circ-center it) posn

; (placed-circ-radius it) number

(make-placed-circ (add-posns (placed-circ-center it)

(make-posn dx dy))

(placed-circ-radius it))]

[(placed-rect? it)

; (placed-rect-top-left it) posn

; (placed-rect-width it) number

; (placed-rect-height it) number

(make-placed-rect (add-posns (placed-rect-top-left it)

(make-posn dx dy))

(placed-rect-width it)

(placed-rect-height it))]

))

Exercise 21.8.2 Develop a function area which works on a placed-shape and returns
the area of the shape.

Exercise 21.8.3 Develop a function contains? that takes in a placed-shape and a
posn and tells whether the posn is inside the shape. Consider the shape to include its
border, so a point exactly on the border is “contained” in the shape.

Exercise 21.8.4 Develop a function shapes-overlap? that takes in two placed-
shapes and tells whether they overlap.

302 CHAPTER 21. INVENTING NEW STRUCTURES

Hint: This problem is a little harder. Since each of the two parameters can be either a
circle or a rectangle, you have four cases to consider. The “both circles” case is handled
by Exercise 21.7.4; the “both rectangles” case can be handled by using a previously-
defined function on placed-shapes; and the “circle and rectangle” cases will require some
geometrical thinking.

Exercise 21.8.5 Develop an animation like Exercise 20.6.4 or 21.6.3, but with each
shape being either a circle (with random location and radius) or a rectangle (with random
location, width, and height), with a 50% probability of each shape. I recommend testing
this with a slow clock tick, e.g. 5 seconds, so you have time to try clicking in several
places just outside various sides of the shape to make sure they don’t count as hits.

Exercise 21.8.6 Define a data type zoo-animal which is either a monkey, a lion, a
sloth, or a dolphin. All four kinds have a name and a weight. Lions have a numeric
property indicating how much meat they need per day (in kilograms). Monkeys have
a string property indicating their favorite food (e.g. “ants”, “bananas”, or “caviar”).
Sloths have a Boolean property indicating whether they’re awake.

Exercise 21.8.7 Develop a function underweight? that takes in a zoo-animal and
returns whether the animal in question is underweight. For this particular kind of monkey,
that means under 10 kg; for lions, 150 kg; for sloths, it’s 30 kg; for dolphins, 50 kg.

Exercise 21.8.8 Develop a function can-put-in-cage? that takes in a zoo-animal
and a number (the weight capacity of the cage) and tells whether the animal in question
can be put into that cage. Obviously, if the weight of the animal is greater than the weight
capacity of the cage, the answer is false. But sloths cannot be moved when they’re asleep,
and dolphins can’t be put in a cage at all.

Exercise 21.8.9 Define a data type vehicle which is either a car, a bicycle, or a train.
All three types of vehicle have a weight and a top speed; a bicycle has a number of gears;
a train has a length; and a car has a horsepower (e.g. 300) and a fuel-economy rating
(e.g. 28 miles/gallon).

Exercise 21.8.10 Develop a function range? on vehicles. It should take in the num-
ber of hours you’re willing to travel, and will return how far you can go in that much time
on this vehicle.

21.9 Review of important words and concepts

A struct is a data type made up of several “parts”, also called fields or instance variables.
An instance of a data type is an individual object of that type — for example, 2/3, 5,
and -72541 are all instances of the type number, while (make-posn 3 4) is an instance
of the type posn. The built-in function define-struct allows you to define a new struct
type, and also provides several functions to allow you to manipulate the new type: a
constructor which builds individual instances of the new data type; several getters or
selectors (one for each field) which retrieve the value of that field from an instance of the
new type; and a discriminator which tells whether something is of the new type at all.

There’s a step-by-step recipe for defining a struct, just as for defining a function or
writing an animation:

1. Identify the parts, their names and types

21.10. REFERENCE 303

2. Write a define-struct

3. Write the contracts for the constructor, getters, and discriminator

4. Write some examples

5. If you expect to write several functions involving the data type, write input and
output templates.

A function can not only take in but return instances of user-defined struct types, as
with posn. If you need to write such a function, the “inventory with values” technique
will be very useful.

Many animations need more than just two numbers in their models, so you often need
to define a struct type for the purpose.

The fields of a struct can be of any type, even another struct. This sometimes allows
you to better re-use previously-written functions (especially for posns).

Definition by choices becomes much more interesting when the choices can themselves
be user-defined types. Functions written to operate on such types may be written in
one of two ways: either one function per type, with a short “main” function that simply
decides which choice the input is and calls an appropriate helper function, or as one big
function with the helper functions “collapsed” into the main function. The single-function
approach may be more convenient if the helper functions are all very short and simple,
and if they are unlikely to be needed on their own; otherwise, it’s usually safer and more
flexible to write one function per type.

21.10 Reference: Built-in functions for defining struc-
tures

The only new syntax introduced in this chapter is define-struct.

PART IV

Definition by Self-reference

Chapter 22

Lists and functions on them

22.1 Limitations of structs

When we define a struct, among the first questions we ask is “how many parts does the
struct have?” This question assumes that the struct has a fixed number of parts: a posn

has two numbers, a color has three numbers, a person has two strings and a number, a
moving-x has a number and a string, In general, a struct is a way to collect a fixed
number of related pieces of information into one “package” that we can pass around as a
single object, and store in a single variable.

But what if we wanted to collect an unknown number of related pieces of information
into one “package”, pass it around as a single object, and store it in a single variable?
For example, consider the collection of students registered for a particular course: if a
student adds (or drops) the course, does that require redefining the struct with one more
(or fewer) field, then rewriting and retesting every function that operated on the struct,
since there are now one more (or one fewer) getter functions, and every constructor call
must now have one more (or one fewer) argument than before? That seems ridiculous:
one should be able to write software once and for all to work on a collection of students,
allowing the number of students to change while the program is running.

There are many other ways to collect related pieces of information into a package, of
which the simplest is a “list”.

22.2 What is a list?

You’re all familiar with lists in daily life: lists of friends, lists of schools or jobs to apply
to, lists of groceries to buy, lists of things to pack before going on a trip. In each case, a
list is not changed in any fundamental way by changing the number of items in it. A list
can be reduced to 1 or 0 items, and then have more items added to it later; reducing it
to 1 or even 0 items didn’t make it stop being a list.

This fact — that a list can have as few as 0 elements — underlies the way we’ll define
lists in Racket. Here are three apparently-obvious facts about lists:

1. A list is either empty or non-empty.

Not terribly exciting, although it suggests that we’ll do some kind of definition by
choices with two cases: empty and non-empty.

307

308 CHAPTER 22. LISTS

2. An empty list has no parts.

Again, not terribly exciting. The next one is a little more interesting:

3. A non-empty list has a first element. It also has “the rest” of the list,

i.e. everything after the first element.

This looks like a definition by parts: there are two parts, the “first” element and the
“rest”. What types are these parts? If we were defining a list of numbers, obviously,
the “first” element would be a number; in a list of strings, the “first” element would
be a string. But what about the “rest”? If the list consists of only one element, the
“rest” should be empty; if the list consists of two elements, the “rest” contains one
element; and so on. In other words, the “rest” of a non-empty list is a list (either
empty or non-empty).

When we introduced “definition by choices” and “definition by parts”, we said they
were ways to define a new data type from previously-defined data types. We’ve loosened
that requirement a bit now: the list data type is defined by choices from the non-empty-
list data type, which is defined by parts from (among other things) the list data type.
Neither data type can be “previous” to the other, because each depends on the other.
However, if we’re willing to define both at once, we can get a tremendous amount of
programming power.

The following diagram shows the relationships among types in a list of numbers: a
“list” is defined by choices as either “empty list” or “non-empty list”, while “non-empty
list” is defined by parts as a number and a “list”.

22.3 Defining lists in Racket

In this section we’ll develop a definition of lists, and learn to write functions on them,
using only what you already know about definition by parts and by choices. The resulting
definition is a little awkward to work with, so in section 22.4 we’ll discuss the more
practical version of lists that’s built into Racket. If you prefer to “cut to the chase,” you
can skip this section.

For concreteness, we’ll define a list of strings; you can also define a list of numbers, or
booleans, or even lists similarly. We’ll use “los” as shorthand for “list of strings”.

22.3. DEFINING LISTS IN RACKET 309

22.3.1 Data definitions

Recall our first fact about lists: “a list [of strings] is either empty or non-empty.” This
is a definition by choices with two choices. It tells us that for any function that takes in
a list of strings, we’ll need an empty test case and at least one non-empty test case. (In
fact, we’ll usually want at least three test cases: an empty example, an example of length
1, and at least one longer list.) It also tells us that the body of a function on lists of
strings will probably involve a two-way cond, deciding between the empty and non-empty
cases:

#|

(define (function-on-los L)

; L a list of strings

(cond [... ...]

[... ...]

))

|#

The second fact about lists, “An empty list has no parts,” can be represented in Racket
by defining a struct with no parts:

; An empty list has no parts.

(define-struct empty-list ())

; make-empty-list : nothing -> empty-list

; empty-list? : anything -> boolean

#|

(define (function-on-empty-list L)

; L an empty-list

...)

|#

This looks a little weird, admittedly: we’ve never before defined a struct with no parts,
but there’s no rule against it. Since there are no parts, there are no getters; there’s only
a constructor (which takes no parameters) and a discriminator. In other words, we can
create an empty list, and recognize it when we see it.

Note that I haven’t specified that an empty-list is an empty-list of strings : since it
doesn’t contain anything anyway, an empty-list of strings can be exactly the same as an
empty-list of numbers or anything else.

In practice, there’s seldom much point in writing a function whose only input is an
empty list. All empty lists contain exactly the same information, so such a function would
have to return the same answer in all cases, so why bother writing a function? So we’ll
skip the function-on-empty-list template from now on.

Now for the third fact about lists: “A non-empty list has two parts: the first element
and the rest.” More specifically: “A non-empty list of strings has two parts: the first
element (a string) and the rest (a list of strings).” This seems to call for definition by
parts. I’ll use “nelos” as shorthand for “non-empty list of strings”.

310 CHAPTER 22. LISTS

; A nelos has two parts: first (a string) and rest (a los)

(define-struct nelos (first rest))

; make-nelos : string los -> nelos

; nelos-first : nelos -> string

; nelos-rest : nelos -> los

; nelos? : anything -> boolean

#|

(define (function-on-nelos L)

; L a nelos

; (nelos-first L) a string

; (nelos-rest L) a los

; (function-on-los (nelos-rest L)) whatever this returns

...)

|#

Since (nelos-rest L) is a list of strings, the obvious thing to do to it is call some
function that works on a list of strings, like function-on-los. It’s quite useful to include
this in the inventory, as we’ll see shortly.

With this information, we can write the complete data definition, with input templates
for both los and nelos, fairly concisely:

; A los is either (make-empty-list) or a nelos

#|

(define (function-on-los L)

; L a list of strings

(cond [(empty-list? L) ...]

[(nelos? L) (function-on-nelos L)]

))

|#

22.3. DEFINING LISTS IN RACKET 311

; A nelos looks like

; (make-nelos string los)

#|

(define (function-on-nelos L)

; L a cons

; (nelos-first L) a string

; (nelos-rest L) a los

; (function-on-los (nelos-rest L)) whatever this returns

...)

|#

(We’ll come back to the output template in Chapter 23.)
Note that once a los has been determined to be non-empty, the obvious thing to do

to it is call some function that works on non-empty lists, like function-on-nelos.
Note also that because the los and nelos data types each refer to one another, the

function-on-los and function-on-nelos templates refer to one another in a corre-
sponding way.

22.3.2 Examples of the los data type

As with any new data type, we should make up some examples to make things feel more
real and concrete. We’ll need at least one empty example, which we can build with
make-empty-list:

(define nothing (make-empty-list))

and at least one non-empty example, which we can build with make-nelos. The
make-nelos function expects two arguments: a string and a los. The only los we al-
ready have is nothing, so

(define english (make-nelos "hello" nothing))

This represents a list of strings whose first element is "hello" and whose rest is an empty
list, so there is no second element.

Suppose we wanted a list with "bonjour" as its first element and "hello" as the
second and last. This is easy by calling make-nelos:

(define fr-eng (make-nelos "bonjour" english))

312 CHAPTER 22. LISTS

22.3. DEFINING LISTS IN RACKET 313

We can go on to build even longer lists, as shown in Figure 22.1.

Figure 22.1: Defining and using list-of-strings
; An empty list has no parts.

(define-struct empty-list ())

; make-empty-list : nothing -> empty-list

; empty-list? : anything -> boolean

; A nelos has two parts: first (a string) and rest (a los).

(define-struct nelos (first rest))

; make-nelos : string los -> nelos

; nelos-first : nelos -> string

; nelos-rest : nelos -> los

; nelos? : anything -> boolean

#|

(define (function-on-nelos L)

; L a nelos

; (nelos-first L) a string

; (nelos-rest L) a los

; (function-on-los (nelos-rest L)) whatever this returns

...)

|#

; A los is either an empty-list or a nelos.

#|

(define (function-on-los L)

; L a los

(cond [(empty-list? L) ...]

[(nelos? L) (function-on-nelos L)]

))

|#

(define nothing (make-empty-list))

(define english (make-nelos "hello" nothing))

(define fr-eng (make-nelos "bonjour" english))

(define heb-fr-eng (make-nelos "shalom" fr-eng))

(define shfe (make-nelos "buenos dias" heb-fr-eng))

(define ashfe (make-nelos "salaam" shfe))

(define dwarfs (make-nelos "sleepy" (make-nelos "sneezy"

(make-nelos "dopey" (make-nelos "doc" (make-nelos "happy"

(make-nelos "bashful" (make-nelos "grumpy" nothing))))))))

Practice Exercise 22.3.1 Copy Figure 22.1 into your Definitions pane (it should be
available as a download from the textbook Web site), and try the following expressions.
For each one, predict what it will return before hitting ENTER, and see whether you were

314 CHAPTER 22. LISTS

right. If not, figure out why it came out as it did.

(empty-list? nothing)

(nelos? nothing)

(nelos-first nothing)

(nelos-rest nothing)

(empty-list? english)

(nelos? english)

(nelos-first english)

(nelos-rest english)

(empty-list? (nelos-rest english))

(nelos? fr-eng)

(nelos-first fr-eng)

(nelos-rest fr-eng)

(nelos? (nelos-rest fr-eng))

(nelos-first (nelos-rest fr-eng))

(nelos-rest (nelos-rest fr-eng))

(nelos? ashfe)

(nelos-first ashfe)

(nelos-rest ashfe)

(nelos-first (nelos-rest (nelos-rest ashfe))))

(nelos-first (nelos-rest (nelos-rest (nelos-rest dwarfs))))

22.3.3 Writing a function on los

How would we write a function on the los data type? In a way, this is the wrong question:
our templates above show two functions, function-on-los and function-on-nelos, which
depend on one another, so when we write a specific function, it too will probably consist
of two functions that depend on one another.

Worked Exercise 22.3.2 Define a function count-strings that takes in a los and re-
turns how many strings are in it: 0 for an empty list, 1 for a list of one element, and so
on.

Solution: We’ll write two functions: one that works on a los and one that works on a
nelos.

Contracts:

; count-strings : los -> number

; count-strings-on-nelos : nelos -> number

The data analysis is already done.

Test cases:

(check-expect (count-strings nothing) 0)

(check-expect (count-strings english) 1)

(check-expect (count-strings fr-eng) 2)

(check-expect (count-strings ashfe) 5)

(check-expect (count-strings dwarfs) 7)

22.3. DEFINING LISTS IN RACKET 315

; can’t call (count-strings-on-nelos nothing)

; because nothing isn’t a nelos

(check-expect (count-strings-on-nelos english) 1)

(check-expect (count-strings-on-nelos fr-eng) 2)

(check-expect (count-strings-on-nelos ashfe) 5)

(check-expect (count-strings-on-nelos dwarfs) 7)

Skeletons and Inventories:

Conveniently, we already have templates that do most of the work for us:

(define (count-strings L)

; L a los

(cond [(empty-list? L) ...]

[(nelos? L) (count-strings-on-nelos L)]

))

(define (count-strings-on-nelos L)

; L a nelos

; (nelos-first L) a string

; (nelos-rest L) a los

; (count-strings (nelos-rest L))a number

...)

Note that count-strings and count-strings-on-nelos refer to one another in the
same way function-on-los and function-on-nelos refer to one another, which in turn
corresponds to the way los and nelos refer to one another.

Now we just need to fill in everywhere that there’s a “. . . ”. The first one, the answer
in the (empty-list? L) case, is easy: an empty list has a length of 0. (We could write
a count-strings-on-empty-list function to do this, but that seems like too much work
just to get the answer 0.)

(define (count-strings L)

; L a los

(cond [(empty-list? L) 0]

[(nelos? L) (count-strings-on-nelos L)]

))

The other “. . . ” is the body of count-strings-on-nelos. From the inventory, we have
an expression for the number of strings in the rest of the list. So how many strings are
there in the whole list? If you see immediately how to do this, great; if not, let’s try an
inventory with values. We’ll pick a moderately complicated example:
(define (count-strings-on-nelos L)

; L a nelos (cons "a" (cons "b" (cons "c" empty)))

; (nelos-first L) a string "a"

; (nelos-rest L) a los (cons "b" (cons "c" empty))

; (count-strings (nelos-rest L)) a number 2

; right answer a number 3

316 CHAPTER 22. LISTS

How could you get the right answer, 3, from the things above it? The one that most
closely resembles 3 is 2; you can get 3 from 2 by adding 1. This suggests the body

(define (count-strings-on-nelos L)

; L a nelos (cons "a" (cons "b" (cons "c" empty)))

; (nelos-first L) a string "a"

; (nelos-rest L) a los (cons "b" (cons "c" empty))

; (count-strings (nelos-rest L)) a number 2

; right answer a number 3

(+ 1 (count-strings (nelos-rest L))))

Does this make sense? It says the number of strings in the whole list is one more than
the number of strings in the rest of the list, which is certainly true.

Run the test cases, and they should all work. Use the Stepper to watch the computa-
tion for some non-trivial examples, like (count-strings shfe).

22.3.4 Collapsing two functions into one

We’ve written functions before that depended on auxiliary functions; the only new thing
here is that the auxiliary function depends on the original function in turn. And it’s
perfectly natural that when we’re working with two different data types, we have to write
two different functions. However, the only place count-strings-on-nelos is used is in-
side count-strings, so if we prefer, we can replace the call to count-strings-on-nelos

with its body:

(define (count-strings L)

; L a los

(cond [(empty-list? L) 0]

[(nelos? L)

; L a nelos

; (nelos-first L) a string

; (nelos-rest L) a los

; (count-strings (nelos-rest L)) a number

(+ 1 (count-strings (nelos-rest L)))]

))

Note that now the count-strings function calls itself. Some of you may have written
functions in the past that called themselves, and the most likely result was something
called an “infinite loop”: the function called itself to answer the same question, then
called itself to answer the same question, then called itself to answer the same question,
and never accomplished anything. What we’ve done here is different: rather than calling
the function to answer the same question, we’re calling it to answer a smaller question,
then using the result to figure out the answer to the original question.

The single-function solution is usually shorter and simpler, but later on we’ll encounter
situations in which we have to use the two-function solution, so you should know both
approaches.

In order to write functions on lists as a single function rather than two, we must
likewise collapse the two templates into one:

22.4. THE WAY WE REALLY DO LISTS 317

#|

(define (function-on-los L)

; L a los

(cond [(empty-list? L) ...]

[(nelos? L)

; L a nelos

; (nelos-first L) a string

; (nelos-rest L) a los

; (function-on-los (nelos-rest L)) whatever this returns

...]))

|#

22.4 The way we really do lists

The approach taken in Section 22.3 works, but it’s rather awkward to work with. Lists
are so common and useful that they’re built into Racket (and some other languages). In
reality, most Racket programmers use the built-in list functions rather than defining a
list data type themselves.

As in section 22.3, we’ll define a list of strings for concreteness. You can also define a
list of numbers, or booleans, or even lists similarly. We’ll use “los” as shorthand for “list
of strings”.

22.4.1 Data definitions

Recall our first fact about lists: “a list [of strings] is either empty or non-empty.” This
is a definition by choices, with two choices. It tells us that for any function that takes in
a list of strings, we’ll need an empty test case and at least one non-empty test case. (In
fact, we’ll usually want at least three test cases: an empty example, an example of length
1, and at least one longer list.) It also tells us that the body of a function on lists of
strings will probably involve a two-way cond, deciding between the empty and non-empty
cases:

318 CHAPTER 22. LISTS

#|

(define (function-on-los L)

; L a list of strings

(cond [... ...]

[... ...]

))

|#

The second fact about lists is “An empty list has no parts.” Racket provides a built-in
constant empty and a built-in function empty? to represent and recognize empty lists,
respectively.

; empty : a constant that stands for an empty list

; empty? : anything -> boolean

Now for the third fact about lists: “A non-empty list has two parts: the first element
and the rest.” Let’s make it more specific: “A non-empty list of strings has two parts: the
first element (a string) and the rest (a list of strings).” This seems to call for definition
by parts. For convenience, Racket has a built-in data type to represent a non-empty list.
Since putting one non-empty list inside another is the usual way to “construct” a large
list, we use the word cons (short for “construct”). Racket provides the following built-in
functions:

; A non-empty list, or cons, has two parts:

; first (whatever type the elements are) and

; rest (a list)

; cons : element list -> non-empty-list

; first : non-empty-list -> element

; rest : non-empty-list -> list

; cons? : anything -> boolean

With this information, we can write the complete data definition, with input templates
for both los and nelos, fairly concisely:

22.4. THE WAY WE REALLY DO LISTS 319

; A los is either empty or a nelos

#|

(define (function-on-los L)

; L a list of strings

(cond [(empty? L) ...]

[(cons? L) (function-on-nelos L)]

))

|#

; A nelos looks like

; (cons string los)

#|

(define (function-on-nelos L)

; L a cons

; (first L) a string

; (rest L) a los

; (function-on-los (rest L)) whatever this returns

...)

|#

(We’ll come back to the output template in Chapter 23.)
Note that because the los and nelos types refer to one another, the function-on-los

and function-on-nelos templates refer to one another in a corresponding way.

22.4.2 Examples of the los data type

As with any new data type, we should make up some examples to make things feel more
real and concrete. We have empty to provide an empty example. We’ll need to build
non-empty examples using cons, which (in our list-of-strings example) expects a string
and a list of strings. The only list of strings we already have is empty, so we’ll use that:

(define english (cons "hello" empty))

This represents a list of strings whose first element is "hello" and whose rest is an empty
list, so there is no second element.

Suppose we wanted a list with "bonjour" as its first element and "hello" as the
second and last. This is easy by calling cons:

320 CHAPTER 22. LISTS

(define fr-eng (cons "bonjour" english))

We can go on to build even longer lists, as shown in Figure 22.2.

Figure 22.2: Lists of strings, using built-in Racket features
; An empty list has no parts.

; empty : a constant

; empty? : anything -> boolean

; A cons has two parts: first (a string) and rest (a los).

; cons : string los -> nelos

; first : nelos -> string

; rest : nelos -> los

; cons? : anything -> boolean

#|

(define (function-on-nelos L)

; L a nelos

; (first L) a string

; (rest L) a los

; (function-on-los (rest L)) whatever this returns

...)

|#

; A los is either an empty-list or a nelos.

#|

(define (function-on-los L)

; L a los

(cond [(empty-list? L) ...]

[(nelos? L) (function-on-nelos L)]

))

|#

(define english (cons "hello" empty))

(define fr-eng (cons "bonjour" english))

(define heb-fr-eng (cons "shalom" fr-eng))

(define shfe (cons "buenos dias" heb-fr-eng))

(define ashfe (cons "salaam" shfe))

(define dwarfs (cons "sleepy" (cons "sneezy" (cons "dopey" (cons "doc"

(cons "happy" (cons "bashful" (cons "grumpy" empty))))))))

22.4. THE WAY WE REALLY DO LISTS 321

Practice Exercise 22.4.1 Copy Figure 22.2 into your Definitions pane (it should be
available as a download from the textbook Web site), and try the following expressions.
For each one, predict what it will return before hitting ENTER, and see whether you were
right. If not, figure out why it came out as it did.

(empty? empty)

(cons? empty)

(first empty)

(rest empty)

(empty? english)

(cons? english)

(first english)

(rest english)

(empty? (rest english))

(cons? fr-eng)

(first fr-eng)

(rest fr-eng)

(cons? (rest fr-eng))

(first (rest fr-eng))

(rest (rest fr-eng))

(cons? ashfe)

(first ashfe)

(rest ashfe)

(first (rest (rest ashfe))))

(first (rest (rest (rest dwarfs))))

22.4.3 Writing a function on los

How would we write a function on the los data type? In a way, this is the wrong question:
our templates above show two functions, function-on-los and function-on-nelos, which
depend on one another, so when we write a specific function, it too will probably consist
of two functions that depend on one another.

Worked Exercise 22.4.2 Define a function count-strings that takes in a los and re-
turns how many strings are in it: 0 for an empty list, 1 for a list of one element, and so
on.

Solution: We’ll write two functions: one that works on a los, and one that works on a
nelos.

Contracts:

; count-strings : los -> number

; count-strings-on-nelos : nelos -> number

The data analysis is already done.

Test cases:

322 CHAPTER 22. LISTS

(check-expect (count-strings empty) 0)

(check-expect (count-strings english) 1)

(check-expect (count-strings fr-eng) 2)

(check-expect (count-strings ashfe) 5)

(check-expect (count-strings dwarfs) 7)

; can’t call (count-strings-on-nelos empty)

; because empty isn’t a nelos

(check-expect (count-strings-on-nelos english) 1)

(check-expect (count-strings-on-nelos fr-eng) 2)

(check-expect (count-strings-on-nelos ashfe) 5)

(check-expect (count-strings-on-nelos dwarfs) 7)

Skeletons and Inventories:

Conveniently, we already have templates that do most of the work for us:

(define (count-strings L)

; L a los

(cond [(empty? L) ...]

[(cons? L) (count-strings-on-nelos L)]

))

(define (count-strings-on-nelos L)

; L a nelos

; (first L) a string

; (rest L) a los

; (count-strings (rest L)) a number

...)

Note that count-strings and count-strings-on-nelos refer to one another in the
same way function-on-los and function-on-nelos refer to one another, which in
turn corresponds to the way los and nelos refer to one another. The “main” function,
the one we’re really interested in, is count-strings, but we need a helper function
count-strings-on-nelos.

Now we just need to fill in everywhere that there’s a “. . . ”. The first one, the answer
in the (empty? L) case, is easy: an empty list has a length of 0. (We could write a
count-strings-on-empty-list function to do this, but that seems like too much work
just to get the answer 0.)

(define (count-strings L)

; L a los

(cond [(empty? L) 0]

[(cons? L) (count-strings-on-nelos L)]

))

The other “. . . ” is the body of count-strings-on-nelos. From the inventory, we have
an expression for the number of strings in the rest of the list. So how many strings are
there in the whole list? If you see immediately how to do this, great; if not, let’s try an
inventory with values. We’ll pick a moderately complicated example:

22.4. THE WAY WE REALLY DO LISTS 323

(define (count-strings-on-nelos L)

; L a nelos (cons "a" (cons "b" (cons "c" empty)))

; (first L) a string "a"

; (rest L) a los (cons "b" (cons "c" empty))

; (count-strings (rest L)) a number 2

; right answer a number 3

How could you get the right answer, 3, from the things above it? The one that most
closely resembles 3 is 2; you can get 3 from 2 by adding 1. This suggests the body

(define (count-strings-on-nelos L)

; L a nelos (cons "a" (cons "b" (cons "c" empty)))

; (first L) a string "a"

; (rest L) a los (cons "b" (cons "c" empty))

; (count-strings (rest L)) a number 2

; right answer a number 3

(+ 1 (count-strings (rest L))))

Does this make sense? It says the number of strings in the whole list is one more than
the number of strings in the rest of the list, which is certainly true.

Run the test cases, and they should all work. Use the Stepper to watch the computa-
tion for some non-trivial examples, like (count-strings shfe).

22.4.4 Collapsing two functions into one

We’ve written functions before that depended on auxiliary functions; the only new thing
here is that the auxiliary function depends on the original function in turn. And it’s
perfectly natural that when we’re working with two different data types, we have to write
two different functions. However, the only place count-strings-on-nelos is used is in-
side count-strings, so if we prefer, we can replace the call to count-strings-on-nelos

with its body:

(define (count-strings L)

; L a los

(cond [(empty? L) 0]

[(cons? L)

; L a nelos

; (first L) a string

; (rest L) a los

; (count-strings (rest L)) a number

(+ 1 (count-strings (rest L)))]

))

Note that now the count-strings function calls itself. Some of you may have written
functions in the past that called themselves, and the most likely result was something
called an “infinite loop”: the function called itself to answer the same question, then
called itself to answer the same question, then called itself to answer the same question,
and never accomplished anything. What we’ve done here is different: rather than calling
the function to answer the same question, we’re calling it to answer a smaller question,
then using the result to figure out the answer to the original question.

324 CHAPTER 22. LISTS

SIDEBAR:

Computer scientists use the word “recursion” for the notion that a function can call
itself, or two or more functions can call one another. Such functions are described
as “recursive”. Generations of computer science students have been mystified by
recursion, often because they try to think through the entire computation at once. It
seems to work better to think about only one level at a time. Concentrate on making
sure that

• the answer to the empty case is right, and

• if you have a correct answer for the rest of the list, you can construct a correct
answer for the whole list.

If this bothers you, here’s a way to justify it. Suppose we wrote a function this way
and it didn’t work correctly, i.e. there were some legal inputs on which it produced
a wrong answer; call these “bad” inputs. In particular, there must be a shortest bad
input. We know the function works correctly on the empty list, so the shortest bad
input must be non-empty, and thus have a “first” and a “rest”. The “rest” of this
list is shorter than the shortest bad input, so it’s not bad, i.e. the function works
correctly on it. We know the function produces a correct answer for the whole list
from a correct answer for the rest of the list. Since the answer on the rest of the
list is correct, that means the answer to the shortest bad input is correct too, which
means this isn’t a “bad” input after all. So the shortest “bad” input can’t be empty,
and it can’t be one item longer than a “good” input, so it can’t exist at all, i.e. the
function is always correct.

In order to write functions on lists as a single function rather than two, we must
likewise collapse the two templates into one:

#|

(define (function-on-los L)

; L a los

(cond [(empty? L) ...]

[(cons? L)

; L a nelos

; (first L) a string

; (rest L) a los

; (function-on-los (rest L)) whatever this returns

...]))

|#

22.5. LOTS OF FUNCTIONS TO WRITE ON LISTS 325

Again, it’s a matter of personal preference whether you solve a problem like this with
two functions that call one another, or one that calls itself; do whichever makes more
sense to you. They both work.

Whether you use two functions that call one another or one function that calls itself,
there will be somewhere that checks whether the list is empty, and returns an answer
without calling itself. This is called the base case of the recursion.

22.5 Lots of functions to write on lists

So far we’ve seen how to solve only one problem on lists, i.e. counting how many strings
are in a list of strings. We’ve seen slightly different definitions depending on whether we
define our own structs or use Racket’s built-in list features, and on whether we write it
as two functions that call one another or one function that calls itself, but it’s still only
one problem. To really get the hang of writing functions on lists, you’ll need to practice
on a number of examples.

I’ve described these examples using Racket’s built-in list features; they could of course
be written to use the empty-list and nelos structures defined in section 22.3, but the
definitions would be longer and harder to understand.

Worked Exercise 22.5.1 Define a data type list-of-numbers (or lon for short), in-
cluding a template for functions operating on lists of numbers. Develop a function
count-numbers that takes in a list of numbers and returns a number.

326 CHAPTER 22. LISTS

Solution: The data definition is similar to that for list-of-strings :

; A list-of-numbers is either

; empty or

; a nelon (non-empty list of numbers).

#|

(define (function-on-lon L)

; L a list of numbers

(cond [(empty? L) ...]

[(cons? L) (function-on-nelon L)]

))

|#

; A nelon looks like

; (cons number lon)

#|

(define (function-on-nelon L)

; L a cons

; (first L) a number

; (rest L) a lon

; (function-on-lon (rest L)) whatever this returns

...)

|#

And not surprisingly, the function definition is quite similar to that of count-strings:

; count-numbers : lon -> number

(check-expect (count-numbers empty) 0)

(check-expect (count-numbers (cons -4 empty)) 1)

(check-expect

(count-numbers (cons 5 (cons 2 (cons 8 (cons 6 empty)))))

4)

(check-expect (count-numbers-on-nelon (cons -4 empty)) 1)

(check-expect

(count-numbers-on-nelon (cons 5 (cons 2 (cons 8 (cons 6 empty)))))

4)

(define (count-numbers L)

; L a lon

(cond [(empty? L) 0]

[(cons? L) (count-numbers-on-nelon L)]

))

(define (count-numbers-on-nelon L)

; L a nelon

; (first L) a string

; (rest L) a lon

; (count-numbers (rest L)) a number

(+ 1 (count-numbers (rest L))))

or, writing it more simply as a single function,

22.5. LOTS OF FUNCTIONS TO WRITE ON LISTS 327

(define (count-numbers L)

; L a lon

(cond [(empty? L) 0]

[(cons? L)

; L a nelon

; (first L) a number

; (rest L) a lon

; (count-numbers (rest L)) a number

(+ 1 (count-numbers (rest L)))]

))

In fact, aside from its name, this function is identical to count-strings: neither one
actually makes any use of the type of the elements, so either one would work on a list
of any type. There’s a built-in Racket function length that does the same job, and now
that you’ve seen how you could have written it yourself, you should feel free to use the
built-in length function.

The next example is more interesting, and depends on the type of the elements.

Worked Exercise 22.5.2 Develop a function add-up that takes in a list of numbers
and returns the result of adding them all together. For example,

(check-expect (add-up (cons 4 (cons 8 (cons -3 empty)))) 9)

Solution: We already have the data definition for list-of-numbers, so we’ll go on to the
function. The contract, examples, skeleton, and inventory are easy:

; add-up : list-of-numbers -> number

(check-expect (add-up empty) 0)

(check-expect (add-up (cons 14 empty)) 14)

(check-expect (add-up (cons 3 (cons 4 empty))) 7)

(check-expect (add-up (cons 4 (cons 8 (cons -3 empty)))) 9)

(define (add-up L)

; L a lon

(cond [(empty? L) ...]

[(cons? L) (add-up-nelon L)]

))

(define (add-up-nelon L)

; L a nelon

; (first L) a number

; (rest L) a lon

; (add-up (rest L)) a number

...)

We need to fill in the two “. . . ” gaps. The answer to the empty case is obviously 0. For
the other “. . . ”, let’s try an inventory with values:

328 CHAPTER 22. LISTS

(define (add-up-nelon L)

; L nelon (cons 4 (cons 8 (cons -3 empty)))

; (first L) number 4

; (rest L) lon (cons 8 (cons -3 empty))

; (add-up (rest L)) number 5

; right answer number 9

...)

So how can you get the right answer, 9, from the things above it? The two lists don’t
look promising, but the numbers 4 and 5 do: we can get 9 by adding the 4 (i.e. (first

L)) and the 5 (i.e. (add-up (rest L))). This suggests the definition

(define (add-up-nelon L)

; L nelon (cons 4 (cons 8 (cons -3 empty)))

; (first L) number 4

; (rest L) lon (cons 8 (cons -3 empty))

; (add-up (rest L)) number 5

; right answer number 9

(+ (first L) (add-up (rest L))))

Does this make sense? Should the sum of a list of numbers be the same as the first
number plus the sum of the rest of the numbers? Of course. Test the function, and it
should work on all legal inputs.

Here’s a shorter single-function version, developed the same way.

(define (add-up L)

; L lon

(cond [(empty? L) 0]

[(cons? L)

; L nelon

; (first L) number

; (rest L) lon

; (add-up (rest L)) number

(+ (first L) (add-up (rest L)))

))

Exercise 22.5.3 Suppose you work for a toy company that maintains its inventory as a
list of strings, and somebody has come into the store looking for a doll. You want to know
whether there are any in stock. Develop a function contains-doll? that takes in a list
of strings and tells whether any of the strings in the list is "doll".

Exercise 22.5.4 Develop a function any-matches? that takes in a string and a list of
strings and tells whether any of the strings in the list is the same as the given string. For
example,

(check-expect

(any-matches? "fnord" (cons "snark" (cons "boojum" empty)))

false)

(check-expect

(any-matches? "fnord" (cons "snark" (cons "fnord" empty)))

true)

22.5. LOTS OF FUNCTIONS TO WRITE ON LISTS 329

Hint: The templates for operating on lists use a conditional to decide whether you’ve
got an empty or a non-empty list. This function needs to make another decision: does
the current string match the target or not? You can do this with another conditional,
or (since this function returns a boolean), you can do it more simply without the extra
conditional.

Exercise 22.5.5 Develop a function count-matches that takes in an object and a list
of objects and tells how many (possibly zero) of the objects in the list are the same as the
given object. For example,
(check-expect

(count-matches "cat" (cons "dog" (cons "cat" (cons "fish"

(cons "cat" (cons "cat" (cons "wombat" empty)))))))

3)

(check-expect

(count-matches 1 (cons 3 (cons 1 (cons 4

(cons 1 (cons 5 (cons 9 empty)))))))

2)

Hint: For this one, you probably will need a nested conditional.
There’s an additional difference: this function is supposed to work on any kind of

object, not just strings. So instead of string=?, you’ll need to use the built-in function
equal?.

Exercise 22.5.6 Develop a function count-votes-for-name that takes in a string (the
name of a candidate) and a list of strings (the votes cast by a bunch of voters) and tells
how many of the voters voted for this particular candidate.

Hint: This is really easy if you re-use previously-written functions.

Exercise 22.5.7 Develop a function count-over that takes in a number and a list
of numbers, and tells how many of the numbers in the list are larger than the specified
number.

Exercise 22.5.8 Develop a function average that takes in a list of numbers and returns
their average, i.e. their sum divided by how many there are. For this problem, you may
assume there is at least one number in the list.

Hint: Not every function on lists can best be written by following the templates . . .

Exercise 22.5.9 Develop a function safe-average that takes in a list of numbers and
returns their average; if the list is empty, it should signal an error with an appropriate
and user-friendly message.

Exercise 22.5.10 Develop a function convert-reversed that takes in a list of num-
bers. You may assume that all the numbers are integers in the range 0-9, i.e. decimal
digits. The function should interpret them as digits in a decimal number, ones place first
(trust me, this actually makes the problem easier!), and returns the number they represent.
For example,
(check-expect

(convert-reversed (cons 3 (cons 0 (cons 2 (cons 5 empty)))))

5203)

Do not use the built-in string->number function for this exercise.

330 CHAPTER 22. LISTS

Exercise 22.5.11 Develop a function multiply-all that takes in a list of numbers and
returns the result of multiplying them all together. For example,
(check-expect (multiply-all (cons 3 (cons 5 (cons 4 empty)))) 60)

Hint: What is the “right answer” for the empty list? It may not be what you think at
first!

Exercise 22.5.12 A “dollar store” used to mean a store where everything cost less than
a dollar. Develop a function dollar-store? that takes in a list of numbers (the prices
of various items), and tells whether the store qualifies as a “dollar store”.

Exercise 22.5.13 Develop a function all-match? that takes in a string and a list of
strings, and tells whether all the strings in the list match the given string. For example,
(check-expect

(all-match? "cat" (cons "cat" (cons "dog" (cons "cat" empty))))

false)

(check-expect

(all-match? "cat" (cons "cat" (cons "cat" empty)))

true)

Exercise 22.5.14 Develop a function general-bullseye that takes in a list of numbers
and produces a white image with black concentric rings at those radii.

Hint: I recommend using an empty image like (circle 0 "solid" "white") as the
answer for the empty case.

Exercise 22.5.15 Develop an animation that displays a bull’s-eye pattern of black
rings on a white background. Each second, an additional ring will be added, three pixels
outside the previous outer ring.

Hint: Use a list of numbers as the model. For your tick handler, write a function that
takes in a list of numbers and sticks one more number onto the front of the list, equal to
three times the length of the existing list.

Exercise 22.5.16 Develop an animation that displays a bull’s-eye pattern, as in Ex-
ercise 22.5.15, but each second, an additional ring will be added at a random radius.

In section 22.4.4, why did we move the body of function-on-nelos inside the body
of function-on-los, rather than the other way around? Because in most cases, we want
the resulting function to work on all lists, including empty. But sometimes it works better
to move function-on-los inside function-on-nelos instead.

Exercise 22.5.17 Develop a function largest that takes in a list of numbers and
returns the largest one.

Hint: This function doesn’t really make sense on an empty list, so the input data type
is really “non-empty list of numbers,” and the simplest test case should be a one-element
list. Since largest doesn’t make sense on an empty list, you should be careful never to
call it on an empty list.

If you use the two-function approach, the “main” function here is the one for non-
empty lists; the one for possibly-empty lists is the helper function. And if you use a

22.5. LOTS OF FUNCTIONS TO WRITE ON LISTS 331

one-function approach, you’ll need to move the function for possibly-empty lists inside
the function for non-empty lists, e.g.

(define (function-on-nelos L)

; (first L) a string

; (rest L) a list

(cond [(empty? (rest L)) ...]

[(cons? (rest L))

; (function-on-nelos (rest L)) whatever this returns

...]))

Exercise 22.5.18 Develop a function count-blocks that takes in a list of numbers,
which may contain some repetitions, and tells how many blocks of repeated numbers there
are. A block is one or more copies of the same number appearing in the list, with no other
numbers in between. For example,

(check-expect (count-blocks

(cons 3 (cons 3 (cons 2 (cons 7 (cons 7 (cons 7

(cons 2 (cons 2 empty)))))))))

4)

because this list has a block of 3’s, then a block of 2’s, then a block of 7’s, then another
block of 2’s: four blocks in all.

Hint: I know of at least two ways to solve this problem. Both involve useful techniques
that you should know; try both.

First, try writing a version of this function that only works on non-empty lists; as in
Exercise 22.5.17, the base case becomes “is the list one element long?”. For one-element
lists, the answer is easy; for longer lists, you know that the list has both a first and a
second element, and can reasonably ask whether they’re the same. Once this works on
all non-empty lists, add an “empty” case.

The other approach is to write a helper function that takes in not only a list of
numbers but also the number we’re “already looking at:” if the list is non-empty, you can
reasonably check whether its first number is the same as the one you’re already looking
at.

Exercise 22.5.19 Develop a function count-even-odd-blocks that takes in a list of
integers and tells how many blocks of consecutive even or consecutive odd numbers there
are. For example,

(check-expect (count-even-odd-blocks

(cons 3 (cons 9 (cons 2 (cons 7 (cons 1 (cons 1

(cons 2 (cons 4 empty)))))))))

4)

because the numbers 3 and 9 form a block of odd numbers; 2 is a block of even numbers;
7, 1, and 1 form a block of odd numbers; and 2 and 4 are a block of even numbers, for
four blocks in all.

Hint: Obviously, this is similar to Exercise 22.5.18, but if you use the “helper function”
approach, it doesn’t need to take in a specific “already seen” number, but only whether the
previous number was even or odd. Instead of passing in the previous number, therefore,
try writing two separate (but similar) helper functions even-helper and odd-helper.

332 CHAPTER 22. LISTS

This approach is a little longer, but it’s a powerful technique that you can use for many
problems in the future. Try it.

SIDEBAR:

There are many problems that call for scanning through a list from left to right,
looking for particular patterns. The above approach is one that computer scientists
call a finite-state machine or finite-state automaton.

Exercise 22.5.20 Develop a function random-element that takes in a non-empty list
and returns a randomly chosen element of it. Ideally, each element should be equally likely
to be chosen.

Hint: You’ll probably need the built-in list-ref function, which takes in a non-empty
list and a number, and returns the element that far away from the beginning of the list.
For example,
(check-expect

(list-ref (cons "a" (cons "b" (cons "c" empty))) 0)

"a")

(check-expect

(list-ref (cons "a" (cons "b" (cons "c" empty))) 1)

"b")

(check-expect

(list-ref (cons "a" (cons "b" (cons "c" empty))) 2)

"c")

list-ref produces an error message if you give it too large a number, so make sure you
don’t do that.

Since random-element is unpredictable, you won’t be able to test it with check-expect,
but you can call it a bunch of times with the same list and see whether each element is
chosen roughly the same number of times.

Warning: The list-ref function is useful when you need to get the element of a list
at an arbitrary numeric position. That’s actually not a common thing to need; 95% of
the time, you’ll be better off using first and rest.

Exercise 22.5.21 Write a data definition, including templates, for a list of lists of
strings. Write several examples of this data type.

Develop a function total-length that takes in a list of lists of strings and returns
the total number of strings appearing in all the lists put together.

Develop a function longest that takes in a non-empty list of lists of strings and
returns the longest of the lists. If there are two or more of the same maximum length, it
may return either one at your choice.

22.6 Lists of structs

As we’ve seen, writing a function to work on a list of numbers is almost exactly like
writing a function to work on a list of strings. Not surprisingly, writing a function to
work on a list of posns, or employees, or other types like that isn’t much harder.

Worked Exercise 22.6.1 Develop a function any-on-diag? that takes in a list of
posn structures and tells whether any of them are “on the diagonal,” i.e. have x and y
coordinates equal to one another.

22.6. LISTS OF STRUCTS 333

Solution: The data definition is straightforward:

; A list-of-posns is either

; empty or

;; a nelop (non-empty list of posns).

#|

(define (function-on-lop L)

; L a list of posns

(cond [(empty? L) ...]

[(cons? L) (function-on-nelop L)]

))

|#

; A nelop looks like

; (cons posn lop)

#|

(define (function-on-nelop L)

; L a cons

; (first L) a posn

; (posn-x (first L)) a number

; (posn-y (first L)) a number

; (rest L) a lop

; (function-on-lop (rest L)) whatever this returns

...)

|#

For test cases, we need an empty list and at least two or three non-empty lists: at
least one with right answer true and at least one with right answer false.

(check-expect (any-on-diag? empty) false)

(check-expect (any-on-diag? (cons (make-posn 5 6) empty)) false)

(check-expect (any-on-diag? (cons (make-posn 5 5) empty)) true)

(check-expect (any-on-diag? (cons (make-posn 5 6)

(cons (make-posn 19 3) empty)))

false)

(check-expect (any-on-diag? (cons (make-posn 5 6)

(cons (make-posn 19 19) empty)))

true)

(check-expect (any-on-diag? (cons (make-posn 5 5)

(cons (make-posn 19 3) empty)))

true)

334 CHAPTER 22. LISTS

The function templates give us a good start on writing the any-on-diag? function:

(define (any-on-diag? L)

; L a list of posns

(cond [(empty? L) ...]

[(cons? L) (any-on-diag-nelop? L)]

))

(define (any-on-diag-nelop? L)

; L a cons

; (first L) a posn

; (posn-x (first L)) a number

; (posn-y (first L)) a number

; (rest L) a lop

; (any-on-diag? (rest L)) a boolean

...)

The right answer for the empty list is false (that was one of our test cases), so we can fill
that in immediately. And the obvious question to ask about the posn is “are the x and y
coordinates equal?”, i.e. (= (posn-x (first L)) (posn-y (first L))), so we’ll add
that to the template too:

(define (any-on-diag? L)

; L a list of posns

(cond [(empty? L) false]

[(cons? L) (any-on-diag-nelop? L)]

))

(define (any-on-diag-nelop? L)

; L a cons

; (first L) a posn

; (posn-x (first L)) a number

; (posn-y (first L)) a number

; (= (posn-x (first L)) (posn-y (first L))) a boolean

; (rest L) a lop

; (any-on-diag? (rest L)) a boolean

...)

Now let’s try an inventory with values. In fact, since the function has to return
a boolean, we’ll do two inventories-with-values, one returning true and one returning
false:

22.6. LISTS OF STRUCTS 335

(define (any-on-diag-nelop? L)

; L a cons (cons (make-posn 5 6) (cons (make-posn 19 3) empty))

; (first L) a posn (make-posn 5 6)

; (posn-x (first L)) a number 5

; (posn-y (first L)) a number 6

; (= (posn-x (first L)) (posn-y (first L))) a boolean false

; (rest L) a lop (cons (make-posn 19 3) empty)

; (any-on-diag? (rest L)) a boolean false

; right answer a boolean false

...)

(define (any-on-diag-nelop? L)

; L a cons (cons (make-posn 5 5) (cons (make-posn 19 3) empty))

; (first L) a posn (make-posn 5 5)

; (posn-x (first L)) a number 5

; (posn-y (first L)) a number 5

; (= (posn-x (first L)) (posn-y (first L))) a boolean true

; (rest L) a lop (cons (make-posn 19 3) empty)

; (any-on-diag? (rest L)) a boolean false

; right answer a boolean true

...)

What expression could we fill in for the “. . . ” that would produce the right answer in
both cases? Well, the right answer is a boolean, and there are two booleans above it in
the inventory. The most common ways to combine booleans to get another boolean are
and and or. In this case or gives the right answer:

(define (any-on-diag-nelop? L)

; L cons

; (first L) posn

; (posn-x (first L)) number

; (posn-y (first L)) number

; (= (posn-x (first L)) (posn-y (first L))) boolean

; (rest L) lop

; (any-on-diag? (rest L)) boolean

(or (= (posn-x (first L)) (posn-y (first L)))

(any-on-diag? (rest L))))

Test the function(s), and you should get correct answers.

If you prefer to solve this as a single function, the process is similar, but the end result
is

336 CHAPTER 22. LISTS

(define (any-on-diag? L)

; L list of posns

(cond[(empty? L) false]

[(cons? L)

; L a cons

; (first L) posn

; (posn-x (first L)) number

; (posn-y (first L)) number

; (= (posn-x (first L)) (posn-y (first L))) boolean

; (rest L) lop

; (any-on-diag? (rest L)) boolean

(or (= (posn-x (first L)) (posn-y (first L)))

(any-on-diag? (rest L)))

]))

Exercise 22.6.2 Develop a function any-over-100K? that takes in a list of employee
structures (from Exercise 21.2.1) and tells whether any of them earn over $100,000 per
year.

Exercise 22.6.3 Develop a function lookup-by-name that takes in a string and a
list of employee structures (from Exercise 21.2.1) and returns the first one whose name
matches the string. If there is none, it should return false.

Exercise 22.6.4 Develop a function total-votes that takes in a list of candidate
structures (from Exercise 21.3.3) and returns the total number of votes cast in the election.

Exercise 22.6.5 Develop a function avg-votes that takes in a list of candidate

structures and returns the average number of votes for each candidate.

Hint: This doesn’t have a reasonable answer if there are no candidates. How do you
want to handle this case?

Exercise 22.6.6 Develop a function winner that takes in a list of candidate struc-
tures and returns the one with the most votes. If there are two or more tied for first place,
you can return whichever one you wish.

Hint: This doesn’t have a reasonable answer if there are no candidates. How do you
want to handle this case?

Exercise 22.6.7 Develop an animation similar to Exercise 20.6.4, but every few sec-
onds a dot is added to the screen (in addition to whatever dots are already there), and if
you click inside any of the existing dots, the game ends. (The game will be easy to win,
since pretty soon the screen fills with dots so it’s hard not to hit one.)

Hint: Use a list of posns as the model.

22.7. STRINGS AS LISTS 337

22.7 Strings as lists

Worked Exercise 22.7.1 Develop a function count-e that takes in a string and returns
the number of times the letter “e” appears in it. You may assume there are no capital
letters (i.e. you don’t need to count “E”).

Solution: The contract and examples are fairly straightforward:

; count-e : string -> number

(check-expect (count-e "") 0)

(check-expect (count-e "a") 0)

(check-expect (count-e "e") 1)

(check-expect (count-e "ab") 0)

(check-expect (count-e "ae") 1)

(check-expect (count-e "ea") 1)

(check-expect (count-e "ee") 2)

(check-expect

(count-e "Tweedledum and Tweedledee were going to a fair")

10)

But how do we write the function?

In a way, this looks similar to the count-matches function. Intuitively, a string is a
sequence of characters, which “feels” sort of like a list. But we don’t have a template for
writing functions on a string, looking at each letter one at a time.

There are two ways to handle this. One is to develop such a template so we can write
functions that operate directly on strings. The other is to convert a string into a list and
then use functions on lists to handle it. Both approaches are useful to know, so let’s try
both.

A template for strings

To develop a template for operating on strings, we’ll proceed by analogy with lists. A
string is either empty or non-empty; if it’s non-empty, it has a first character and “the
rest”.

If only we had built-in functions analogous to empty?, cons?, first, and rest. . . Wait:
Exercise 13.2.4 defines a function that tells whether a string is empty. We could easily
write a non-empty-string? function from it using not (or we could just use else, and
not define non-empty-string? at all). Exercise 19.3.3 defines a first-char function
analogous to first, while exercises 9.2.3 and 19.3.2 define a chop-first-char function
analogous to rest. So with these, the template is easy:

#|

(define (function-on-string str)

; str a string

(cond [(empty-string? str) ...]

[(non-empty-string? str) (function-on-nes str)]

))

|#

338 CHAPTER 22. LISTS

#|

(define (function-on-nes str)

; str non-empty string

; (first-char str) length-1 string

; (chop-first-char str) string

; (function-on-string (chop-first-char str)) whatever

...)

|#

or, collapsing the two functions into one,

#|

(define (function-on-string str)

(cond [(empty-string? str) ...]

[(non-empty-string? str)

; str non-empty string

; (first-char str) length-1 string

; (chop-first-char str) string

; (function-on-string (chop-first-char str)) whatever

...]))

|#

With this template, the solution is pretty easy:
(define (count-e str)

(cond [(empty-string? str) 0]

[(non-empty-string? str)

; str non-empty string

; (first-char str) length-1 string

; (chop-first-char str) string

; (count-e (chop-first-char str))

(cond [(string=? (first-char str) "e")

(+ 1 (count-e (chop-first-char str)))]

[else (count-e (chop-first-char str))])]))

The char data type

Before we can discuss the other approach, we need to learn about another data type: char.
Strings in Racket and most other languages are built from characters, which are actually
another data type you can work with directly. There are built-in functions char=?, which
compares two characters to see if they’re the same, and char?, which checks whether
something is a character at all.

Recall that to type in a string, regardless of length, you surround it in double-quotes.
To type in a character, you put #\ in front of it. For example, the first (and only)
character in the string "e" is #\e; the third character in the string "5347" is #\4; and
the third character in the string "Hi there" is #\ , which can also be written more
readably as #\space.)

Converting strings to lists

There’s a built-in function string->list which converts a string into a list of chars. So
using this approach, we could define count-e very simply as follows:

(define (count-e str)

(count-matches #\e (string->list str)))

22.8. ARBITRARILY NESTED LISTS 339

Note that count-matches works on a list of any type of object, including char.

I recommend trying some of the following problems using the template, and some
using conversion to a list, so you’re comfortable using both techniques.

Exercise 22.7.2 Develop a function count-vowels that takes in a string and returns
how many vowels (any of the letters “a”, “e”, “i”, “o”, or “u”) it contains. You may
assume there are no capital letters.

Exercise 22.7.3 Develop a function has-spaces? that takes in a string and tells
whether it contains any blanks.

Exercise 22.7.4 Develop a function count-words that takes in a string and tells how
many words are in it. A “word” is a sequence of letters; whether it’s one letter or ten, it
counts as a single word. Note also that there might be punctuation marks, spaces, multiple
spaces, numbers, etc. in between words.

Hint: This problem is similar to Exercise 22.5.19. In addition, you’ll probably want the
built-in function char-alphabetic?. Look it up in the Help Desk.

22.8 Arbitrarily nested lists

In Exercise 22.5.21 we saw that the elements of a list can themselves be lists (of strings,
numbers, etc.). There is also no rule that all the elements of a list are the same type: one
can have a list of which some elements are strings, others are lists of strings, and others
even lists of lists of strings. For example, suppose we were working with English sentences,
and had decided to represent a sentence as a list of words, e.g. the sentence “Bob likes
Mary” could be stored in the computer as (cons "Bob" (cons "likes" (cons "Mary"

empty))). But how should we represent a sentence like “Jeff said “Bob likes Mary”
yesterday”? The thing that Jeff said is in itself a whole sentence, so it would be nice to
represent it the same way we represent sentences . . . but it fits into the grammar of the
whole sentence in exactly the same way as if he had said only one word.

(cons "Jeff" (cons "said" (cons

(cons "Bob" (cons "likes" (cons "Mary" empty)))

(cons "yesterday" empty))))

Exercise 22.8.1 Write a data definition, including templates, for a nested string
list, in which each element may be either a string or another nested string list.

Exercise 22.8.2 Translate the following English sentences into nested string lists, using
a list to represent each quotation.

• “We watched “Rudolph the Red-Nosed Reindeer” and “Frosty the Snowman” on
Christmas Eve.”

• “ “This is silly,” said Mary.”

• “Grandpa said “I’ll read you a book called “The Princess Bride”, one of my favorites.
“Once upon a time, there was a beautiful princess named Buttercup. The stable-boy,
Wesley, was in love with her, but never said anything but “As you wish.” ” ” The
boy was already asleep.”

340 CHAPTER 22. LISTS

Exercise 22.8.3 Ingredient lists on food packaging sometimes get deeply nested. I found
a package of ice cream with the following ingredients list (I am not making this up!) :

Milk, skim milk, cream, hazelnut swirl (praline paste (hazelnuts, sugar,
milk chocolate (sugar, cocoa butter, milk, chocolate, natural flavor, soy lecithin),
bittersweet chocolate (sugar, chocolate, cocoa butter, butter oil, natural fla-
vor, soy lecithin)), corn oil, powdered sugar (sugar, corn starch), dark choco-
late (sugar, chocolate, cocoa butter, butter oil, natural flavor, soy lecithin),
corn starch, cocoa processed with alkali, coconut oil, mono- and di-glycerides,
salt, soy lecithin), sugar, chocolate truffle cake (semi-sweet chocolate (sugar,
chocolate, cocoa butter, soy lecithin), cream, chocolate cookie crumbs (enriched
flour (flour, niacin, reduced iron, thiamine mononitrate, riboflavin, folic acid),
sugar, partially hydrogenated soybena, cottonseed, and canola oil, cocoa pro-
cessed with alkali, high fructose corn syrup, yellow corn flour, chocolate, salt,
dextrose, baking soda, soy lecithin), corn syrup, butter, chocolate, sugar, nat-
ural flavor), bittersweet chocolate (sugar, chocolate, cocoa butter, butter oil,
natural flavor, soy lecithin), cocoa processed with alkali, egg yolks, natural
flavor, guar gum, carob bean gum, carrageenan, dextrose

We could represent this in Racket as follows:

(define milk-chocolate (cons "sugar" (cons "cocoa-butter"

(cons "milk" (cons "chocolate" (cons "natural flavor"

(cons "soy lecithin" empty)))))))

(define bittersweet-chocolate (cons "sugar" (cons "chocolate"

(cons "cocoa butter" (cons "butter oil" (cons

"natural flavor" (cons "soy lecithin" empty)))))))

(define praline-paste (cons "hazelnuts" (cons "sugar"

(cons milk-chocolate (cons bittersweet-chocolate empty)))))

...

Note how I’ve defined Racket variables for the ingredients that have ingredient lists of
their own.

Finish translating this ingredient list to Racket.

Exercise 22.8.4 Develop a function count-strings-nested that takes in a nested
string list and returns the total number of simple strings in it, no matter how many levels
of nested lists they’re inside.

Exercise 22.8.5 Develop a function max-nesting-depth that takes in a nested string
list and returns its maximum nesting depth: empty has a nesting depth of 0, a list of
strings has a nesting depth of 1, a list that contains some lists of strings has a nesting
depth of 2, etc.

It can be difficult to read and write such nested lists and the test cases for Exer-
cises 22.5.21, 22.8.1, 22.8.3, 22.8.4, and 22.8.5. In Section 23.3 we’ll learn a more compact
notation for lists that makes this easier.

22.9 Review of important words and concepts

Whereas a structure collects a fixed number of related pieces of information into one
object, a list allows you to collect a variable number of related pieces of information into

22.10. REFERENCE 341

one object. The list data type is defined by combining techniques we’ve already seen:
definition by choices (is it empty or not?) and definition by parts (if it’s non-empty, it
has a first and a rest, which is itself a list).

We already know how to write functions on data types defined by choices, and defined
by parts; the new feature is that since a list really involves two interdependent data types,
a function on lists is often written as two interdependent functions. However, since one
of these is generally only used in one place in the other, we can often make the program
shorter and simpler by combining the two functions into one that calls itself on the rest
of the list.

A list can contain any kind of data: numbers, strings, structs, or even other lists.
The template for functions that work on lists is almost the same for all of these; the only
difference is what you can do with (first the-list). In particular, if the first element
of a list is itself a list, you may need to call the same function on it.

Operating on strings is much like operating on lists. A function that takes in a string
can test whether it’s the empty string or not, extract its first character and the remaining
characters, and so on . . . or it can use the built-in function string->list to convert the
whole string into a list of characters, and then use the usual list template to work with
this list of characters.

22.10 Reference: Built-in functions on lists

This chapter introduced the following built-in constants and functions:

• empty

• empty?

• cons

• first

• rest

• cons?

• string->list

• char=?

• char?

• char-alphabetic?

• list-ref

342 CHAPTER 22. LISTS

Chapter 23

Functions that return lists

If you did exercises 22.5.15 or 22.5.16, you’ve already written some functions that return
lists, but only in a very simple way: adding one new element to the front of an existing
list. In this chapter we’ll discuss functions that construct an entire list as their results.

23.1 Doing something to each element

Worked Exercise 23.1.1 Develop a function add1-each that takes in a list of num-
bers and returns a list of numbers of the same length, with each element of the answer
equal to 1 more than the corresponding element of the input. For example,

(check-expect (add1-each (cons 3 (cons -12 (cons 7 empty))))

(cons 4 (cons -11 (cons 8 empty))))

Solution: For brevity, I’ll write this as a single function; the two-function version is quite
similar. The contract, test cases, skeleton, and inventory are straightforward:

; add1-each : list-of-numbers -> list-of-numbers

(check-expect (add1-each empty) empty)

(check-expect (add1-each (cons 3 empty)) (cons 4 empty))

(check-expect (add1-each (cons 3 (cons -12 (cons 7 empty))))

(cons 4 (cons -11 (cons 8 empty))))

(define (add1-each nums)

; nums lon

(cond [(empty? nums) ...]

[(cons? nums)

; nums nelon

; (first nums) number

; (rest nums) lon

; (add1-each (rest nums)) lon

...]

))

The answer to the empty case is obviously empty (since the result has to be the same
length as the input). To fill in the non-empty case, let’s do an inventory with values:

343

344 CHAPTER 23. FUNCTIONS THAT RETURN LISTS

[(cons? nums)

; nums (cons 3 (cons -12 (cons 7 empty)))

; (first nums) 3

; (rest nums) (cons -12 (cons 7 empty))

; (add1-each (rest nums)) (cons -11 (cons 8 empty))

; right answer (cons 4 (cons -11 (cons 8 empty)))

...]

))

Notice that the recursive call (add1-each (rest nums)) gives you most of the right
answer, but it’s missing a 4 at the front. Where could the 4 come from? Since (first

nums) in this example is 3, an obvious choice is (+ 1 (first nums)).

[(cons? nums)

; nums (cons 3 (cons -12 (cons 7 empty)))

; (first nums) 3

; (rest nums) (cons -12 (cons 7 empty))

; (add1-each (rest nums)) (cons -11 (cons 8 empty))

; right answer (cons 4 (cons -11 (cons 8 empty)))

(cons (+ 1 (first nums))

(add1-each (rest nums)))]

))

Test this, and it should work on all legal inputs.

Exercise 23.1.2 Develop a function square-each that takes in a list of numbers and
returns a list of their squares, in the same order.

Exercise 23.1.3 Develop a function string-lengths that takes in a list of strings
and returns a list of their (numeric) lengths, in the same order.

Exercise 23.1.4 Develop a function salaries that takes in a list of employee struc-
tures (from Exercise 21.2.1) and returns a list containing only their salaries, in the same
order.

Exercise 23.1.5 Develop a function give-10%-raises that takes in a list of employee
structures and returns a list of the same employees, but each earning 10% more than be-
fore.

Exercise 23.1.6 Develop a function stutter that takes in a list of anything (it doesn’t
matter whether they’re strings, numbers, or something else) and returns a list twice as
long, with each element repeated twice in a row. For example,
(check-expect (stutter (cons 5 (cons 2 (cons 9 empty))))

(cons 5 (cons 5 (cons 2 (cons 2 (cons 9 (cons 9 empty)))))))

Exercise 23.1.7 Develop a function list-each that takes in a list (of numbers,
strings, it doesn’t matter) and returns a list of one-element lists, each containing a dif-
ferent one of the elements in the original list. For example,
(check-expect (list-each (cons "a" (cons "b" empty)))

(cons (cons "a" empty) (cons (cons "b" empty) empty)))

23.2. MAKING DECISIONS ON EACH ELEMENT 345

Exercise 23.1.8 Develop a function suffixes that takes in a list (of numbers, strings,
it doesn’t matter) and returns a list of lists comprising all the suffixes of the list (that
is, “the last 3 elements,” “the last 17 elements,”, “the last 0 elements,” etc. of the given
list). For example,
(check-expect (suffixes (cons "a" (cons "b" (cons "c" empty))))

(cons (cons "a" (cons "b" (cons "c" empty)))

(cons (cons "b" (cons "c" empty))

(cons (cons "c" empty)

(cons empty

empty))))))

Exercise 23.1.9 Recall the built-in string-append function, which takes in two strings
and produces a single string by combining them end to end. Develop a function

list-append that takes in two lists (of numbers, strings, it doesn’t matter) and com-
bines them end-to-end into one list. For example,

(check-expect

(list-append (cons "a" (cons "b" (cons "c" empty)))

(cons "d" (cons "e" empty)))

(cons "a" (cons "b" (cons "c" (cons "d" (cons "e" empty))))))

Hint: This function takes in two lists, so one might wonder what template to use. We’ll
discuss this more fully in Chapter 25, but for now, use the template on the first of the
two lists, treating the second as just a simple variable.

There’s a built-in function append that does this, but you are not allowed to use
append in writing your function; the point is that if append weren’t built in, you could
have written it yourself. After you’ve finished this exercise, feel free to use append in the
rest of the book.

Exercise 23.1.10 Define a function backwards that takes in a list (of anything) and
returns a list of the same objects in the opposite order.

There’s a built-in function named reverse which does this, but I want you to define
it yourself without using reverse. After you’ve finished this exercise, feel free to use
reverse in the rest of the book.

23.2 Making decisions on each element

In some problems, you need to make a decision about each element of a list, using a
conditional. As with Exercises 22.5.5, 22.5.7, etc., this conditional is usually nested
inside the one that decides whether the list is empty or not.

Exercise 23.2.1 Develop a function substitute that takes in two strings and a list
of strings, and returns a list the same length as the given list, but with all occurrences of
the first string replaced by the second. For example,
(check-expect

(substitute "old" "new" (cons "this" (cons "that" (cons "old"

(cons "new" (cons "borrowed" (cons "old" (cons "blue"

empty))))))))

(cons "this (cons "that" (cons "new" (cons "new"

(cons "borrowed" (cons "new" (cons "blue" empty)))))))

346 CHAPTER 23. FUNCTIONS THAT RETURN LISTS

Exercise 23.2.2 Develop a function remove-all that takes in a string and a list of
strings, and returns the same list but with all occurrences (if there are any) of the given
string removed. For example,
(check-expect

(remove-all "old" (cons "this (cons "that" (cons "old"

(cons "new" (cons "borrowed" (cons "old"

(cons "blue" empty))))))))

(cons "this" (cons "that" (cons "new" (cons "borrowed"

(cons "blue" empty)))))))

Exercise 23.2.3 Develop a function remove-first that takes in a string and a list of
strings, and returns the same list but with the first occurrence (if any) of the given string
removed. For example,
(check-expect

(remove-first "old" (cons "this (cons "that" (cons "old"

(cons "new" (cons "borrowed" (cons "old"

(cons "blue" empty))))))))

(cons "this" (cons "that" (cons "new" (cons "borrowed"

(cons "old" (cons "blue" empty)))))))

Exercise 23.2.4 Develop a function unique that takes in a list of objects and returns
a list of the same objects, but each appearing only once each.

Hint: There are several ways to do this. Probably the easiest way, given what you’ve
seen so far, produces a result in the order in which each string last appeared in the input;
for example,
(check-expect (unique (cons "a" (cons "b" (cons "a" empty))))

(cons "b" (cons "a" empty)))

; not (cons "a" (cons "b" empty)))

(check-expect

(unique (cons 3 (cons 8 (cons 5 (cons 5 (cons 8 empty))))))

(cons 3 (cons 5 (cons 8 empty))))

; not (cons 3 (cons 8 (cons 5 empty)))

We’ll discuss other approaches in later chapters.
Since you don’t know what kind of objects you’re dealing with, you’ll need to use

equal? to compare them.

Exercise 23.2.5 Develop a function fire-over-100K that takes in a list of employee
structures and returns a list of those who earn at most $100,000/year, leaving out the ones
who earn more. The remaining employees should be in the same order they were in before.

Exercise 23.2.6 Develop a function add-vote-for that takes in a string (repre-
senting a candidate’s name) and a list of candidate structures, and returns a list of
candidate structures in which that candidate has one more vote (and all the others are
unchanged). You may assume that no name appears more than once in the list.

Hint: What should you do if the name doesn’t appear in the list at all?

Exercise 23.2.7 Develop a function tally-votes that takes in a list of strings (Voter
1’s favorite candidate, Voter 2’s favorite candidate, etc.) and produces a list of candidate
structures in which each candidate’s name appears once, with how many votes were cast
for that candidate.

23.3. A SHORTER NOTATION FOR LISTS 347

23.3 A shorter notation for lists

23.3.1 The list function

Writing (cons "a" (cons "b" (cons "c" empty))) for a three-element list is techni-
cally correct, but it’s tedious. Fortunately, Racket provides a shorter way to accomplish
the same thing. There’s a built-in function named list that takes zero or more parame-
ters and constructs a list from them. For example,

> (list "a" "b" "c")

(cons "a" (cons "b" (cons "c" empty)))

Note that list is just a shorthand : it produces the exact same list as the cons form,
and any function that works on one of them will still work on the other.

Common beginner mistake

I’ve frequently seen students simply replace every cons in their code with list, getting
results like
(list "a" (list "b" (list "c" empty)))

Think of cons as adding one element to the front of a list, whereas list builds a list from
scratch. If you call cons on two arguments, the result will be a list one element longer
than the second argument was; if you call list on two arguments, the result will be a
list of exactly two elements. For example,

> (define my-list (list "x" "y" "z"))

> (cons "w" my-list)

(cons "w" (cons "x" (cons "y" (cons "z" empty))))

> (list "w" my-list)

(cons "w" (cons (cons "x" (cons "y" (cons "z") empty) empty))

Practice Exercise 23.3.1 Translate each of the following lists from list notation into
nested-cons notation. Check that your answers are correct by typing each expression into
DrRacket (Beginning Student language) and comparing the result with your answer.

(list)

(list "a")

(list "a" "b")

(list (list "Mary" "Joe") (list "Chris" "Phil"))

(list empty "a" empty)

23.3.2 List abbreviations for display

The list function makes it easier and more convenient to type in lists (especially lists of
structs, lists of lists, etc.), but it’s still a pain to read them. If you want lists to print out
in list notation rather than nested-cons notation, simply go to the “Language” menu
in DrRacket, select “Choose Language”, and then (under the How to Design Programs
heading) select “Beginning Student with List Abbreviations”.

348 CHAPTER 23. FUNCTIONS THAT RETURN LISTS

> (list "a" "b" "c")

(list "a" "b" "c")

> (cons "a" (cons "b" (cons "c" empty)))

(list "a" "b" "c")

> (define my-list (list "x" "y" "z"))

> (cons "w" my-list)

(list "w" "x" "y" "z")

> (list "w" my-list)

(list "w" (list "x" "y" "z"))

Again, note that this is only a change in output convention: both cons and list still
work, and any correct function on lists will still work no matter which way you type in
the examples, and no matter which language you’re in.

Practice Exercise 23.3.2 Translate each of the following lists from nested-cons nota-
tion into list notation. Check that your answers are correct by typing each expression
into DrRacket (Beginning Student with List Abbreviations language) and comparing the
result with your answer.

(cons "a" empty)

empty

(cons 3 (cons 4 (cons -2 empty)))

(cons (cons 3 empty) empty)

There’s an even shorter form called “quasiquote notation”, using the apostrophe:

> ’(1 2 (3 4) 5)

(list 1 2 (list 3 4) 5)

> ’("abc" "de" ("f" "g") "h")

(list "abc" "de" (list "f" "g") "h")

> ’()

empty

Quasiquote notation is not available in Beginning Student language.

SIDEBAR:

If you want to see your output in this even-shorter notation, “Choose Language”,
choose “Beginning Student with List Abbreviations”, click “Show Details” at the
bottom of the window, find the “Output Style” section on the right, choose
“Quasiquote”, then click “OK” and then “Run” (which you have to do whenever
you change languages).

You’ll notice that the output has not an ordinary apostrophe but rather a “back-
quote”. For now, you can treat these two characters as the same. Backquote allows
you to do some other neat things, but we won’t use it in this textbook; if you’re
really curious, look it up in the Help Desk.

Practice Exercise 23.3.3 For each exercise from Chapters 22 and 23 that you’ve al-
ready done, rewrite the test cases using list or quasiquote notation, and try the function
again. The results should be especially nice for functions that take in or return lists of
lists or lists of structs, like Exercises 22.8.5 and 23.1.8.

23.4. ANIMATIONS WITH LISTS 349

23.4 Animations with lists

Exercise 23.4.1 Write an animation of a bunch of balls, each moving around the
screen with constant velocity and bouncing off walls. Pressing the + key should create
one more ball, with random initial location (inside the animation window) and random
velocity (say, from -10 to +10 in each dimension). Pressing the - key should remove the
most recently-added ball, unless there are no balls, in which case it should do nothing.
Clicking with the mouse inside a ball should remove the ball you clicked on, leaving the
rest of the balls unchanged.

Hint: You’ll need each ball to have a location and a velocity, as in exercise 21.7.6, and
use a list of structs as your model, as in exercise 22.6.7.

Hint: What should happen if you click with the mouse in a place where two or more
balls overlap? The assignment doesn’t say exactly; you should decide in advance what
you want to happen in this case, and make it work.

23.5 Strings as lists

In Section 22.7, we showed two different ways to write functions on strings: using an
input template for them analogous to the input template for lists, and using the built-in
function string->list, which converts a string to a list of characters.

One can do the exact same thing for functions that return a string: either use an output
template analogous to that for returning a list, or use the built-in function list->string,
which converts a list of characters to a string. (If any of the things in the list is not a
character, it produces an error message.) I recommend trying some of the following
problems each way.

Exercise 23.5.1 Develop a function string-reverse that takes in a string and re-
turns a string of the same characters in reverse order.

Exercise 23.5.2 Develop a function string-suffixes that takes in a string and re-
turns a list of all its suffixes. For example,

(check-expect (string-suffixes "abc")

(list "abc" "bc" "c" ""))

Exercise 23.5.3 Develop a function replace-char that takes in a character and two
strings (replacement and target). It returns a string formed by replacing each occurrence
of the character in target with the entire string replacement. For example,

(check-expect (replace-char #\r "fnord" "reference librarian")

"fnordefefnordence libfnordafnordian")

Exercise 23.5.4 Develop a function named ubby-dubby which translates a given
string into “ubby-dubby talk”. This is defined as follows: insert the letters “ubb” in
front of each vowel in the original string. For example,

(check-expect (ubby-dubby "hello there")

"hubbellubbo thubberubbe")

You may assume for simplicity that all the letters are lower-case. You may find it
useful to write a vowel? helper function.

350 CHAPTER 23. FUNCTIONS THAT RETURN LISTS

Exercise 23.5.5 Modify your solution to exercise 23.5.4 so it inserts the letters “ubb”
only once in front of each group of consecutive vowels. For example,

(check-expect (ubby-dubby "hello friends out there")

"hubbellubbo frubbiends ubbout thubberubbe")

Hint: See Exercise 22.7.4.

Exercise 23.5.6 Develop a function words that takes in a string and returns a list
of strings, one for each word in the input string, leaving out any spaces, punctuation,
numbers, etc. A “word” is defined as in Exercise 22.7.4: a sequence of one or more
letters. For example,

(check-expect (words "This is chapter 26, or is it 25?")

(list "This" "is" "chapter" "or" "is" "it"))

Exercise 23.5.7 Develop a function pig-latin that takes in a string and converts
it to “Pig Latin”: for each word, if it starts with a vowel, add “way” at the end of the
word, and if it starts with a consonant, move that consonant to the end of the word and
add “ay”. You may assume that the input string has no upper-case letters, numbers, or
punctuation. For example,

(check-expect (pig-latin "hi boys and girls")

"ihay oysbay andway irlsgay")

Exercise 23.5.8 Modify your solution to exercise 23.5.7 so that if a word starts with
more than one consonant, the function moves all of them to the end, followed by “ay”.
For example,

(check-expect (pig-latin "this is a strange function")

"isthay isway away angestray unctionfay")

Exercise 23.5.9 Modify your solution to exercise 23.5.7 or 23.5.8 to handle capital
letters correctly: any word that started with a capital letter before should still start with
a capital letter after converting it to Pig Latin, and capital letters moved from the start
to the end of a word should no longer be capitalized. For example, if you made both this
modification and the one in exercise 23.5.8,

(check-expect (pig-latin "My name is Stephen Bloch")

"Ymay amenay isway Ephenstay Ochblay")

Hint: To do this, you may need some of the built-in functions char-upper-case?,
char-lower-case?, char-upcase, and char-downcase. Look them up in the Help Desk.

Exercise 23.5.10 Design a function basic-mad-lib that takes in a string (the tem-
plate) and a non-empty list of strings, and returns a string. The template may contain
ordinary words and punctuation, as well as the hyphen character (-). The output of the
function should be based on the template, but it should replace each - with a randomly-
chosen word from the list of words. For example,

(basic-mad-lib "The - bit the - and took a - home."

(list "dog" "cat" "senator" "taxi" "train" "chair"))

; could be "The chair bit the dog and took a senator home."

23.6. MORE COMPLEX FUNCTIONS INVOLVING LISTS 351

Exercise 23.5.11 Design a function mad-lib similar to the above, but it takes a string
(the template) and three non-empty lists (which we’ll call nouns, verbs, and adjectives).
The template may contain the “special” words -noun-, -verb-, and -adjective-; each
-noun- should be replaced by a randomly chosen element of nouns, and so on. For
example,

(mad-lib

"The -noun- -verb- the -adjective- -noun- and -verb- quickly."

(list "dog" "cat" "senator" "taxi" "train" "chair")

(list "tall" "green" "expensive" "chocolate" "overrated")

(list "ate" "drank" "slept" "wrote"))

; could be

"The senator slept the overrated cat and drank quickly."

23.6 More complex functions involving lists

Lists and recursion allow us to solve much more interesting and complicated problems
than we could solve before. Sometimes such problems require “helper” or “auxiliary”
functions. For each of the following problems, you’ll need at least one helper function. To
figure out what helper functions you need, just start writing the main function, following
the design recipe. When you reach the “inventory with values” point, you’ll probably
find that there is no built-in function to produce the right answer from the available
expressions. So decide what such a function would need to do. Then write it, following
the design recipe. This function in turn may need yet another helper function, and so on.

Exercise 23.6.1 Develop a function sort that takes in a list of numbers and returns
a list of the same numbers in increasing order.

Hint: There are several possible ways to do this. If you use an input template, you’ll
probably need a helper function that inserts a number in order into an already-sorted
list. If you use an output template, you’ll probably need two helper functions: one
to find the smallest element in an unsorted list, and one to remove a specified ele-
ment from an unsorted list. In either case, I recommend treating list-of-numbers

and sorted-list-of-numbers as two separate types: when a function produces a sorted
list, or assumes that it is given a sorted list, say so in the contract and inventory, and
make sure your test cases satisfy the assumption.

Exercise 23.6.2 Develop a function named sort-candidates that takes in a list of
candidate structures and returns a list of the same candidate structures in decreasing
order by number of votes, so the winner is first in the list, the second-place winner is
second, etc.. In case of ties, either order is acceptable.

Exercise 23.6.3 Develop a function subsets that takes in a list (of numbers, strings,
it doesn’t matter) and returns a list of lists representing all possible subsets of the elements
in the original list, once each. For example, (subsets (list "a" "b" "c")) should
produce something like

352 CHAPTER 23. FUNCTIONS THAT RETURN LISTS

(list (list)

(list "a")

(list "b")

(list "a" "b")

(list "c")

(list "a" "c")

(list "b" "c")

(list "a" "b" "c"))

You may assume that all the things in the input list are different.

Exercise 23.6.4 Develop a function scramble that takes in a list (of numbers, strings,
it doesn’t matter) and returns a list of lists representing all possible orderings of the el-
ements in the original list, once each. For example, (scramble (list "a" "b" "c"))

should produce something like

(list (list "a" "b" "c")

(list "b" "a" "c")

(list "a" "c" "b")

(list "c" "a" "b")

(list "b" "c" "a")

(list "c" "b" "a"))

Again, you may assume that all the things in the input list are different. Even better,
decide what the function should do if there are duplicate elements in the input list, and
make sure it does the right thing.

Hint: This will probably require more than one helper function. Take it one step at
a time: try to write the main function, figure out what you need to do to the recursive
result, invent a function to do that, and repeat until what you need to do is built-in.

Exercise 23.6.5 Develop a function scramble-word that takes in a string and returns
a list of strings representing all possible orderings of the characters in the string.

For a basic version of this function, you may include the same string more than once:
for example, (scramble-word "foo") might produce (list "foo" "ofo" "oof" "foo"

"ofo" "oof") Once you have this working, try rewriting it so it doesn’t produce any
duplicates: (scramble-word "foo") might produce (list "foo" "ofo" "oof") instead.

Hint: Re-use functions you’ve already written!

Exercise 23.6.6 Modify the scramble-word function so that, even if there are repeated
characters in the string, the result won’t contain the same word twice: (scramble-word

"foo") might produce (list "foo" "ofo" "oof").

23.7 Review of important words and concepts

Many of the most interesting things one can do with a list involve producing another
list. Sometimes we do the same thing to every element of a list, producing a list of the
results. Sometimes we select some of the elements of a list, producing a shorter list. And
sometimes we do more complicated things like scramble or subsets.

Recall from Chapter 20 that the inventory-with-values technique tends to be more
useful the more complicated the output type is. Lists, and especially lists of lists or lists
of structs, are the most complicated types we’ve seen yet, and the inventory-with-values
technique is extremely helpful in writing these functions.

23.8. REFERENCE 353

23.8 Reference: built-in functions that return lists

We’ve seen several new built-in functions in this chapter:

• append

• char-upper-case?

• char-lower-case?

• char-upcase

• char-downcase

• reverse

• list->string

354 CHAPTER 23. FUNCTIONS THAT RETURN LISTS

Chapter 24

Whole numbers

24.1 What is a whole number?

A whole number1 is a non-negative integer: any of the numbers 0, 1, 2, 3,
What does the “. . .” in the above definition mean? It basically means “and so on,” or

“you know the rest.” But what if you were talking to somebody who really didn’t “know
the rest”? Perhaps an alien from another planet, whose mathematical background was
so different from yours that he/she/it couldn’t fill in the “and so on”. How would you
define whole numbers to someone who didn’t already know what whole numbers were?

In the 1880’s, two mathematicians named Richard Dedekind and Giuseppe Peano
addressed this problem more or less as follows:

• 0 is a whole number

• If α is a whole number, then so is S(α)

The S was intended to stand for “successor” — for example, 1 is the successor of 0, and
2 is the successor of 1. However, the above definition doesn’t require that you already
know what 0, or 1, or 2, or “successor”, or “plus” mean.

24.1.1 Defining wholes from structs

Imagine that Racket didn’t already know about whole numbers. We could define them
as follows:
; A built-whole is either 0 or (S built-whole).

(define-struct successor [previous])

(define (S x) ; shorter name for convenience

(make-successor x))

(define (P x) ; shorter name for convenience

(successor-previous x))

(I use the name built-whole to distinguish it from “ordinary wholes”, which we’ll use in
the next section.)

We would then start constructing examples of the data type:

1Actually, I was brought up to call these “natural numbers”, and Racket includes a natural? function
to tell whether something is one of them. But some books define “natural numbers” to start at 1 rather
than 0. By contrast, everybody seems to agree that the “whole numbers” start at 0, so that’s the term
I’ll use in this book.

355

356 CHAPTER 24. WHOLE NUMBERS

• 0

• (S 0), which “means” 1

• (S (S 0)), which “means” 2

• (P (S (S 0))), another way to represent 1

• (S (S (S (S (S 0))))), which “means” 5

and so on.

The above definition should remind you of the definition of a list in Chapter 22: a list
is either empty or (cons object list). We defined lists by choices; one of the choices
had two parts (which we could get by using first and rest), one of which was itself a
list.

This combination of def-
inition by choices and by parts led us to a standard way to write functions on lists.

Following that analogy, how would one write functions on this built-whole data type?
The data type is defined by two choices, one of which has one part, which is another
built-whole. So the template (collapsed into a single function) looks like

(define (function-on-built-whole n)

(cond [(equal? n 0) ...]

[(successor? n)

; n successor

; (P n) built-whole

; (function-on-built-whole (P n)) whatever this returns

]))

24.1. WHAT IS A WHOLE NUMBER? 357

Worked Exercise 24.1.1 Develop a function spams that takes in a built-whole and
returns a list with that many copies of the string "spam".

Solution: The contract is clearly

; spams : built-whole -> list-of-string

Since the data type has two choices, we need to make sure we’ve got an example of each,
and a more complex example

(check-expect (spams 0) empty)

(check-expect (spams (S 0)) (list "spam"))

(check-expect (spams (S (S (S 0)))) (list "spam" "spam" "spam"))

For the function skeleton, we’ll start by copying the single-function template from
above, changing the function name:

(define (spams n)

(cond [(equal? n 0) ...]

[(successor? n)

; n successor

; (P n) built-whole

; (spams (P n)) list of strings

]))

The answer in the 0 case is obviously empty. For the non-zero case, let’s try an
inventory with values:

(define (spams n)

(cond [(equal? n 0) empty]

[(successor? n)

; n successor 3

; (P n) built-whole 2

; (spams (P n)) list of strings (list "spam" "spam")

; right answer list of strings

; (list "spam" "spam" "spam")

]))

358 CHAPTER 24. WHOLE NUMBERS

The obvious way to get from (list "spam" "spam") to (list "spam" "spam" "spam")

is by cons-ing on another "spam", so . . .

(define (spams n)

(cond [(equal? n 0) empty]

[(successor? n)

; n successor 3

; (P n) built-whole 2

; (spams (P n)) list of strings (list "spam" "spam")

; right answer list of strings

; (list "spam" "spam" "spam")

(cons "spam" (spams (P n)))

]))

Test this on the examples, and it should work. Make up some examples of your own;
does it do what you expect?

SIDEBAR:

The word “spam” today means “commercial junk e-mail”. Have you ever wondered
how it got that meaning?

“Spam” was originally a brand name for a “Spiced Ham” product sold by the
Hormel meat company. In 1970, the British TV show “Monty Python’s Flying Cir-
cus” aired a comedy sketch about a restaurant that was peculiar in two ways: first,
every item on its menu included Spam, and second, one table of the restaurant was
occupied by Vikings who, on several occasions during the sketch, started singing
“Spam, spam, spam, spam . . . ”

In 1970, there was no such thing as e-mail. By 1980, e-mail was a well-known
phenomenon, although not many people had it, and comics could start joking “If we
have electronic mail, pretty soon we’ll have electronic junk mail.” By 1990, it was
no longer a joke but a nuisance. Legend has it that somebody (I don’t know who or
when — probably in the 1980’s) was going through his/her inbox deleting junk mail
and muttering “junk . . . junk . . . junk . . . ” when the Monty Python sketch popped
into his/her head and (s)he replaced the word “junk” with the word “spam”. And
the rest is history.

Exercise 24.1.2 Develop a function copies that takes in a string and a built-whole,
and produces a list of that many copies of the string.

Exercise 24.1.3 Develop a function whole-value that takes in a built-whole and
returns the ordinary number that it “means”. For example,

(check-expect (whole-value 0) 0)

(check-expect (whole-value (S 0)) 1)

(check-expect (whole-value (P (S (S (S (S (S 0))))))) 4)

24.1.2 Wholes, the way we really do it

One can do a lot with this definition of wholes, but writing (S (S (S (S (S 0))))) for
5 is a royal pain. In fact, Racket already knows about numbers, including whole numbers,
so we can use Racket’s predefined arithmetic operations.

24.1. WHAT IS A WHOLE NUMBER? 359

A whole is either 0 or (add1 whole).

We can replace
(equal? n 0) with the predefined (zero? n) or (= n 0);
(S n) with the predefined (add1 n) or (+ n 1);
(P n) with the predefined (sub1 n) or (- n 1); and
(successor? n) with the predefined (positive? n) or > n 0).

The resulting template looks like

(define (function-on-whole n)

(cond [(= n 0) ...]

[(> n 0)

; n positive whole

; (- n 1) whole

; (function-on-whole (- n 1)) whatever this returns

]))

Worked Exercise 24.1.4 Re-write the spams function of Exercise 24.1.1 to work on
ordinary, built-in whole numbers.

Solution: The contract changes to take in an ordinary whole number:

; spams : whole-number -> list-of-strings

360 CHAPTER 24. WHOLE NUMBERS

The examples change to use ordinary number notation:

(check-expect (spams 0) empty)

(check-expect (spams 1) (list "spam"))

(check-expect (spams 3) (list "spam" "spam" "spam"))

The function definition is exactly the same as before, but replacing the built-whole func-
tions with standard Racket arithmetic functions:

(define (spams n)

(cond [(= n 0) empty]

[(> n 0)

; n positive whole 3

; (- n 1) whole 2

; (spams (- n 1)) list of strings(list "spam" "spam")

; right answer list of strings

; (list "spam" "spam" "spam")

(cons "spam" (spams (- n 1)))

]))

Try this and make sure it still works.

Exercise 24.1.5 Re-write the copies function of Exercise 24.1.2 to take in a string
and an (ordinary) whole number.

Exercise 24.1.6 Develop a function count-down that takes in an (ordinary) whole
number and produces a list of the whole numbers from it down to 0. For example,

(check-expect (count-down 4) (list 4 3 2 1 0))

Exercise 24.1.7 Develop a function add-up-to that takes in a whole number and
returns the sum of all the whole numbers up to and including it.

Hint: The formula n(n+ 1)/2 solves the same problem, so you can use it to check your
answers. But you should write your function by actually adding up all the numbers, not
by using this formula.

Exercise 24.1.8 Develop a function factorial that takes in a whole number and
returns the product of all the whole numbers from 1 up to and including it.

Hint: What is the “right answer” for 0? There are at least two possible ways to answer
this: you could decide that the function has no answer at 0 (so the base case is at 1,
not 0), or you could pick an answer for 0 so that the other answers all come out right.
Mathematicians generally choose the latter.

Exercise 24.1.9 Develop a function fibonacci that takes in a whole number n and
produces the n-th Fibonacci number. The Fibonacci numbers are defined as follows: the
0-th Fibonacci number is 0, the 1st Fibonacci number is 1, and each subsequent Fibonacci
number is the sum of the previous two Fibonacci numbers. For example,

24.1. WHAT IS A WHOLE NUMBER? 361

(check-expect (fibonacci 0) 0)

(check-expect (fibonacci 1) 1)

(check-expect (fibonacci 2) 1)

(check-expect (fibonacci 3) 2)

(check-expect (fibonacci 4) 3)

(check-expect (fibonacci 5) 5)

(check-expect (fibonacci 6) 8)

(check-expect (fibonacci 7) 13)

Hint: The usual template involves calling (fibonacci (- n 1)) inside the body of
fibonacci. In this case, you’ll probably want to call (fibonacci (- n 2)) as well.
However, that doesn’t make sense unless you know that (- n 2) is a whole number, so
your base case needs to handle both 0 and 1.

Note: The definition of fibonacci that you get by following the template for whole
numbers is correct, but extremely slow. On my computer, (fibonacci 30) takes about
a second; (fibonacci 35) takes about ten seconds; and (fibonacci 37) takes almost
thirty seconds. Try watching it in the Stepper, and you’ll see that it asks the same
question over and over. See if you can find a way to solve the same problem much more
efficiently, using a helper function with some extra parameters. We’ll see another way to
fix this problem in Section 30.3.

SIDEBAR:

“Fibonacci” is the modern name for Leonardo filius Bonacci (“son of Bonaccio”),
a mathematician who lived in Pisa, Italy in the 12th and 13th centuries. He is
best known today for this sequence of numbers, which has surprising applications
in biology, number theory, architecture, etc. But his most significant impact on the
world was probably persuading European scholars to switch from Roman numerals
by showing how much easier it is to do arithmetic using Arabic numerals.

Exercise 24.1.10 Develop a function named dot-grid (remember this from Chap-
ter 5?) that takes two whole numbers width and height and produces a rectangular grid
of circles with width columns and height rows.

Exercise 24.1.11 Develop a function named randoms that takes in two whole numbers
how-many and limit and produces a list of how-many numbers, each chosen randomly from
0 up to limit.

Hint: Use the template on how-many, not on limit.

Exercise 24.1.12 Develop a function named random-posns that takes in three whole
numbers how-many, max-x, and max-y and produces a list of how-many posns, each with
x chosen randomly between 0 and max-x, and y chosen randomly between 0 and max-y.

362 CHAPTER 24. WHOLE NUMBERS

Exercise 24.1.13 Develop a function named table-of-squares that takes in a whole
number and returns a list of posns representing a table of numbers and their squares from
the given number down to 0. For example,

(check-expect (table-of-squares 4)

(list (make-posn 4 16)

(make-posn 3 9)

(make-posn 2 4)

(make-posn 1 1)

(make-posn 0 0)))

Note: I’ve put these in descending order because it’s easier to write the function that
way. It would be nice to produce the table in increasing order instead. We’ll see how to
do that in the next section.

24.2 Different base cases, different directions

Recall Exercise 24.1.7, a function that adds up the positive integers from a specified
number down to 0. What if we wanted to add up the positive numbers from a specified
number down to, say, 10 instead?

Worked Exercise 24.2.1 Develop a function add-up-from-10 that takes in a whole
number n ≥ 10 and returns the sum 10 + 11 + . . . + n.

Generalize this to a function add-up-between that takes in two whole numbers m
and n and returns the sum m + (m + 1) + . . . + n.

Solution: The function takes in a “whole number ≥ 10”, which is a new data type.
Here’s its data definition:

; A whole-num>=10 is either 10, or (add1 whole-num>=10)

The contract and examples are easy:

; add-up-from-10 : whole-number>=10 -> number

(check-expect (add-up-from-10 10) 10)

(check-expect (add-up-from-10 11) 21)

(check-expect (add-up-from-10 15) 65)

Since we’ve changed the data type, we’ll need a new template:

(define (function-on-wn>=10 n)

(cond [(= n 10) ...]

[(> n 10)

; n whole number > 10

; (- n 1) whole number >= 10

; (function-on-wn>=10 (- n 1)) whatever this returns

]))

With this, the definition is easy:

24.2. DIFFERENT BASE CASES, DIFFERENT DIRECTIONS 363

(define (add-up-from-10 n)

(cond [(= n 10) 10]

[(> n 10)

; n whole number > 10

; (- n 1) whole number >= 10

; (add-up-from-10 (- n 1)) number

(+ n (add-up-from-10 (- n 1)))

]))

It feels a bit inelegant to have n ≥ 10 be part of the contract; could we reasonably
make the function work correctly on all whole numbers? We would have to choose a
“right answer” for numbers less than 10. In that case, there are no numbers to add up,
so the answer should be 0.

; add-up-from-10 : whole-number -> number

(check-expect (add-up-from-10 8) 0)

(check-expect (add-up-from-10 10) 10)

(check-expect (add-up-from-10 11) 21)

(check-expect (add-up-from-10 15) 65)

(define (add-up-from-10 n)

(cond [(< n 10) 0]

[(= n 10) 10]

[(> n 10)

; n whole number > 10

; (- n 1) whole number >= 10

; (add-up-from-10 (- n 1)) number

(+ n (add-up-from-10 (- n 1)))

]))

This passes all its tests, but on further consideration, we realize that the right answer
to the (= n 10) case is the same as 10 plus the right answer to the (< n 10) case; we
could leave out the (= n 10) case, replacing (> n 10) with (>= n 10), and it would still
pass all its tests. Try this for yourself.

The more general add-up-between function differs from add-up-from-10 only by
replacing the 10 with the extra parameter m:

; add-up-between : whole-number(m) whole-number(n) -> number

(check-expect (add-up-between 8 6) 0)

(check-expect (add-up-between 8 8) 8)

(check-expect (add-up-between 7 9) 24)

(define (add-up-between m n)

(cond [(< n m) 0]

[(>= n m)

; n whole number > m

; (- n 1) whole number >= m

; (add-up-between m (- n 1))number

(+ n (add-up-between m (- n 1)))

]))

364 CHAPTER 24. WHOLE NUMBERS

Exercise 24.2.2 Develop a function count-down-to that takes in two whole numbers
low and high and produces a list of the numbers high, high-1, . . .low in that order. If
low > high, it should return an empty list.

What if we wanted the list in increasing order? Rather than treating high as a “whole
number ≥ low”, and calling the function recursively on (sub1 high), we instead treat
low as a “whole number ≤ high”, and calling the function recursively on (add1 low).

Exercise 24.2.3 Develop a function count-up-to that takes in two whole numbers
low and high and produces a list of the numbers low, low+1, . . .high. If low > high,
it should return an empty list.

Exercise 24.2.4 Develop a function increasing-table-of-squares which takes in
a whole number n and returns a list of posns representing a table of numbers and their
squares from 0 up to the given number.

24.3 Peano arithmetic

Imagine that for some reason the + function wasn’t working correctly on your computer
(although add1 and sub1 still worked). Could we make do without +?

It would be pretty easy to write a function to add 2:

; add2 : number -> number

(check-expect (add2 0) 2)

(check-expect (add2 1) 3)

(check-expect (add2 27) 29)

(define (add2 x)

(add1 (add1 x)))

But can we write a function that takes in two whole numbers as parameters and adds
them?

Worked Exercise 24.3.1 Develop a function wn-add to add two whole numbers,
without using any built-in arithmetic operators except add1, sub1, zero?, and positive?.

Solution: The contract and examples are straightforward:

; wn-add : whole-num (m) whole-num (n) -> whole-num

(check-expect (wn-add 0 0) 0)

(check-expect (wn-add 0 1) 1)

(check-expect (wn-add 0 3) 3)

(check-expect (wn-add 1 0) 1)

(check-expect (wn-add 3 0) 3)

(check-expect (wn-add 3 8) 11)

We have two whole-number parameters. In Chapter 25, we’ll discuss how to handle this
sort of situation in general, but for now let’s just follow the template on one of them,
pretending the other one is simple:

24.3. PEANO ARITHMETIC 365

(define (wn-add m n)

(cond [(zero? n) ...]

[(positive? n)

; m whole

; n positive whole

; (sub1 n) whole

; (wn-add m (sub1 n)) whole

...

]))

Now we need to fill in the . . . parts. The “zero” case is easy: if n = 0, then m + n =
m + 0 = m. For the nonzero case, we’ll do an inventory with values:

(define (wn-add m n)

(cond [(zero? n) m]

[(positive? n)

; m whole 3

; n positive whole 8

; (sub1 n) whole 7

; (wn-add m (sub1 n)) whole 10

; right answer whole 11

...

]))

Remember that we can only use add1 and sub1, not + or -. So the obvious way to
get 11 from 10 is add1:

(define (wn-add m n)

(cond [(zero? n) m]

[(positive? n)

; m whole 3

; n positive whole8

; (sub1 n) whole 7

; (wn-add m (sub1 n)) whole 10

; right answer whole 11

(add1 (wn-add m (sub1 n)))

]))

Does this make sense? Is it always true that m + n = 1 + (m + (n − 1))? Of course;
that’s simple algebra.

Exercise 24.3.2 Develop a function wn-mult which multiplies two whole numbers
together without using any built-in arithmetic operators except add1, sub1, zero?, and
positive?. You are allowed to use wn-add, because it’s not built-in; we just defined it
from these operators.

All the remaining exercises in this section are subject to the same restriction: “without
using any built-in arithmetic operators except add1, sub1, zero?, and positive?.” You
may, of course, re-use the functions you’ve already written in this section.

Exercise 24.3.3 Develop a function wn-raise which, given two whole numbers m
and n, computes mn.

366 CHAPTER 24. WHOLE NUMBERS

Exercise 24.3.4 Develop a function wn<= which, given two whole numbers m and n,
tells whether m ≤ n.

Exercise 24.3.5 Develop a function wn= which, given two whole numbers m and n,
tells whether they’re equal or not.

Exercise 24.3.6 Develop a function wn-sub which, given two whole numbers m and
n, computes m− n.

Hint: In this chapter, we’ve defined whole numbers, but not negative numbers, and
we haven’t promised that sub1 works on anything other than a positive whole number.
There are two ways you can write this function:

• The “purist” way uses sub1 only on positive whole numbers, and produces an error
message if you try to subtract a larger number from a smaller (this was actually a
common mathematical practice in the 18th century)

• The “pragmatist” way relies on the fact that Racket really does know about negative
numbers, and sub1 really does work on any number, not only positive wholes. This
way you can write wn-sub to work on any two whole numbers. The problem is that
the result may not be a whole number, so code like (wn-sub x (wn-sub y z)) may
not work.

Exercise 24.3.7 Develop two functions wn-quotient and wn-remainder which, given
two whole numbers m and n, compute the quotient and remainder of dividing m by n.
Both should produce an error message if n = 0.

Exercise 24.3.8 Develop a function wn-prime? which tells whether a given whole
number is prime.

Hint: There are several ways to do this. One way is to define a helper function
not-divisible-up-to? which, given two whole numbers m and n, tells whether m is
“not divisible by anything up to n” (except of course 1).

Racket also knows about fractions, but if it didn’t, we could define them ourselves,
just as we’ve defined wholes, addition, multiplication, and so on.

Exercise 24.3.9 Define a struct frac that represents a fraction in terms of whole
numbers (as we’ve defined them).

Exercise 24.3.10 Develop a function frac= that takes in two frac objects and tells
whether they’re equal. (Careful! What does it mean for two fractions to be equal?)

Exercise 24.3.11 Develop a function reduce-frac that takes in a frac and returns
an equivalent frac in lowest terms, i.e. with no common factors between numerator and
denominator.

Exercise 24.3.12 Develop a function frac-mult that takes in two fracs and returns
their product, as a frac.

24.4. THE WHOLES IN BINARY 367

Exercise 24.3.13 Develop a function frac-add that takes in two fracs and returns
their sum, as a frac.

24.4 The wholes in binary

Dedekind and Peano’s definition of the wholes isn’t the only way to define them. Here’s
another approach.

Almost every computer built since about 1950 has used binary or base-two notation
to represent numbers: for example, the number 19 is written 10011, indicating 1 · 24 + 0 ·
23 + 0 · 22 + 1 · 21 + 1 · 20. In decimal notation, it’s really easy to multiply by 10 (just
write a 0 at the end of the number). Similarly, in base two, it’s really easy to multiply by
2 (just write a 0 at the end of the number). This inspires the following data definition:

A binary-whole-number is either

• 0, or

• S0(whole), or

• S1(whole)

where S0(x) is intended to correspond to writing a 0 at the end of the number x, and
S1(x) to writing a 1 at the end of x.

24.4.1 Defining binary wholes from structs

Let’s try this in Racket.

A built-binary-whole is either

0,

(S0 built-binary-whole), or

(S1 built-binary-whole).

(define-struct s0 (half))

(define-struct s1 (half))

(define (S0 x) (make-s0 x)) ; for short

(define (S1 x) (make-s1 x)) ; for short

368 CHAPTER 24. WHOLE NUMBERS

Some examples of this data type are

• 0

• (S1 0), which “means” 1

• (S0 (S1 0)), which “means” 2

• (S1 (S1 0)), which “means” 3

• (S1 (S1 (S0 (S0 (S1 0))))), which “means” 19

Obviously, it’s a lot easier to write 19 as
(S1 (S1 (S0 (S0 (S1 0)))))

than as
(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S 0))))))))))))))))))),
the way we would have written 19 in section 24.1.1.

A template based on this data definition has three cases: is it zero, is it an s0 structure,
or is it an s1 structure? I’ll use bbw as shorthand for built-binary-whole.

(define (function-on-bbw n)

(cond [(equal? n 0) ...]

[(s0? n)

; (s0-half n) bbw

; (function-on-bbw (s0-half n)) whatever

...]

[(s1? n)

; (s1-half n) bbw

; (function-on-bbw (s1-half n)) whatever

...]

))

24.4. THE WHOLES IN BINARY 369

Worked Exercise 24.4.1 Re-write the spams function to take in a built-binary-whole.

Solution: The contract and examples are straightforward:

; spams : built-binary-whole -> string-list

(check-expect (spams 0) empty)

(check-expect (spams (S1 0)) (list "spam"))

(check-expect (spams (S0 (S1 0))) (list "spam" "spam"))

(check-expect (spams (S0 (S1 (S1 0))))

(list "spam" "spam" "spam" "spam" "spam" "spam"))

(check-expect (spams (S1 (S1 (S1 0))))

(list "spam" "spam" "spam" "spam" "spam" "spam" "spam"))

The template gives us

(define (spams n)

(cond [(equal? n 0) ...]

[(s0? n)

; (s0-half n) whole

; (spams (s0-half n))string-list

...]

[(s1? n)

; (s1-half n) whole

; (spams (s1-half n))string-list

...]

))

Obviously, the right answer to the zero case is empty. For the other cases, we’ll use an
inventory with values.

(define (spams n)

(cond [(equal? n 0) empty]

[(s0? n)

; n whole (S0 (S1 (S1 0))), i.e. 6

; (s0-half n) whole (S1 (S1 0)), i.e. 3

; (spams (s0-half n))

; string-list (list "spam" "spam "spam")

; right answer string-list

; (list "spam" "spam" "spam" "spam" "spam" "spam")

...]

[(s1? n)

; n whole (S1 (S1 (S1 0))), i.e. 7

; (s1-half n) whole (S1 (S1 0)), i.e. 3

; (spams (s1-half n))

; string-list (list "spam" "spam" "spam")

; right answer string-list

; (list "spam" "spam" "spam" "spam" "spam" "spam "spam")

...]

))

370 CHAPTER 24. WHOLE NUMBERS

Now, how can you get a list of 6 spams from a list of 3 spams? There are a number
of ways, but the most obvious one is to append two copies of it together. Which seems
appropriate, since the recursive call is supposed to return “half as many” spams.

How to get a list of 7 spams from a list of 3 spams? Since the recursive call is on
“half” of an odd number, it’s really (n− 1)/2. So to get n from (n− 1)/2, you make two
copies and add one more. The function definition becomes
(define (spams n)

(cond [(equal? n 0) empty]

[(s0? n)

; n whole (S0 (S1 (S1 0))), i.e. 6

; (s0-half n) whole (S1 (S1 0)), i.e. 3

; (spams (s0-half n))

; string-list (list "spam" "spam "spam")

; right answer string-list

; (list "spam" "spam" "spam" "spam" "spam" "spam")

(append (spams (s0-half n))

(spams (s0-half n)))]

[(s1? n)

; n whole (S1 (S1 (S1 0))), i.e. 7

; (s1-half n) whole (S1 (S1 0)), i.e. 3

; (spams (s1-half n))

; string-list (list "spam" "spam" "spam")

; right answer string-list

; (list "spam" "spam" "spam" "spam" "spam" "spam "spam")

(cons "spam" (append (spams (s1-half n))

(spams (s1-half n))))]

))

Exercise 24.4.2 Rewrite the copies function to take in a built-binary-whole.

Exercise 24.4.3 Develop a function binary-add1 that takes in a built-binary-whole
and returns the next larger built-binary-whole. For example, the next larger whole after
5 is 6, so

(check-expect (binary-add1 (S1 (S0 (S1 0)))) (S0 (S1 (S1 0))))

Exercise 24.4.4 Develop a function bbw-value that takes in a built-binary-whole
and returns the (ordinary) whole number that it represents. For example,

(check-expect (binary-whole-value 0) 0)

(check-expect (binary-whole-value (S1 0)) 1)

(check-expect (binary-whole-value (S0 (S1 (S1 (S0 (S1 0)))))) 22)

24.4.2 Binary whole numbers, the way we really do it

Again, Racket already knows about numbers and arithmetic, so instead of the structures
s0 and s1, we might use

(define (S0 x) (* x 2))

(define (S1 x) (+ 1 (* x 2)))

(define (half x) (quotient x 2))

24.4. THE WHOLES IN BINARY 371

plus the built-in functions zero?, even?, and odd?.

The template becomes (using rbw as shorthand for “real binary whole”)

#|

(define (function-on-rbw n)

(cond [(zero? n) ...]

[(even? n)

; (half n) rbw

; (function-on-rbw (half n)) whatever

...]

[(odd? n)

; (half n) rbw

; (function-on-rbw (half n)) whatever

...]

))

|#

Worked Exercise 24.4.5 Re-write the spams function to take in an ordinary whole
number, using the binary template.

Solution: The contract and examples are the same as in Exercise 24.1.4. The definition
becomes

372 CHAPTER 24. WHOLE NUMBERS

(define (binary-spams n)

(cond [(zero? n) empty]

[(even? n)

; n whole 6

; (half n) whole 3

; (binary-spams (half n))

; string-list (list "spam" "spam "spam")

; right answer string-list

; (list "spam" "spam" "spam" "spam" "spam" "spam")

(append (binary-spams (half n))

(binary-spams (half n)))]

[(odd? n)

; n whole 7

; (half n) whole 3

; (binary-spams (half n))

; string-list (list "spam" "spam" "spam")

; right answer string-list

; (list "spam" "spam" "spam" "spam" "spam" "spam "spam")

(cons "spam" (append (binary-spams (half n))

(binary-spams (half n))))]

))

Exercise 24.4.6 Re-write the copies function of Exercise 24.4.2 so that it takes in an
ordinary whole number, but is still written using the binary template.

Exercise 24.4.7 Re-write the binary-add1 function of Exercise 24.4.3 so that it takes
in an ordinary whole number, but is still written using the binary template rather than
calling the built-in add1 or +. For example,

(check-expect (binary-add1 5) 6)

Exercise 24.4.8 Re-write the dot-grid function of Exercise 24.1.10 by using the bi-
nary template.

Exercise 24.4.9 Re-write the randoms function of Exercise 24.1.11 by using the binary
template.

24.5. REVIEW 373

Exercise 24.4.10 Re-write the random-posns function of Exercise 24.1.12 by using the
binary template.

Exercise 24.4.11 Essay question: Notice that I’ve picked some of the functions from
Section 24.1 to re-do using the binary template. Why did I pick these and not the others?
What kind of function lends itself to solving with the binary template, and what kind
doesn’t?

24.5 Review of important words and concepts

Programmers often want a computer to do something a specified number of times. If the
“number of times” is driven by a list of data, we can use the techniques of Chapters 22 and
23, but if it really is just a number, as in copies or dot-grid, we can use the analogous
technique of whole-number recursion.

Racket, like most other programming languages, has built-in support for arithmetic on
whole numbers and other kinds of numbers. (Most languages don’t handle fractions, or
very large whole numbers, as well as Racket does, but that’s a separate issue.) However, in
this chapter we’ve shown how to define arithmetic, whole numbers, and fractions. Along
the way, we’ve learned a useful technique for writing functions that do things a specified
number of times, like copies or dot-grid.

The whole numbers can be defined either using “successor”, as Dedekind and Peano
did, or using binary notation, as most modern computers do.

24.6 Reference: Built-in functions on whole numbers

In this chapter, we’ve introduced the built-in functions

• zero?

• positive?

• sub1

374 CHAPTER 24. WHOLE NUMBERS

Chapter 25

Multiple recursive data

The inventories and template functions we’ve been using so far are generally based on the
data type of an input (or, in a few cases, on the data type of the result). If an input is a
list, we can use the input template of Chapter 22; if the output is a list, we can use the
output template of Chapter 23; if the input is a natural number, we can use the input
template of Chapter 24; etc.

But what template should we use when we have two or more inputs of complex types?
If your function takes two parameters x and y of complex types, there are four possi-

bilities:
y

simple complex

x
simple 1 2

complex 3 4

1. x and y are both simple;

2. x is simple but y is complex;

3. x is complex but y is simple;

4. x and y are both complex.

25.1 Separable parameters

In exercise 23.1.9, we wrote a list-append function that took in two list parameters. We
used the usual list template for the first and pretended the second was of a simple type.
In other words, we lumped cases 1 and 2 together, and cases 3 and 4 together.

list2
simple complex

list1
simple 1 2

complex 3 4
Likewise, in exercise 24.3.1, we wrote an wn-add function that took in two natural

number parameters. In that case, we used the usual natural-number template for one
of them and pretended the other one was of a simple type. The rest of the exercises in
section 24.3 can also be done in this way: a function that does different things depending
on whether x is simple or complex, perhaps calling a helper function that does different
things depending on whether y is simple or complex.

375

376 CHAPTER 25. MULTIPLE RECURSIVE DATA

I call this situation “separable parameters”, because we can separate the question of
whether x is simple or complex from the question of whether y is simple or complex.

25.2 Synchronized parameters

That approach works frequently, but not all the time. For example,

Worked Exercise 25.2.1 Develop a function pay-list that takes in two lists: one spec-
ifies the number of hours worked by each of a bunch of employees, and the other specifies
the corresponding hourly wage for each of those employees. It should produce a list of the
amounts each employee should be paid, in the same order.

Solution: The contract is straightforward:

; pay-list : list-of-numbers(hours)

list-of-numbers(hourly-wages)

-> list-of-numbers

For test cases, as usual, we’ll start with the simplest cases and then build up:

(check-expect (pay-list empty empty) empty)

(check-expect (pay-list (list 3) empty) ???)

The two lists we were given are of different sizes, and it’s not clear from the problem
assignment what should happen in this case. In fact, the problem doesn’t even make
sense if the lengths of the two lists are different. So let’s revise the contract:

; pay-list : list-of-numbers(hours)

list-of-numbers(hourly-wages)

-> list-of-numbers

; Assumes the two input lists are the same length.

; Result will be the same length.

Now that we’ve excluded inputs that make no sense, we can get back to the test cases:

(check-expect (pay-list empty empty) empty)

(check-expect (pay-list (list 30) (list 8)) (list 240))

(check-expect (pay-list (list 30 20 45) (list 8 10 10))

(list 240 200 450))

The skeleton is easy. For the inventory, we’ll try the usual list template on hours, and
treat hourly-wages as simple.
(define (pay-list hours hourly-wages)

; hours list of numbers (list 30 20 45)

; hourly-wages list of numbers (list 8 10 10)

(cond [(empty? hours) ...]

[(cons? hours)

; (first hours) number 30

; (rest hours) list of numbers (list 20 45)

; (pay-list (rest hours) hourly-wages)

; list of numbers ???

; right answer list of numbers (list 240 200 450)

]))

25.2. SYNCHRONIZED PARAMETERS 377

What is the “right answer” to the recursive call? It doesn’t have a right answer, because
it’s being called on two lists of different lengths!

We’ll have to try something different. It doesn’t make sense to call (pay-list (rest

hours) hourly-wages), or for that matter (pay-list hours (rest hourly-wages)),
because both of those calls break the contract by passing in lists of different lengths. But
(pay-list (rest hours) (rest hourly-wages)) would make sense, if we knew that
both of those things existed — that is, if both hours and hourly-wages were non-empty
lists. Similarly, if both of them were empty lists, the answer would be empty. So here’s a
revised inventory:

(define (pay-list hours hourly-wages)

; hours list of numbers (list 30 20 45)

; hourly-wages list of numbers (list 8 10 10)

(cond [(and (empty? hours) (empty? hourly-wages)) ...]

[(and (cons? hours) (cons? hourly-wages))

; (first hours) number 30

; (first hourly-wages) number 8

; (rest hours) list of numbers (list 20 45)

; (rest hourly-wages) list of numbers (list 10 10)

; (pay-list (rest hours) (rest hourly-wages))

; list of numbers (list 200 450)

; right answer list of numbers (list 240 200 450)

]))

Now it’s easy:

(define (pay-list hours hourly-wages)

; hours list of numbers (list 30 20 45)

; hourly-wages list of numbers (list 8 10 10)

(cond [(and (empty? hours) (empty? hourly-wages)) empty]

[(and (cons? hours) (cons? hourly-wages))

; (first hours) number 30

; (first hourly-wages) number 8

; (rest hours) list of numbers (list 20 45)

; (rest hourly-wages) list of numbers (list 10 10)

; (pay-list (rest hours) (rest hourly-wages))

; list of numbers (list 200 450)

; right answer list of numbers (list 240 200 450)

(cons (* (first hours) (first hourly-wages))

(pay-list (rest hours) (rest hourly-wages)))

]))

One thing might bother you about this definition. (At least it bothers me!) We’re
checking whether both parameters are empty (case 1), and whether both parameters are
non-empty (case 4), but what if one is empty and the other isn’t (cases 2 and 3)? That
would of course be an illegal input, but if some user tried it, (s)he would get an unfriendly
error message like cond: all question results were false, and the user might conclude that
our program was wrong, when in fact it’s the user’s fault. Instead, let’s handle this case
specifically with a more-informative error message:

378 CHAPTER 25. MULTIPLE RECURSIVE DATA

(define (pay-list hours hourly-wages)

(cond [(and (empty? hours) (empty? hourly-wages)) ...]

[(and (cons? hours) (cons? hourly-wages))

(cons (* (first hours) (first hourly-wages))

(pay-list (rest hours) (rest hourly-wages)))

]

[else

(error ’pay-list

"Number of hours and hourly wages must match.")

]))

(check-error (pay-list (list 3) empty)

"pay-list: Number of hours and hourly wages must match.")

(check-error (pay-list (list 3) (list 8 7.50))

"pay-list: Number of hours and hourly wages must match.")

In this example, it wasn’t enough to treat one of the two list inputs as if it were simple:
we had to go through the two lists in lock-step, looking at the first of both at the same
time, and the rest of both at the same time. It’s usually easy to spot such situations,
because they don’t make sense unless the inputs are the same size. When you see such a
problem, not only can you use an inventory like the above, but you can also include an
error-check that produces an informative error message if the inputs aren’t the same size.

For this sort of problem, cases 2 and 3 (in which one of x and y is simple and the
other complex) are lumped together — they’re both illegal — and we only really need to
worry about cases 1 and 4.

hourly-wages
simple complex

hours
simple 1 2

complex 3 4

25.3 Interacting parameters

There are problems that don’t seem to fit either of the preceding patterns: it’s reasonable
for either of the parameters to be simple and the other complex, and whatever one of
them is, it makes a difference what the other one is. The parameters interact with one
another.

Worked Exercise 25.3.1 Suppose the list-ref function weren’t built into DrRacket;
how would we write it? Since list-ref is built in, we’ll name ours pick-element instead.

Develop a function pick-element that takes in a natural number and a non-empty
list, and returns one of the elements of the list. If the number is 0, it returns the first
element of the list; if 1, it returns the second element; etc. If there is no such element, it
should produce an appropriate error message.

Solution: The contract is

; pick-element : natural non-empty-list -> object

25.3. INTERACTING PARAMETERS 379

A non-empty list is defined to be either (cons object empty) or (cons object

non-empty list); the template for it looks like

#|

(check-expect (function-on-nel (list "a")) ...)

(check-expect (function-on-nel (list "a" "b")) ...)

(check-expect (function-on-nel (list 3 1 4 1 5)) ...)

(define (function-on-nel L)

(cond [(empty? (rest L)) ...]

[(cons? (rest L))

; L non-empty list

; (first L) object

; (rest L) non-empty list

; (function-on-nel (rest L)) whatever

...

]))

|#

For our problem, the test cases clearly need to include long-enough and not-long-enough
lists.

(check-expect (pick-element 0 (list "a")) "a")

(check-expect (pick-element 0 (list 5 -2 17)) 5)

(check-error (pick-element 1 (list "a"))

"pick-element: no such element")

(check-expect (pick-element 1 (list 5 17)) 17)

(check-expect (pick-element 1 (list 5 -2 17)) -2)

(check-error (pick-element 4 (list "a"))

"pick-element: no such element")

(check-expect

(pick-element 4 (list "a" "b" "c" "d" "e"))

"e")

(check-expect

(pick-element 4 (list "a" "b" "c" "d" "e" "f" "g"))

"e")

As a first attempt, let’s try the separable-parameters approach, treating n as complex
and the list as simple.

(define (pick-element n things)

; n natural

; things non-empty list

(cond [(zero? n) ...]

[(positive? n)

; (sub1 n) natural

; (pick-element (sub1 n) things) object

...

]))

In the base case (n = 1), the right answer is either (first things) or an error message,
depending on whether things is empty. We can do that if necessary, using a nested cond.

380 CHAPTER 25. MULTIPLE RECURSIVE DATA

The recursive case is a problem: knowing the answer to (pick-element (sub1 n)

things) tells you nothing about the right answer to (pick-element n things). This
won’t work.

Maybe if, instead of treating n as complex and the list as simple, we treat the list as
complex and n as simple?

(define (pick-element n things)

; n natural

; things non-empty list

(cond [(empty? (rest things)) ...]

[(cons? (rest things))

; things non-empty list

; (rest things) list

; (pick-element n (rest things)) object

...

]))

The base case, again, will need a nested conditional to check whether n is 1 or larger.
The recursive case still has a problem: knowing the answer to (pick-element n (rest

things)) tells you nothing about the right answer to (pick-element n things).

There seems to be a sort of synchronization going on here: the list length doesn’t have
to be exactly the same as the number, but it does have to be at least as much. So let’s
try the synchronized approach. I’ll also throw in an “inventory with values” while we’re
at it.

(define (pick-element n things)

; n natural 1

; things non-empty list (list "a" "b" "c")

(cond [(and (zero? n) (empty? (rest things)))

(first things)]

[(and (positive? n) (cons? (rest things)))

; (sub1 n) natural 0

; (rest things) non-empty list (list "b" "c")

; (pick-element (sub1 n) (rest things))

; object "b"

; right answer object "b"

...]

[else (error ’pick-element "no such element")]

This looks a little more promising: the result of the recursive call is the same as the right
answer to the problem at hand. So let’s make that the answer in the second cond clause:

25.3. INTERACTING PARAMETERS 381

(define (pick-element n things)

; n natural 1

; things non-empty list (list "a" "b" "c")

(cond [(and (zero? n) (empty? (rest things)))

(first things)]

[(and (positive? n) (cons? (rest things)))

; (sub1 n) natural 0

; (rest things) non-empty list (list "b" "c")

; (pick-element (sub1 n) (rest things))

; object "b"

; right answer object "b"

(pick-element (sub1 n) (rest things))]

[else (error ’pick-element "no such element")]

This passes several of its tests, but not all: in particular, it fails tests in which the
element to be picked isn’t the last. By following the “synchronized” approach, we’ve
effectively forced the length of the list to be exactly one more than the number. To get
this function to work right, it must be more permissive: if the number is down to 0 and
the list isn’t only one element, that’s fine.

(define (pick-element n things)

; n natural 1

; things non-empty list (list "a" "b" "c")

(cond [(and (zero? n) (empty? (rest things)))

(first things)]

[(and (positive? n) (cons? (rest things)))

(first things)]

[(and (positive? n) (cons? (rest things)))

; (sub1 n) positive-natural0

; (rest things) non-empty list (list "b" "c")

; (pick-element (sub1 n) (rest things))

; object "b"

; right answer object "b"

(pick-element (sub1 n) (rest things))]

[else (error ’pick-element "no such element")]

The conditional now explicitly identifies and deals with all four cases:

n
simple complex

things
simple 1 2

complex 3 4
For this particular problem, two of the cases produce the same answer, so we can

combine them. Removing the inventory comments, we’re left with

(define (pick-element n things)

(cond [(zero? n) (first things)]

[(and (positive? n) (cons? (rest things)))

(pick-element (sub1 n) (rest things))]

[else (error ’pick-element "no such element")]))

382 CHAPTER 25. MULTIPLE RECURSIVE DATA

which does in fact pass all its tests.

In this case, we’ve actually combined cases 1 and 3:
n

simple complex

things
simple 1 2

complex 3 4
But in other situations, we might actually need all four cases to do four different things.
See the Exercises below.

The above function definition isn’t foolproof, in that if someone violates the contract
by passing in the number 0, or a negative number, or an empty list, it’ll produce an ugly
error message. We could remedy this by re-formulating the problem as accepting any
number and any list; the result would be

(define (pick-element n things)

(cond [(< n 0)

(error ’pick-element "illegal element number")]

[(empty? things)

(error ’pick-element "no such element")]

[(zero? n) (first things)]

[(and (positive? n) (cons? things))

(pick-element (sub1 n) (rest things))]))

25.4 Exercises

Some of these exercises involve separable parameters; some involve synchronized param-
eters; some involve interacting parameters, and may require treating all four possible
combinations of simple and complex separately.

Exercise 25.4.1 Develop a function cart-prod (short for “Cartesian product”) that
takes in two lists and returns a list of two-element lists, each with an element from the
first input list and an element from the second in that order. The result should include
all possible pairs of elements. You may assume that there are no duplicate elements in
the first list, and no duplicate elements in the second list (although there might be things
that are in both input lists.)

Hint: You’ll need a helper function.

Exercise 25.4.2 Develop a function make-posns that takes in two lists of numbers, the
same length, and produces a list of posns with x coordinates taken from the first list, in
order, and y coordinates from the corresponding elements of the second list.

25.4. EXERCISES 383

Exercise 25.4.3 Develop a function label-names that takes in a list of strings and a
natural number, which should be how many strings there are. It produces a list of two-
element lists, each comprising a different natural number and one of the strings from
the list. The numbers should be in decreasing order, starting with the given number and
ending with 1, and the strings should be in the order they were given. For example,
(check-expect (label-names (list "anne" "bob" "charlie") 3)

(list (list 3 "anne") (list 2 "bob") (list 1 "charlie")))

If the above exercise feels sorta strange and artificial, here’s a more natural (but
slightly harder) version, which will probably require a helper function:

Exercise 25.4.4 Develop a function label-names-2 that takes in a list of strings, and
produces a list of two-element lists, each comprising a different natural number and one
of the strings from the list. The numbers should be in increasing order, starting with 1
and ending with the number of strings in the list, and the strings should be in the order
they were given. For example,
(check-expect (label-names-2 (list "anne" "bob" "charlie"))

(list (list 1 "anne") (list 2 "bob") (list 3 "charlie")))

Exercise 25.4.5 Develop a function intersection that takes in two lists of strings and
returns a list of the strings that appear in both of them, leaving out any string that appears
in only one or the other. The strings in the result should be in the same order that they
appeared in the first list. You may assume that no string appears more than once in either
list.

Exercise 25.4.6 Develop a function union that takes in two lists of strings and returns
a list of the strings that appear in either list, but only once each. You may assume that
no string appears more than once in either list.

Exercise 25.4.7 Develop a function set-diff that takes in two lists of strings and re-
turns a list of the strings that appear in the first but not the second. You may assume
that no string appears more than once in either list.

Exercise 25.4.8 Re-do exercises 25.4.5, 25.4.6, and 25.4.7 without the assumption that
there are no duplicates in the inputs.

Exercise 25.4.9 Develop a function binary-add that takes in two natural numbers
and returns their sum, using the binary template (and not using the built-in + function).

Note: Somebody had to do this, not in Racket but in wires and transistors, in order
for your computer to be able to add.

Exercise 25.4.10 Develop a function binary-mult that takes in two natural numbers
and returns their product, using the binary template (and not using the built-in + or *

functions).

Note: Somebody had to do this, not in Racket but in wires and transistors, in order
for your computer to be able to multiply.

Exercise 25.4.11 Develop a function binary-raise that takes in two natural num-
bers m and n and returns mn, using the binary template (and not using the built-in +, *,
or expt functions).

384 CHAPTER 25. MULTIPLE RECURSIVE DATA

Exercise 25.4.12 Develop a function substring? that takes in two strings and tells
whether the first one appears in the second as a substring. For example,

(check-expect (substring? "bob" "") false)

(check-expect (substring? "" "bob") true)

(check-expect (substring? "b" "bob") true)

(check-expect (substring? "c" "bob") false)

(check-expect (substring? "bob" "bob") true)

(check-expect (substring? "bob" "bobs") true)

(check-expect (substring? "bob" "brats and snobs") false)

(check-expect (substring? "no rat" "brats and snobs") false)

(check-expect (substring? "bob" "thingbobs") true)

(check-expect (substring? "bob" "I botched it but bob fixed it")

true)

(check-expect (substring? "bob" "I botched it but amy fixed it")

false)

(There is a function in some dialects of Racket that does this job, but I want you to
do it using only char=?, comparing one character at a time.)

Exercise 25.4.13 Develop a function subsequence? that takes in two strings and tells
whether the characters of the first appear in the same order in the second (but possibly
with some other characters in between). For example,

(check-expect (subsequence? "bob" "") false)

(check-expect (subsequence? "" "bob") true)

(check-expect (subsequence? "b" "bob") true)

(check-expect (subsequence? "c" "bob") false)

(check-expect (subsequence? "bob" "bob") true)

(check-expect (subsequence? "bob" "bobs") true)

(check-expect (subsequence? "bob" "brats and snobs") true)

(check-expect (subsequence? "no rat" "brats and snobs") false)

(check-expect (subsequence? "bob" "thingbobs") true)

(check-expect (subsequence? "bob" "I botched it but bob fixed it")

true)

(check-expect (subsequence? "bob" "I botched it but amy fixed it")

true)

I don’t think there’s a built-in Racket function that will help much with this, but in any
case, I want you to do this using only char=?, comparing one character at a time.

Hint: Perhaps surprisingly, this problem is easier than substring?.

Exercise 25.4.14 Develop a function lcsubstring (“longest common substring”) that
takes in two strings and returns the longest string which is a substring of both of them.
For example,

(check-expect (lcsubstring "mickey mouse" "minnie mouser") "mouse")

The answer may not be unique: for example,

(lcsubstring "mickey mouse" "minnie mush")

25.4. EXERCISES 385

could legitimately be either "mi", " m", or "us".

Hint: Different approaches to this can differ radically in efficiency. My first attempt took
several minutes to solve the (lcsubstring "mickey mouse" "minnie mush") problem.
A different approach, using only things that you’ve seen already, solved the same problem
in 0.01 seconds; the difference is even more dramatic for longer strings.

Exercise 25.4.15 Develop a function lcsubsequence (“longest common subsequence”)
that takes in two strings and returns the longest string which is a subsequence of both of
them. For example,

(check-expect (lcsubsequence "mickey mouse" "minnie moose")

"mie mose")

The answer may not be unique: for example, (lcsubsequence "abc" "cba") could
legitimately be any of the strings "a", "b", or "c".

Hint: As in exercise 25.4.14, your program may be slow. My first attempt took about
2.5 seconds to solve (lcsubsequence "mickey mouse" "minnie moose"), and I don’t
know of a more efficient way to do it using what you’ve already seen. A technique called
dynamic programming or memoization, which we’ll discuss in Chapter 30, enabled me to
do it in about 0.01 seconds. Again, the difference is more dramatic for longer strings.

Exercise 25.4.16 A common task in computer science is pattern-matching: given a
pattern, ask whether a particular string matches it. In our pattern language, a "?" stands
for “any single character,” while "*" stands for “any zero or more characters.” For
example, the pattern "c?t" would match “cat” and “cut” but not “colt”, “cats”, or “dog”.
Similarly, the pattern "cat*" would match the strings “cat”, “cats”, “catastrophe”, etc.
but not “caltrop” or “dog”. The pattern "a??a*r" would match “abbatoir”, “akbar”, and
“araaar”, etc. but not “almoner”, “alakazam”, or “fnord”. The pattern "*.docx" would
match the name of any Word 2007 file (and thus could be used to decide which filenames
to show in a file dialog).

Define a function pattern-match? that takes in two strings: the pattern and the
target, and tells whether the target matches the pattern.

Note that the special characters "?" and "*" are special only when they appear in the
pattern; if they appear in the target, they should be treated as ordinary characters.

SIDEBAR:

Exercises 25.4.12 through 25.4.16 resemble problems that come up in biology: the
“strings” in that case are sequences of DNA bases in a gene, or sequences of amino
acids in a protein. The efficiency of such programs determines how quickly a genome
can be sequenced, a drug interaction predicted, a virus identified, etc.

386 CHAPTER 25. MULTIPLE RECURSIVE DATA

25.5 Review of important words and concepts

When you have to write a function that takes in two or more complex parameters (lists,
strings, natural numbers, etc.), you can take several different approaches.

• If the problem “doesn’t make sense” unless the parameters are “the same size” (or
have some particular relationship to one another), then you can generally take the
“synchronized parameters” approach: your function will check whether both are
simple (the base case) and whether both are complex (the recursive case). If one is
simple but the other complex, it produces an error message.

p2
simple complex

p1
simple 1 2

complex 3 4

(define (function-on-synch-params p1 p2)

(cond [(and (simple? p1) (simple? p2)) ...]

[(and (complex? p1) (complex? p2))

; (function-on-synch-params (simplify p1)

(simplify p2))

...]

[else (error ...)]))

(The functions simple?, complex?, and simplify in the above aren’t real functions;
they stand for however you identify simple and complex elements of the data type
in question, and how you simplify it. For example, if you were dealing with lists,
simple? would stand for empty?; complex? for cons?; and simplify for rest.)

• If the expression necessary to produce the right answer is the same for both simple
and complex second parameters, we call the parameters “separable”, and you can
just use a template on the first parameter, treating the second parameter as a simple
type.

p2
simple complex

p1
simple 1 2

complex 3 4

(define (function-on-separable-params p1 p2)

(cond [(simple? p1) ...]

[(complex? p1)

; (function-on-separable-params (simplify p1) p2)

...]))

Likewise, if the expression is the same for simple and complex first parameters,
you can use a template on the second parameter, treating the first as a simple type.

• If neither of the previous situations applies, you’ll probably need to identify all four
possible combinations of simple and complex parameters and treat them individ-
ually. Furthermore, in the case that both are complex, there are several different
reasonable recursive calls you could make.

25.6. REFERENCE 387

p2
simple complex

p1
simple 1 2

complex 3 4

(define (function-on-interacting-params p1 p2)

(cond [(and (simple? p1) (simple? p2)) ...]

[(and (simple? p1) (complex? p2))

; (function-on-interacting-params p1 (simplify p2))

...]

[(and (complex? p1) (simple? p2))

; (function-on-interacting-params (simplify p1) p2)

...]

[(and (complex? p1) (complex? p2))

; (function-on-interacting-params p1 (simplify p2))

; (function-on-interacting-params (simplify p1) p2)

; (function-on-interacting-params

; (simplify p1) (simplify p2))

...]))

Some functions that you can write using these techniques are correct, but surprisingly
slow and inefficient; a technique called dynamic programming or memoization, which we
can’t discuss until chapter 30, can improve the efficiency enormously.

25.6 Reference

No new functions or syntax rules were introduced in this chapter.

PART V

Miscellaneous topics

Chapter 26

Efficiency of programs

For this chapter, switch languages in DrRacket to “Intermediate Student Language”.

26.1 Timing function calls

Computer programs, of course, must produce correct answers. But that’s not enough:
the main reason computers were invented was to produce correct answers quickly. If a
program doesn’t run fast enough, you can buy a more expensive, faster computer. But
perhaps surprisingly, you can often get much more dramatic improvements by changing
the program.

In Intermediate Student Language, there’s a built-in function named time that allows
you to measure how long something takes. For example, type (time (* 3 4)) in the
Interactions pane of DrRacket. You should see something like

cpu time: 0 real time: 0 gc time: 0

12

The 12, of course, is the result of (* 3 4); the previous line shows how much time
the computation took, by three different measures. “CPU time” is how much time (in
milliseconds) the computer’s processor spent actually solving the problem (as opposed
to managing the operating system, managing memory, managing DrRacket itself, etc.).
“Real time” is the total time (in milliseconds) from when you hit ENTER to when the an-
swer came out. “GC time” is how much time (in milliseconds) DrRacket spent “garbage-
collecting”, i.e. releasing things from memory that are no longer needed.

In the case of (* 3 4), all three are well under a millisecond, so the answers are all
0. To see nonzero times, you need to use some of the functions defined in Chapters 22,
23, 24, and 25.

Recall the add-up-to function of Exercise 24.1.7, and type the following lines into the
Definitions pane (after the definition of add-up-to):

(time (add-up-to 10))

(time (add-up-to 100))

(time (add-up-to 1000))

(time (add-up-to 10000))

(time (add-up-to 100000))

(time (add-up-to 1000000))

Hit “Run” and see what happens. Each of the examples shows a line of timing figures.
Not surprisingly, it takes longer to solve a larger problem than a smaller one.

391

392 CHAPTER 26. EFFICIENCY OF PROGRAMS

Try running (time (add-up-to 100000)) several times, writing down the CPU time,
real time, and GC time each time. How much do they vary from one trial to the next? How
well can you predict them? Can you predict how long it’ll take to compute (add-up-to

200000)?

Exercise 26.1.1 Choose some functions defined in Chapters 22, 23, 24, and 25, and try
timing them on various sizes of arguments. How much does the time vary from one trial
to the next? From timing a few arguments, can you predict how long it’ll take on a new
argument?

Hint: You can use randoms, from Exercise 24.1.11, to generate large lists of numbers.
Make sure you don’t count the time to generate the numbers in the time to run the function.
One way to do this is to define a variable to hold a list of, say, 10000 random numbers,
and then call (time (the-function-I’m-testing lotsa-numbers)).

Some good ones to try are
convert-reversed, exercise 22.5.10
all-match?, exercise 22.5.13
largest, exercise 22.5.17
count-blocks, exercise 22.5.18
stutter, exercise 23.1.6
backwards, exercise 23.1.10
unique, exercise 23.2.4
tally-votes, exercise 23.2.7
sort, exercise 23.6.1
subsets, exercise 23.6.3
scramble, exercise 23.6.4
factorial, exercise 24.1.8
fibonacci, exercise 24.1.9
wn-add, exercise 24.3.1
wn-mult, exercise 24.3.2
wn-raise, exercise 24.3.3
wn-prime?, exercise 24.3.8
binary-add, exercise 25.4.9
binary-mult, exercise 25.4.10
binary-raise, exercise 25.4.11
substring?, exercise 25.4.12
subsequence?, exercise 25.4.13
lcsubstring, exercise 25.4.14
lcsubsequence, exercise 25.4.15

26.2 Review of important words and concepts

A computer is generally doing a lot of things at once, only some of which are running the
program you just wrote. Some of a computer’s time goes into managing the operating
system (Windows, MacOS, etc.), some goes into managing DrRacket, some goes into
reclaiming memory that is no longer needed (“garbage collection”), and some goes into
solving your problem.

26.3. REFERENCE 393

A computer typically takes longer to evaluate a function on a large or complicated
argument than on a small or simple one. How much longer is an important area of re-
search in computer science: for some problems, doubling the size of the argument roughly
doubles the time it takes (as you might expect), but other problems behave differently.
Furthermore, different programs to solve the same problem can have dramatically different
efficiencies.

26.3 Reference: New syntax for timing

This chapter introduced one new function (technically a “special form”), time, which
evaluates an expression, prints out how long it took, and then returns the result.

394 CHAPTER 26. EFFICIENCY OF PROGRAMS

Chapter 27

Local definitions

For this chapter, switch languages in DrRacket to “Intermediate Student Language” or
higher.

27.1 Using locals for efficiency

Suppose we wanted to write a function smallest to find the smallest of a list of numbers.
A straightforward solution, based on what you’ve already seen, would be

; smallest: non-empty-list-of-numbers -> number

(check-expect (smallest (list 4)) 4)

(check-expect (smallest (list 4 7)) 4)

(check-expect (smallest (list 7 4)) 4)

(check-expect (smallest (list 6 9 4 7 8 3 6 10 7)) 3)

(define (smallest nums)

(cond [(empty? (rest nums)) (first nums)]

[(cons? (rest nums))

; (first nums) number

; (rest nums) non-empty list of numbers

; (smallest (rest nums)) number

(cond [(<= (first nums) (smallest (rest nums)))

(first nums)]

[else (smallest (rest nums))])]))

This definition works, and produces right answers, but consider the following two
examples:

(check-expect

(smallest (list 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18))

1)

(check-expect

(smallest (list 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1))

1)

On my computer (as of 2009), the former takes about 3 milliseconds; the latter takes
almost 9 seconds — 3000 times longer, even though both examples find the smallest of
the same set of numbers! What’s going on?

To figure this out, let’s pick some simpler examples:

395

396 CHAPTER 27. LOCAL DEFINITIONS

(check-expect (smallest (list 1 2 3 4)) 1)

(check-expect (smallest (list 4 3 2 1)) 1)

and use the Stepper to see what’s happening. The former example calls

(smallest (list 1 2 3 4))

(smallest (list 2 3 4))

(smallest (list 3 4))

(smallest (list 4))

return 4

return 3

return 2

return 1

The latter example behaves differently:

(smallest (list 4 3 2 1))

(smallest (list 3 2 1))

(smallest (list 2 1))

(smallest (list 1))

return 1

(smallest (list 1)) again!

return 1

(smallest (list 2 1)) again!

(smallest (list 1)) a third time!

return 1

(smallest (list 1)) a fourth time!

return 1

return 1

(smallest (list 3 2 1)) again!

(smallest (list 2 1)) a third time!

(smallest (list 1)) a fifth time!

return 1

(smallest (list 1)) a sixth time!

return 1

(smallest (list 2 1)) a fourth time!

(smallest (list 1)) a seventh time!

return 1

(smallest (list 1)) an eighth time!

return 1

return 1

return 1

return 1

In other words, the function is calling itself on the exact same question over and over,
wasting a lot of time. Any time that (first nums) is larger than (smallest (rest

nums)), it calls (smallest (rest nums)) all over again.

How can we avoid this waste of time? One reasonable approach is to compute
(smallest (rest nums)), save the result in a variable, then use that result twice with-
out re-computing it. Unfortunately, the syntax rules we’ve seen so far don’t allow us to
define a variable inside a function definition.

There is a way to do it, however.

27.1. USING LOCALS FOR EFFICIENCY 397

Syntax Rule 8

(local [definition definition ...]

expression)

is an expression. Each definition can be a variable definition (rule 4), a function definition
(rule 5), or a struct definition (rule 7).

The effect is to apply all the definitions temporarily, evaluate the inner expression, and
then forget all the new definitions; the result is the value of the inner expression.

Here’s a simple, unrealistic example:

(local [(define y 5)]

(* y y)) ; returns 25

y ; produces an error message, because y is undefined

In fact, a “local” definition can temporarily hide a definition that’s already in effect:

(define y 17)

y ; returns 17

(local [(define y 5)] (* y y)) ; returns 25

y ; returns 17 again

More realistically, the main reason people use local is to define a variable inside a
function definition:

; smallest: non-empty-list-of-numbers -> number

(check-expect (smallest (list 4)) 4)

(check-expect (smallest (list 4 7)) 4)

(check-expect (smallest (list 7 4)) 4)

(check-expect (smallest (list 6 9 4 7 8 3 6 10 7)) 3)

(define (smallest nums)

(cond [(empty? (rest nums)) (first nums)]

[(cons? (rest nums))

; (first nums) number

; (rest nums) non-empty list of numbers

; (smallest (rest nums)) number

(local [(define winner (smallest (rest nums)))]

(cond [(<= (first nums) winner) (first nums)]

[else winner]))]))

Now both of the examples

(check-expect

(smallest (list 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18))

1)

(check-expect

(smallest (list 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1))

1)

run in about 3 milliseconds on my computer; we’ve sped up the latter by a factor of 3000.

Exercise 27.1.1 Re-write the spams function from Exercise 24.4.5 using local to call
itself only once. Does it work correctly? Is it significantly faster?

398 CHAPTER 27. LOCAL DEFINITIONS

Exercise 27.1.2 Re-write the copies function from Exercise 24.4.2 or 24.4.6 by using
local to call itself only once. Does it work properly? Is it significantly faster?

Exercise 27.1.3 Re-write the dot-grid function from Exercise 24.4.8 using local to
call itself only once. Does it work properly? Is it significantly faster?

Exercise 27.1.4 Re-write the randoms function from Exercise 24.4.9 using local to
call itself only once. Does it work correctly? Is it significantly faster?

Exercise 27.1.5 Consider the functions binary-add1 from Exercise 24.4.3, binary-add
from Exercise 25.4.9, binary-mult from Exercise 25.4.10, and binary-raise from Ex-
ercise 25.4.11. Which of these (if any) would benefit from this treatment? Why?

27.2 Using locals for clarity

Consider a distance function that takes in two posns and computes the distance between
them:

; distance : posn posn -> number

(check-expect (distance (make-posn 3 5) (make-posn 3 5)) 0)

(check-expect (distance (make-posn 3 5) (make-posn 6 5)) 3)

(check-expect (distance (make-posn 3 5) (make-posn 3 -10)) 15)

(check-expect (distance (make-posn 3 5) (make-posn 6 9)) 5)

(check-within (distance (make-posn 3 5) (make-posn 4 4)) 1.41 .1)

(define (distance here there)

(sqrt (+ (* (- (posn-x here) (posn-x there))

(- (posn-x here) (posn-x there)))

(* (- (posn-y here) (posn-y there))

(- (posn-y here) (posn-y there))))))

This passes all its tests, and it’s reasonably efficient, but the definition is long, compli-
cated, and hard to read. The formula computes the difference of x coordinates, squares
that, computes the difference of y coordinates, squares that, adds the squares, and square-
roots the result.

It would arguably be easier to read if we had names for “the difference of x coordi-
nates” and “the difference of y coordinates”. We can do that with local:

(define (distance here there)

(local [(define xdiff (- (posn-x here) (posn-x there)))

(define ydiff (- (posn-y here) (posn-y there)))]

(sqrt (+ (* xdiff xdiff) (* ydiff ydiff))))

27.3. USING LOCALS FOR INFORMATION-HIDING 399

The expression on the last line is much shorter and clearer: one can easily see that
it’s the square root of the sum of two squares. (It may also be slightly more efficient, but
not the dramatic improvement we saw for smallest above.)

Exercise 27.2.1 Develop a function rotate-colors that takes in an image and (us-
ing map-image) creates a new image whose red component is the old green component,
whose green component is the old blue component, and whose blue component is the old
red component. Use local to give names to the old red, green, and blue components.

Exercise 27.2.2 What other functions have you written that would benefit from this
technique? Try rewriting them and see whether they’re shorter and clearer.

27.3 Using locals for information-hiding

Another approach to making smallest more efficient would have been to write a helper
function smaller:

; smaller : number number -> number

; returns the smaller of two numbers

(check-expect (smaller 3 8) 3)

(check-expect (smaller 9 7) 7)

(check-expect (smaller 2 2) 2)

(define (smaller a b)

(cond [(<= a b) a]

[else b]))

(define (smallest nums)

(cond [(empty? (rest nums)) (first nums)]

[(cons? (rest nums))

(smaller (first nums) (smallest (rest nums)))]))

This definition, too, calls itself recursively only once, so it doesn’t have the efficiency
problems of the first version above. But it requires a helper function, which may be of no
use in the rest of the program.

As mentioned above, you can also define a function, or even a struct, locally. So if we
wanted, we could hide the definition of smaller inside that of smallest:

(define (smallest nums)

(local [(define (smaller a b) (cond [(<= a b) a] [else b]))]

(cond [(empty? (rest nums)) (first nums)]

[(cons? (rest nums))

(smaller (first nums) (smallest (rest nums)))])))

I recommend moving smaller into a local definition only after you’ve tested and de-
bugged it as usual.

400 CHAPTER 27. LOCAL DEFINITIONS

Suppose you were hired to write a sort function like that of Exercise 23.6.1. It needed
a helper function insert which inserts a number in order into an already-sorted list of
numbers. But “insert” is a fairly common word, and your customer might want to write
a function by the same name herself, which would be a problem because DrRacket won’t
allow you to define two functions with the same name. So again, one could hide the
insert function inside the definition of sort:

(define (sort nums)

(local [(define (insert num nums) ...)]

(cond [(empty? nums) empty]

[(cons? nums)

(insert (first nums) (sort (rest nums)))])))

For another example, the wn-prime? function of Exercise 24.3.8 needed a helper
function not-divisible-up-to?, which nobody would ever want to use unless they were
writing a prime-testing function. So after you’ve tested and debugged both functions,
you can move the definition of not-divisible-up-to? function inside the definition of
wn-prime?:

(define (wn-prime? num)

(local [(define (not-divisible-up-to? m n) ...)]

(not-divisible-up-to? num (- num 1))))

For one more example, recall exercise 11.5.1, a road-trip-cost function which de-
pended on six other functions: gas-cost, cost-of-gallons, gas-needed, motel-cost,
nights-in-motel, and rental-cost. Any of those other functions could conceivably be
useful in its own right, but suppose we knew that they wouldn’t be used on their own. It
would still be useful to write and test the functions individually, but once they all work,
they (and the constants) could be hidden inside the definition of road-trip-cost:

27.3. USING LOCALS FOR INFORMATION-HIDING 401

(define (road-trip-cost miles days)

(local [(define MPG 28)

(define PRICE-PER-GALLON 2.459)

(define MOTEL-PRICE-PER-NIGHT 40)

(define CAR-RENTAL-FIXED-FEE 10)

(define CAR-RENTAL-PER-DAY 29.95)

(define CAR-RENTAL-PER-MILE 0.10)

(define (gas-needed miles)

(/ miles MPG))

(define (cost-of-gallons gallons)

(* PRICE-PER-GALLON gallons))

(define (gas-cost miles)

(cost-of-gallons (gas-needed miles)))

(define (nights-in-motel days)

(- days 1))

(define (motel-cost days)

(* MOTEL-PRICE-PER-NIGHT (nights-in-motel days)))

(define (rental-cost miles days)

(+ CAR-RENTAL-FIXED-FEE

(* days CAR-RENTAL-PER-DAY)

(* miles CAR-RENTAL-PER-MILE)))]

(+ (gas-cost miles)

(motel-cost days)

(rental-cost miles days))))

Of course, since each of the helper functions is called only once, there’s not much
point in defining them as functions at all. For this problem, it would be simpler and more
realistic to define them as variables instead:

(define (road-trip-cost miles days)

(local [(define MPG 28)

(define PRICE-PER-GALLON 2.459)

(define MOTEL-PRICE-PER-NIGHT 40)

(define CAR-RENTAL-FIXED-FEE 10)

(define CAR-RENTAL-PER-DAY 29.95)

(define CAR-RENTAL-PER-MILE 0.10)

(define gas-needed (/ miles MPG))

(define gas-cost (* PRICE-PER-GALLON gas-needed))

(define motel-cost (* MOTEL-PRICE-PER-NIGHT (- days 1)))

(define rental-cost

(+ CAR-RENTAL-FIXED-FEE

(* days CAR-RENTAL-PER-DAY)

(* miles CAR-RENTAL-PER-MILE)))]

(+ gas-cost motel-cost rental-cost)))

We’re now using local partly for information-hiding (it’s a convenient place to put
the constants PRICE-PER-GALLON, MPG, etc. without the rest of the program seeing those
names) and partly for clarity (gas-needed, gas-cost, etc. are just intermediate steps in
calculating the answer).

402 CHAPTER 27. LOCAL DEFINITIONS

27.4 Using locals to insert parameters into functions

In all of the above examples, we’ve written helper functions as usual, tested and debugged
them, then moved them into local definitions inside the main function. In this section,
we’ll see problems for which the helper function must be defined locally inside another
function — it doesn’t work by itself.

Worked Exercise 27.4.1 Modify the solution to Exercise 7.8.12 so the amount of blue
increases smoothly from top to bottom, regardless of the height of the image.

Solution: The apply-blue-gradient function will use the map-image function, which
requires a function with the contract

; new-pixel : number(x) number(y) color -> color

Let’s write some examples of this function. We’ll want one at the top of the image, one
at the bottom, and one in between. The one at the top is easy:

(check-expect (new-pixel 40 0 (make-color 30 60 90))

(make-color 30 60 0))

But how can we write an example at the bottom or in between when we don’t know how
tall the given image is?

Let’s pretend for a moment the image was 100 pixels tall. Then we would choose
examples

(check-expect (new-pixel 36 100 (make-color 30 60 90))

(make-color 30 60 255))

(check-expect (new-pixel 58 40 (make-color 30 60 90))

(make-color 30 60 102))

because 40 is 40% of the way from top to bottom, and 102 is 40% of the way from 0 to
255. The function would then look like

(define (new-pixel x y old-color)

; x a number

; y a number

; old-color a color

(make-color (color-red old-color)

(color-green old-color)

(real->int (* 255 (/ y 100)))))

(define (apply-blue-gradient pic)

; pic an image

(map-image new-pixel pic))

This works beautifully for images that happen to be 100 pixels high. To make it work
in general, we’d like to replace the 100 in the definition of new-pixel with (image-height

pic), but this doesn’t work because new-pixel has never heard of pic: pic won’t even
be defined until somebody calls apply-blue-gradient. As a step along the way, let’s
define a variable pic directly in the Definitions pane:

27.4. USING LOCALS TO INSERT PARAMETERS INTO FUNCTIONS 403

(define pic (ellipse 78 100 "solid" "green"))

(check-expect (new-pixel ...) ...)

(define (new-pixel x y old-color)

(make-color (color-red old-color)

(color-green old-color)

(real->int (* 255 (/ y (image-height pic))))))

(map-image new-pixel pic)

Now we can run the check-expect test cases for new-pixel, and also look at the result
of the map-image to see whether it looks the way it should. But it still doesn’t work in
general.

So we’ll get rid of the pic variable, comment out the check-expect test cases, and
move the definition of new-pixel inside the apply-blue-gradient function:
(define (apply-blue-gradient pic)

; pic an image

(local [(define (new-pixel x y old-color)

(make-color (color-red old-color)

(color-green old-color)

(real->int (* 255 (/ y (image-height pic))))))]

(map-image new-pixel pic)))

Note that when the variable name pic appears in new-pixel, it refers to the parameter
of apply-blue-gradient.

Try this definition of apply-blue-gradient on a variety of pictures of various sizes.

A disadvantage of writing a function inside another function is that you can’t test
an inner function directly, so I recommend the process above: define global variable(s)
for the information from the outer function that the inner function needs, test the inner
function in the presence of these variables, and once it passes all the tests, move the inner
function inside a function with parameters with the same names as those variables (and
now you can get rid of the global variables).

Exercise 27.4.2 Develop a function add-red that takes in a number and an image,
and adds that number to the red component of every pixel in the image. (Remember to
keep the red component below 256.)

Exercise 27.4.3 Develop a function substitute-color that takes in two colors and
an image, and replaces every pixel which is the first color with the second color.

Exercise 27.4.4 Develop a function horiz-stripes that takes in a width, a height,
a stripe width, and two colors, and produces a rectangular image of the specified width
and height with horizontal stripes of the specified width and colors.

Exercise 27.4.5 Develop a function smooth-image that takes in an image and re-
places each color component of each pixel with the average value of that color component
in the pixel and its four neighbors (up, down, left, and right).

Hint: Use the get-pixel-color function to get the values of the neighboring pixels.
Use another local to give names (e.g. up, down, left, and right) to these values, for
clarity.

404 CHAPTER 27. LOCAL DEFINITIONS

You’ll need to decide what to do at the borders. The easiest answer is to just call
get-pixel-color even though the position may be outside the borders; it will return
black in that case, so the resulting picture will have darkened edges. A more proper, and
more difficult, solution is to average together only the neighboring pixels that actually
exist. This will probably require two or three helper functions and a list of neighboring
colors. These helper functions will also help you with Exercise 27.4.8.

A “higher-order function” is a function that takes in functions as parameters, and/or
returns a function as its value. (We’ll learn how to write such functions in Chapter 28.)
Some examples are map3-image, build3-image, map-image, and build-image. We’ve
seen how to write a function that (locally) defines another function from its parameters,
then passes that new function as an argument to a higher-order function.

What other higher-order functions have we seen? How about on-tick, on-draw,
on-key, on-mouse, etc.? The same technique now allows us to write a function that uses
its parameters to construct event handlers and run an animation on them.

Exercise 27.4.6 Recall Exercise 6.5.2, which placed a stick-figure at a fixed location on
a background scene and had the stick figure turn upside-down every second or so.

Develop a function flipping-figure that takes in a background scene and the x
and y coordinates where you want the figure to be, and runs an animation with the figure
flipping upside-down every second or so at that location on that background.

Hint: Define a redraw handler locally, using the specified background scene, and then
call big-bang inside the body of the local.

Exercise 27.4.7 Develop a function add-dots-with-mouse that takes in a color and
a number, and runs an animation that starts with a white screen, and every time the mouse
is clicked, adds a circular dot of the specified color and radius at the mouse location.

Exercise 27.4.8 Look up John Conway’s “Game of Life” on the Web (e.g. Wikipedia).
Develop a function life-gen that takes in an image representing a grid of cells

(think of the color white as “dead” and any other color as “alive”), and produces the
grid of cells one generation later. If a pixel has fewer than two or more than three
“live” neighbors (from among its eight neighbors — above, below, left, right, and the four
diagonals), it dies. If it has exactly two, it stays the same as it was (alive or dead). If it
has exactly three, it becomes alive (or stays alive, if it already was). You may want to use
another local to give names to the eight neighboring pixels, or to a list of their colors,
or something.

Define an animation with life-gen as its tick handler.
Start it with a random image (see Exercise 15.3.3) as the initial model.
If you want more control over the animation, recall that big-bang returns its final

model. Try starting this “life” animation with the result of add-dots-with-mouse (see
Exercise 27.4.7).

SIDEBAR:

Most programming languages allow you to define local variables. Some (like Java
and Pascal) allow you to define local structs and functions. Some of these allow you
to write a function whose parameters are then inserted into locally-defined functions,
although they require more complicated syntax and put extra restrictions on what
you can do with these parameters. Racket makes this stuff easier than any other
language I know of.

27.5. REVIEW 405

27.5 Review of important words and concepts

Racket (like most programming languages) allows you to define variables locally : you
introduce a new variable, work with it for a little while, and then forget it. This is used
for four common reasons:

• for efficiency: suppose a function calls itself more than once on the same argu-
ment(s). We call it only once, store the result in a local variable, and use the
variable more than once.

• for clarity: suppose a particular long expression, an intermediate step in computing
a function, appears several times in the function definition. Define a local variable to
hold the result of that expression, and the resulting definition may be significantly
shorter and easier to understand.

• for information-hiding: suppose a constant, struct, or function is only needed within
a particular function, especially if it has a common name that somebody might want
to use somewhere else in a large program. Define it locally, use it in this function
as many times as you want, and be confident it won’t conflict with or be confused
with things by the same name defined elsewhere.

• for defining functions that can be passed to a higher-order function like build-image,
map-image, on-draw, etc. In particular, the ability to define a function inside an-
other function, using the parameters of the outer one, enables you to do image
manipulations and animations that you couldn’t do before. We’ll see another way
to do this in Section 28.6.

27.6 Reference: New syntax for local definitions

This chapter introduced one new syntax rule, Rule 8 introducing local definitions of
variables, functions, and even structs.

406 CHAPTER 27. LOCAL DEFINITIONS

Chapter 28

Functions as objects

For this chapter, switch languages in DrRacket to “Intermediate Student Language with
Lambda” or higher. (We’ll discuss lambda in Section 28.6.)

28.1 Adding parameters

The original reason for defining functions was to avoid writing almost the same expression
over and over. Recall the rule from Chapter 4, if you write almost the exact same thing
over and over, you’re doing something wrong. So we parameterized the expression: made
it a function definition with one or more parameters. The part of those expressions that
was always the same became the body of the function definition, and the part that was
different became a parameter to the function.

Recall Exercise 22.5.3, a function contains-doll? which checked whether the string
"doll" occurs in a given list. Now imagine contains-baseball?, which checks whether
the string "baseball" occurs in a given list. The definitions of these two functions would
be almost identical, except that the word "doll" in one is replaced with "baseball" in
the other.

We respond, again, by parameterizing — in this case, adding a parameter to a function
that already has one. In Exercise 22.5.4, we wrote a function any-matches? that took in
an extra parameter and searches for that object in a given list. Once we’ve written, tested,
and debugged that more general function, contains-doll? and contains-baseball?

and anything else like them is trivial.
Now suppose we had written a function any-over-10? that took a list of numbers

and tells whether any of the numbers are larger than 10. (This should be an easy exercise
by now.) An obvious variant on this would be any-over-5?, whose definition would be
exactly the same, only with the number 5 replacing the number 10. To avoid having to
write each of these nearly-identical functions, we again add a parameter :

; any-over? : number list-of-numbers -> boolean

(check-expect (any-over? 5 empty) false)

(check-expect (any-over? 5 (list 3)) false)

(check-expect (any-over? 5 (list 5)) true)

(check-expect (any-over? 5 (list 6)) true)

(check-expect (any-over? 5 (list 7 2 4)) true)

(check-expect (any-over? 5 (list 3 2 4)) false)

(check-expect (any-over? 5 (list 3 2 5)) true)

407

408 CHAPTER 28. FUNCTIONS AS OBJECTS

(define (any-over? threshold numbers)

(cond [(empty? numbers) false]

[(cons? numbers)

(or (> (first numbers) threshold)

(any-over? threshold (rest numbers)))]))

28.2 Functions as parameters

What if we wanted to find whether any of the elements of a list were greater than or equal
to a particular threshold? Or if any of the elements of a list were smaller than a particular
threshold? any-over? won’t do it; the obvious analogues would be any-at-least? and
any-under?, which would be just like any-over? but with a >= or < in place of the >
in the above definition.

Again, we’re writing almost exactly the same code over and over, which probably
means we’re doing something wrong. And as before, the answer is to add a parameter.
But this time the “part that’s different” is a function rather than a number or a string.
Which means that our general function will have to take a function as a parameter.

You’ve already seen some functions — on-tick, on-draw, check-with, map-image,
build-image, etc. — that take in a function as an argument. But you haven’t been
allowed to write such functions yourself. This is because, for absolute beginning pro-
grammers, confusing a function with a variable is a very common mistake. But now that
you’re past those beginning mistakes, switch languages to DrRacket’s “Intermediate
Student Language with lambda”.

In Racket, function is a data type, just like number or string or list. If you can pass a
number or a list as an argument, there’s no reason not to pass a function as an argument.
Functions that operate on other functions are called higher-order functions.

The following exercise generalizes any-over? to allow for any-under?, any-at-least?,
any-equal?, etc.

Worked Exercise 28.2.1 Develop a function any-compares? that takes in a function,
a number, and a list of numbers, and tells whether any of the numbers in the list has the
specified relationship to the fixed number.

Solution: The contract and examples look like

; any-compares? : function number list-of-numbers -> boolean

(check-expect (any-compares? >= 5 (list 2 5 1)) true)

(check-expect (any-compares? > 5 (list 2 5 1)) false)

(check-expect (any-compares? = 5 (list 2 5 1)) true)

(check-expect (any-compares? = 5 (list 2 6 1)) false)

(check-expect (any-compares? < 5 (list 2 6 1)) true)

(check-expect (any-compares? < 5 (list 7 6 8)) false)

Before we go on with developing the function, let’s look again at the contract. The
first argument to any-compares? is supposed to be a function, so let’s try some other
functions.

28.2. FUNCTIONS AS PARAMETERS 409

What would (any-compares? + 5 (list 7 6 8)) do? Well, it compares each num-
ber in the list with 5, using the + operator, and if any of these questions returns
true . . . but wait! The + operator doesn’t return a boolean at all! Calling any-compares?

doesn’t make sense unless the function you give it returns a boolean.

What would (any-compares? positive? 5 (list 7 6 8)) do? It should com-
pare each number in the list with 5, using positive? . . . but wait! The positive?

function only takes one parameter, so how can it possibly “compare” two numbers? In
fact, calling any-compares? doesn’t make sense unless the function you give it takes
exactly two parameters.

To rule out such nonsensical uses of any-compares?, let’s make the contract more
precise: instead of just saying “function”, we’ll write down (in parentheses) the contract
that the function must satisfy:

; any-compares? : (number number -> boolean)

number

list-of-numbers

-> boolean

The skeleton looks like

(define (any-compares? compare? num nums)

; compare? number number -> boolean

; num number

; nums list of numbers

(cond [(empty? nums) ...]

[(cons? nums)

; (first nums) number

; (rest nums) list of numbers

; (any-compares? compare? num (rest nums)) boolean

...]))

So what can we do with compare?? It’s a function on two numbers, returning a
boolean, so the obvious thing to do with it is to call it on two numbers. Conveniently,
we have two numbers in the inventory: num and (first nums). There are two ways we
could call the function:

; (compare? (first nums) num) boolean

; (compare? num (first nums)) boolean

To see which one (or both) will actually help us, let’s use an inventory with values. We’ll
pick the example (any-compares? < 5 (list 2 6 7)) in which the first comparison
should be true, and the others false.

410 CHAPTER 28. FUNCTIONS AS OBJECTS

(define (any-compares? compare? num nums)

; compare? number number -> boolean <
; num number 5

; nums list of numbers (list 2 6 7)

(cond [(empty? nums) ...]

[(cons? nums)

; (first nums) number 2

; (rest nums) list of numbers (list 6 7)

; (compare? (first nums) num) boolean true

; (compare? num (first nums)) boolean false

; (any-compares? compare? num (rest nums))

boolean false

; right answer boolean true

...]))

So of the two, we seem to need (compare? (first nums) num). The final definition
(with the scratch work removed) is

(define (any-compares? compare? num nums)

(cond [(empty? nums) false]

[(cons? nums)

(or (compare? (first nums) num)

(any-compares? compare? num (rest nums)))]))

Now that we’ve written any-compares?, if we want any-over?, any-greater?,
any-less?, any-over-5?, etc., we can write them easily:

(define (any-over? num nums)

(any-compares? > num nums))

(define (any-at-least? num nums)

(any-compares? >= num nums))

(define (any-less? num nums)

(any-compares? < num nums))

(define (any-over-5? nums)

(any-compares? > 5 nums))

With the aid of a helper function, we can go even farther:

(define (divisible-by? x y)

(zero? (remainder x y)))

(define (any-even? nums)

(any-compares? divisible-by? 2 nums))

Or, if divisible-by? isn’t likely to be used anywhere else, we could wrap it up in a
local:

(define (any-even? nums)

(local [(define (divisible-by? x y)

(zero? (remainder x y)))]

(any-compares? divisible-by? 2 nums)))

28.2. FUNCTIONS AS PARAMETERS 411

What if we had defined prime?, as in Exercise 24.3.8, and wanted to know whether
any of the numbers in the list are prime? There’s no obvious way to use any-compares?

to solve this problem, because any-compares? insists on comparing each element of the
list with a particular fixed value. In fact, a more natural function than any-compares?

would be

; any-satisfies? (number -> boolean) list-of-numbers -> boolean

(check-expect (any-satisfies? even? (list 3 5 9)) false)

(check-expect (any-satisfies? even? (list 3 5 8)) true)

(define (over-5? x) (> x 5))

(check-expect (any-satisfies? over-5? (list 2 3 4)) false)

(check-expect (any-satisfies? over-5? (list 2 6 4)) true)

(check-expect (any-satisfies? prime? (list 2 6 4)) true)

(check-expect (any-satisfies? prime? (list 8 6 4)) false)

The definition (after taking out the scratch work) is

(define (any-satisfies? test? nums)

(cond [(empty? nums) false]

[(cons? nums)

(or (test? (first nums))

(any-satisfies? test? (rest nums)))]))

Worked Exercise 28.2.2 Suppose we had written any-satisfies? first. Define the
function any-compares?, taking advantage of having already written the more general
function.

Solution: Since any-satisfies? takes in a function of only one parameter, we need a
helper function that takes one parameter.

; ok? : num -> boolean

; applies the comparison function to

; the parameter and the fixed number

But what are “the comparison function” and “the fixed number”? They’re both param-
eters to any-compares?, so we can’t possibly know what they are until any-compares?
is called. However, we can write and test it by storing sample values of both in global
variables:

(define num 17)

(define compare? >)

(check-expect (ok? 14) false)

(check-expect (ok? 17) false)

(check-expect (ok? 19) true)

(define (ok? num-from-list)

; num-from-list number

; num number

; compare? (number number -> boolean)

(compare? num-from-list num))

Once this has passed its tests, change the definitions of num and compare?, change the
test cases appropriately, and see if it still passes the tests. If so, we perhaps have enough
confidence in it to move it inside another function:

412 CHAPTER 28. FUNCTIONS AS OBJECTS

(define (any-compares? compare? num nums)

(local [(define (ok? num-from-list)

(compare? num-from-list num))]

(any-satisfies? ok? nums)))

Again, this helper function could not have been written to stand by itself at the top level,
because it needs to know what compare? and num are.

Looking closely at the definition of any-satisfies?, we notice that nothing in the
code (except the variable names) actually mentions numbers. In fact, if we were to call
any-satisfies? on a function from string to boolean and a list of strings, it would work
just as well:

(define (contains-doll? toys)

(local [(define (is-doll? toy) (string=? toy "doll"))]

(any-satisfies? is-doll? toys)))

So what is the contract really? It wouldn’t work with a function from string to boolean
and a list of numbers, or vice versa; the input type of the function has to be the same type
as the elements of the list. We often write this using a capital letter like X to represent
“any type”:

; any-satisfies? (X -> boolean) list-of-X -> boolean

SIDEBAR:

The Java and C++ languages also allow you to write a function whose contract has
a “type variable” in it, like the X above. C++ calls these “templates”, and Java
calls them “generics”. Needless to say, the syntax is more complicated.

Exercise 28.2.3 Use any-satisfies? to write a any-over-100K? function that takes
in a list of employee structs (as in Exercise 21.2.1), and tells whether any of them earn
over $100,000/year. Your any-over-100K? function should have no recursive calls.

Exercise 28.2.4 Develop a function count-if that takes in a function (from X to
boolean) and a list of X’s, and returns how many of the elements of the list have the
property.

Exercise 28.2.5 Use count-if to write a count-evens function that takes a list of
numbers and returns how many of them are even. Your count-evens function should
have no recursive calls.

Exercise 28.2.6 Use count-if to write a count-dolls function that takes a list of
strings and returns how many of them are "doll". Your function should have no recursive
calls.

Exercise 28.2.7 Use count-if to write a count-multiples function that takes a num-
ber and a list of numbers and returns how many of them are multiples of that number.
Your function should have no recursive calls.

Exercise 28.2.8 Use count-if to write a count-earns-over-100K function that takes
a list of employee structs and returns how many of them earn over $100,000/year. Your
function should have no recursive calls.

28.3. FUNCTIONS RETURNING LISTS 413

Exercise 28.2.9 Use count-if to write a count-earns-over function that takes a list
of employee structs and a number, and returns how many of the employees earn over that
amount. Your function should have no recursive calls.

Exercise 28.2.10 Develop a function remove-if that takes in a function (from X to
boolean) and a list of X’s, and returns a list of the elements of the list for which the
function returns false (i.e. it “removes” the ones for which the function returns true).

(A function similar to remove-if is actually built into DrRacket: now that you’ve
written your own version, look up the filter function in the Help system.)

Exercise 28.2.11 Use remove-if to write a remove-over-5 function that takes in a list
of numbers and removes all the ones > 5. Your function should have no recursive calls.

Exercise 28.2.12 Use remove-if to write a remove-over function that takes in a num-
ber and a list of numbers and removes all the ones over that number. Your function should
have no recursive calls.

Exercise 28.2.13 Use remove-if to write a fire-over function that takes in a number
and a list of employee structs and removes all the ones that earn over that amount of
money per year. Your function should have no recursive calls.

Exercise 28.2.14 Develop a function nth-satisfying that takes in a whole number
n and a Boolean-valued function, and returns the n-th whole number that has the desired
property. For example,

(check-expect (nth-satisfying 3 even?) 4)

; even natural numbers 0, 2, 4

(check-expect (nth-satisfying 5 prime?) 11)

; prime numbers 2, 3, 5, 7, 11

(check-expect (nth-satisfying 5 over-10?) 15)

; 11, 12, 13, 14, 15

(check-expect (nth-satisfying 4 integer?) 3)

; 0, 1, 2, 3

Hint: You’ll probably need a helper function that takes in an extra parameter.

28.3 Functions returning lists

Consider the function cube-each:

; cube-each : list-of-numbers -> list-of-numbers

; returns a list of the cubes of the numbers, in the same order

(check-expect (cube-each empty) empty)

(check-expect (cube-each (list 2 6 -3)) (list 8 216 -27))

Defining this function should be straightforward by now. But what if you were then
asked to write sqrt-each or negate-each? Obviously, these are all defined in essentially
the same way, differing only in what function is applied to each element of the list. To
avoid having to write each of these separately, we’ll parameterize them with that function:

414 CHAPTER 28. FUNCTIONS AS OBJECTS

; do-to-each : (X -> X) list-of-X -> list-of-X

(check-expect (do-to-each sqrt (list 0 1 4)) (list 0 1 2))

(define (cube y)

(* y y y))

(check-expect (do-to-each cube (list 2 6 -3)) (list 8 216 -27))

Exercise 28.3.1 Develop this do-to-each function.

Exercise 28.3.2 Use do-to-each to write sqrt-each with no recursive calls.

Exercise 28.3.3 There’s a built-in function named identity which does nothing: it
returns its argument unchanged. It’s often useful as a simple test case for functions like
do-to-each.

What should (do-to-each identity ...) do? Try it.

Exercise 28.3.4 Use do-to-each to write add-3-to-each with no recursive calls.

Exercise 28.3.5 Use do-to-each to write a add-to-each function that takes in a num-
ber and a list of numbers and adds the number to each element of the list. No recursive
calls.

Exercise 28.3.6 Use do-to-each to write a give-10%-raises function that takes in a
list of employee structs and returns a list of the same employees, in the same order, but
with each one earning 10% more than before. Your function should have no recursive
calls.

Now that you’ve written do-to-each, notice that not only is there nothing in the code
that requires the elements of the list to be numbers; there is also nothing in the code that
requires the input list to be the same type as the output type. For example,

(check-expect

(do-to-each string-length (list "hello" "hi" "mazeltov"))

(list 5 2 8))

works, even though it violates the contract as we stated it above. In fact, the contract
should really be rewritten:

; do-to-each : (X -> Y) list-of-X -> list-of-Y

which makes sense: if X and Y are any two types (possibly the same), it takes in a
function from X to Y, applies it to each of a list of X’s, and produces a list of Y’s.

Exercise 28.3.7 Use do-to-each to write a names function that takes a list of employee
structs and returns a list of their names. Your function should have no recursive calls.

Actually, there’s a function similar to do-to-each built into DrRacket; now that
you’ve written your own version, look up the map function in the Help system. (Just as
map-image does something to each pixel of an image and produces an image the same
size, map does something to each element of a list and produces a list the same size.)
The biggest difference between do-to-each and map is that do-to-each always applies
a one-parameter function, whereas map takes in a function of any number of parameters,
and takes that number of lists. For example,

(check-expect (map + (list 1 2 3 4) (list 50 40 30 20))

(list 51 42 33 24))

28.4. CHOOSING A WINNER 415

Exercise 28.3.8 Rewrite exercise 23.4.1 using map or do-to-each wherever possible.
Is the result significantly shorter or clearer?

Exercise 28.3.9 Develop a function do-to-each-whole that takes in a whole number
n and a function f: whole -> X and produces a list of X’s: (f 0), (f 1), . . .(f (- n

1)). For example,

(check-expect (do-to-each-whole 5 sqr) (list 0 1 4 9 16))

Again, there’s actually a built-in function that does exactly this:

; build-list : whole (whole -> X) -> list-of-X

As build-image builds an image of a specified size and shape by calling a function on
the coordinates of each pixel, build-list builds a list of length N by calling a function
on each of the numbers 0, 1, . . . N − 1. Now that you’ve written do-to-each-whole, feel
free to use the predefined build-list instead.

Exercise 28.3.10 The sort function from Section 23.6 sorts a list of numbers in in-
creasing order. One could easily sort a list of numbers in decreasing order by replacing
a < with a > in the function definition. Generalize the sort function so it takes in
a function (call it precedes?) to tell whether one item in the list should come before
another.

Your function definition should no longer depend on the data in the list being numbers;
generalize the contract as far as you can.

Exercise 28.3.11 Develop a function sort-by-salary that takes in a list of employee
structures and sorts them from highest-paid to lowest-paid. You should be able to do this in
a few lines of code (not counting contracts, inventories, and test cases), without recursion,
by using general-sort.

Exercise 28.3.12 Rewrite sort-candidates (from exercise 23.6.2) with the help of
general-sort. It should take about four reasonably short lines, not counting contracts,
inventories, and test cases.

Exercise 28.3.13 Develop a function ranked-election that takes in a list of strings
(representing the votes cast by individual voters) and returns an ordered list of candidates,
from most votes to fewest votes. It should take two or three reasonably short lines, not
counting contracts, inventories, and test cases.

28.4 Choosing a winner

The smallest and largest functions, finding the smallest and largest number (respec-
tively) in a non-empty list, are of course very similar: where one has a <, the other has
a >. The highest-paid function, taking in a list of employee structs and returning the
one with the highest salary, is a little more complicated, but still does basically the same
thing: it compares two objects, picks one of them as the “winner”, then compares the
winner of this bout with another object, and so on until you’ve reduced the whole list to
one “champion”.

416 CHAPTER 28. FUNCTIONS AS OBJECTS

Obviously, the difference between one of these functions and another is the comparison
function, which we might call beats?. We can generalize all of these functions to a
champion function that takes in the beats? function and a non-empty list (it doesn’t
make sense on an empty list), runs a single-elimination tournament, and returns the list
element that “beats” all the rest.

Exercise 28.4.1 Develop the function champion as described above.

Hint: For efficiency, it’s probably a good idea to adapt the technique from Section 27.1
so you don’t call the function recursively twice.

Exercise 28.4.2 Use champion to rewrite smallest with no recursive calls.

Exercise 28.4.3 Use champion to write highest-paid with no recursive calls.

28.5 Accumulating over a list

Consider the functions add-up and multiply-all (Exercises 22.5.2 and 22.5.11). These
functions are extremely similar: they both combine two objects to get a third object,
which is then combined with another object to get a fourth, and so on. We should be
able to generalize these. How do they differ, and how are they the same?

The add-up and multiply-all functions obviously differ in what function they apply
(+ and ∗ respectively). But they also differ in the answer to the base case: the right
answer to (add-up empty) is 0, while the right answer to (multiply-all empty) is 1.
So we’ll need to add two parameters:

; combine : X (X X->X) list-of-X -> X

...

(define (add-up nums) (combine 0 + nums))

(define (multiply-all nums) (combine 1 * nums))

(check-expect (add-up (list 1 2 3 4)) 10)

(check-expect (multiply-all (list 1 2 3 4)) 24)

Exercise 28.5.1 Develop this combine function.

You may notice that there’s nothing in the function definition that requires the various
types to be the same. On the other hand, not every possible combination of data types
would make sense either.

Exercise 28.5.2 Correct the contract for combine to reflect which things must be the
same type. Allow as much generality as you can.

Exercise 28.5.3 Use combine to rewrite any-satisfies? with no recursive calls.

Exercise 28.5.4 Use combine to rewrite count-if with no recursive calls.

Exercise 28.5.5 Use combine to rewrite do-to-each with no recursive calls.

28.6. ANONYMOUS FUNCTIONS 417

Exercise 28.5.6 Use combine to rewrite champion with no recursive calls.

There are two different functions built into DrRacket that act like combine. Now that
you’ve written your own version, look up foldr and foldl in the Help system.

28.6 Anonymous functions

In many of the above exercises, we needed to write a little function (either locally or
standing on its own) for the sole purpose of passing it to a higher-order function like
any-satisfies?, count-if, remove-if, champion, or combine. This feels silly and
wasteful to me.

By way of analogy, suppose we wanted to compute 3 + (4 · 5). We could do this in two
steps:

(define temp (* 4 5))

(+ 3 temp)

but it’s much shorter and simpler to just say

(+ 3 (* 4 5))

In other words, we don’t need to give a name to the result of (* 4 5) if all we’re going
to do it pass it as an argument, once, to +.

If we’re going to use something many times, it makes sense to give it a name and use
that name each time. But if we’re going to use it only once, it makes more sense to just
use its value directly. Similarly, it seems silly to define a function with a name if we’re
only going to use it once, as an argument to another function.

Syntax Rule 9 (lambda (parameter parameter ...) expression)

is an expression whose value is a function that takes in the specified number of parameters.
The parameter names may appear in the expression.

lambda can be thought of as just like define, except that it doesn’t bother giving a
name to the function, but just returns it instead. Any place that a function can appear –
a “function” argument to a higher-order function, or even just after a left parenthesis —
a lambda expression can appear too. For example,

((lambda (y) (* y y y)) 1234567890)

is equivalent to

(* 1234567890 1234567890 1234567890)

More usefully,

(do-to-each (lambda (y) (* y y y)) (list 1 2 5 -3))

is equivalent to

(local [(define (cube y) (* y y y))]

(do-to-each cube (list 1 2 5 -3)))

which of course returns (list 1 8 125 -27).

Worked Exercise 28.6.1 Recall Exercise 28.2.2, in which we re-wrote any-compares?

using any-satisfies?. Re-do this exercise using lambda in place of local.

Solution: Instead of defining the ok? function locally, we’ll define it without a name
using lambda:

418 CHAPTER 28. FUNCTIONS AS OBJECTS

(define (any-compares? compare? num nums)

(any-satisfies? (lambda (x) (compare? x num))

nums))

Exercise 28.6.2 For each function you’ve defined in this chapter using local to create
a function to pass to a higher-order function, rewrite it using lambda instead. Is the
result longer or shorter than the local version?

A list of lists can be thought of as a two-dimensional table: the i, j element of the
table is simply the j’th element of the i’th list.

Exercise 28.6.3 Define a function multiplication-table that takes in a list of num-
bers and produces a two-dimensional table of multiplication results on those numbers: for
example,

(check-expect (multiplication-table (list 1 2 3 5))

(list (list 1 2 3 5)

(list 2 4 6 10)

(list 3 6 9 15)

(list 5 10 15 25))

Hint: You can write this in two or three lines, with no locals or recursive calls, by
using lambda and functions that you’ve already written.

Exercise 28.6.4 Explain how any expression using local definitions can be rewritten to
use lambda instead.

Hint: In a sense, this exercise asks you to write a function that takes in Racket expres-
sions and produces Racket expressions. We haven’t discussed how to do that in Racket
yet, however, so for this exercise you may simply describe, in English, what you would do
to an expression containing local to convert it into an equivalent expression containing
lambda.

Exercise 28.6.5 Explain how any expression using lambda can be rewritten to use local
instead.

Hint: See previous problem.

SIDEBAR:

Some programming languages, like C++, have nothing corresponding to lambda:
there’s no way to define a function without giving it a name. In Java, it can be done
using something called an “anonymous inner class”. Needless to say, the syntax is
more complicated.

28.7 Functions in variables

If function is a data type, along with number, string, and so on, we should be able to
store functions in variables. For example, following Syntax Rule 4, we could write

(define cube (lambda (y) (* y y y)))

28.8. FUNCTIONS RETURNING FUNCTIONS 419

Then, since the variable cube’s value is a function, we should be able to use it anywhere
that we could use a function, e.g.

(check-expect (cube 3) 27)

(check-expect (do-to-each cube (list 1 3 5)) (list 1 27 125))

In other words, such a variable would act exactly as though we had used Syntax Rule 5
to define a function by that name. In fact, deep down inside DrRacket,

(define (cube y) (* y y y))

is just an abbreviation1 for

(define cube (lambda (y) (* y y y)))

Recall Section 27.3, in which we defined a smallest function

(define (smallest nums)

(local [(define (smaller a b) (cond [(<= a b) a] [else b]))]

(cond [(empty? (rest nums)) (first nums)]

[(cons? (rest nums))

(smaller (first nums) (smallest (rest nums)))])))

One might object to this definition that it re-defines the smaller function each time
smallest is called, a small but annoying inefficiency. But now that we know that defin-
ing a function is just an abbreviation for defining a variable whose value is a lambda

expression, we can rewrite this:

(define smallest

(local [(define (smaller a b) (cond [(<= a b) a] [else b]))]

(lambda (nums)

(cond [(empty? (rest nums)) (first nums)]

[(cons? (rest nums))

(smaller (first nums)

(smallest (rest nums)))]))))

Rather than defining smaller inside the smallest function, we’ve defined it once, locally,
for just long enough to build an anonymous function, then (outside the local) give it the
name smallest.

This isn’t an essential, earth-shaking change to the function definition. Remember
this technique, though, because it’ll make a big difference in Chapter 30.

Exercise 28.7.1 Rewrite the sort function from Section 27.3 in this style, with the
local outside the function body.

28.8 Functions returning functions

Just as a function can take in functions as parameters, a function can also return a
function as its result. For a simple (and unrealistic) example, suppose we needed functions
add-2-to-each and add-3-to-each, which could be defined easily by

(define (add-2-to-each nums)

(do-to-each (lambda (x) (+ x 2)) nums))

(define (add-3-to-each nums)

(do-to-each (lambda (x) (+ x 3)) nums))

1A well-known programming textbook using Scheme (Racket’s immediate ancestor), Abelson & Suss-
man’s Structure and Interpretation of Computer Programs [ASS96], uses the latter notation from the
beginning.

420 CHAPTER 28. FUNCTIONS AS OBJECTS

We’ve written two extremely similar lambda-expressions, which we could generalize into
a function that takes in the 2 or the 3 and returns the function that will be passed to
do-to-each.

Worked Exercise 28.8.1 Define a function make-adder that takes in a number, and
returns a function that adds that number to its one argument.

Solution: The contract looks like

; make-adder : number -> (number -> number)

How would we test this? It turns out that check-expect doesn’t work very well on
functions — how do you test whether two functions are the same, short of calling them
both on every possible input? So we’ll have to apply the result of make-adder to a number
and see what it produces.

(define add2 (make-adder 2))

(define add5 (make-adder 5))

(check-expect (add2 4) 6)

(check-expect (add2 27) 29)

(check-expect (add5 4) 9)

(check-expect (add5 27) 32)

(check-expect ((make-adder 3) 2) 5)

Defining the function, however, is easy:

(define (make-adder num)

; num number

(lambda (x) (+ x num)))

or, if you prefer local,

(define (make-adder num)

; num number

(local [(define (addnum x) (+ x num))]

addnum))

Exercise 28.8.2 Define a function make-range that takes in two numbers and returns
a function that takes in a number and tells whether it’s between those two numbers (in-
clusive, i.e. it can equal either of them). For example,

28.8. FUNCTIONS RETURNING FUNCTIONS 421

(define teen? (make-range 13 19))

(define two-digit? (make-range 10 99))

(check-expect (teen? 12) false)

(check-expect (teen? 13) true)

(check-expect (teen? 16) true)

(check-expect (teen? 19) true)

(check-expect (teen? 22) false)

(check-expect (two-digit? 8) false)

(check-expect (two-digit? 10) true)

(check-expect (two-digit? 73) true)

(check-expect (two-digit? 99) true)

(check-expect (two-digit? 100) false)

(check-expect ((make-range 39 45) 38) false)

(check-expect ((make-range 39 45) 42) true)

Exercise 28.8.3 Define a function twice that takes in a function with contract X → X,
and returns another function with the same contract formed by calling the given function
on its own result. For example,

(define add2 (twice add1))

(define fourth-root (twice sqrt))

(check-expect (add2 5) 7)

(check-expect (fourth-root 256) 4)

If you did Exercise 9.2.8, recall the definition of the function digits, which tells how
many digits long the decimal representation of an integer is. What does (twice digits)

do?
What does (twice twice) do?

Exercise 28.8.4 Define a function iterate that takes in a whole number and a function
with contract X → X, and returns a function that applies the specified function the
specified number of times. For example,

(define add5 (iterate 5 add1))

(check-expect (add5 17) 22)

(define eighth-root (iterate 3 sqrt))

(check-expect (eighth-root 256) 2)

Note that the twice function above is a special case of iterate:

(define (twice f) (iterate 2 f))

What does (iterate 3 twice) do?

In solving problems 28.8.3 and 28.8.4, you needed to define a new function as the com-
position of two existing functions (that is, one function applied to the result of another).
This is such a common operation that Racket gives you a built-in function to do it:

; compose : (Y -> Z) (X -> Y) -> (X -> Z)

For example,

(define f (compose sqr add1))

(check-expect (f 0) 1)

(check-expect (f 1) 4)

(check-expect (f 2) 9)

422 CHAPTER 28. FUNCTIONS AS OBJECTS

Exercise 28.8.5 Rewrite the twice function of Exercise 28.8.3 using compose.

Exercise 28.8.6 Rewrite the iterate function of Exercise 28.8.4 using compose.

SIDEBAR:

The Java language technically doesn’t allow you to create, return, or pass functions
as values, but you can create, return, or pass “objects” that have functions associated
with them, which gives you the same power with more complicated syntax. However,
although you can create functions while the program is running, you have to specify
their contracts (which Java calls “interfaces”) in advance, while writing the program;
you can’t decide at run-time what contract the new function should have.

28.9 Sequences and series

Mathematicians often work with sequences of numbers. A sequence can be defined as a
function from whole numbers to numbers. For example, the sequence of even numbers
can be written 0, 2, 4, 6, 8, . . . or, thinking of it as a function, as (lambda (n) (* 2 n)).
Thus one could write

(define evens (lambda (n) (* 2 n)))

Exercise 28.9.1 Develop a function take which, given a whole number n and a se-
quence, produces a list of the first n values of that sequence. For example,

(check-expect (take 5 evens) (list 0 2 4 6 8))

This function will make it much easier to write test cases for functions that return
sequences!

Exercise 28.9.2 Develop a function arithmetic-sequence which, given two num-
bers initial and difference, produces the “arithmetic sequence” starting at initial
and increasing by difference at each step. For example,

(define evens (arithmetic-sequence 0 2))

(define odds (arithmetic-sequence 1 2))

(define ends-in-3 (arithmetic-sequence 3 10))

(check-expect (take 5 evens) (list 0 2 4 6 8))

(check-expect (take 6 odds) (list 1 3 5 7 9 11))

(check-expect (take 5 ends-in-3) (list 3 13 23 33 43))

Exercise 28.9.3 Develop a function geometric-sequence which, given two numbers
initial and ratio, produces the “geometric sequence” starting at initial and growing
by a factor of ratio at each step.

Exercise 28.9.4 Develop a function constant-sequence that takes in a number and
produces a sequence that always has that value.

(You can write this from scratch with lambda, or by re-using a previously-written
function.)

28.9. SEQUENCES AND SERIES 423

Exercise 28.9.5 Define a variable whose value is the “harmonic sequence”: 1, 1/2,
1/3, 1/4, 1/5,

Exercise 28.9.6 Define a variable wholes whose value is the sequence of whole num-
bers.

Hint: You can do this in three words, with no local and no lambda.

Exercise 28.9.7 Develop a function scale-sequence which, given a number and a
sequence, returns a sequence whose elements are that number times the corresponding
element of the original sequence.

Exercise 28.9.8 Develop a function add-sequences which, given two sequences, re-
turns a sequence whose n-th element is the n-th element of one sequence plus the n-th
element of the other.

Exercise 28.9.9 Develop a function subtract-sequences which, given two sequences,
returns a sequence whose n-th element is the n-th element of the first sequence minus the
n-th element of the second.

Exercise 28.9.10 Develop a function mult-sequences which, given two sequences,
returns a sequence whose n-th element is the product of the n-th elements of the two
sequences.

Exercise 28.9.11 Develop a function div-sequences which, given two sequences,
returns a sequence whose n-th element is the n-th element of the first sequence divided by
the n-th element of the second.

Note: If the second sequence is ever 0, the resulting “sequence” won’t be defined on all
whole numbers.

Exercise 28.9.12 Develop a function shift-sequence which, given an integer num-
ber d and a sequence, returns a sequence whose n-th element is the n + d-th element of
the given sequence. For example,

(define positive-evens (shift-sequence 1 evens))

(check-expect (take 5 positive-evens) (list 2 4 6 8 10))

Note: If the integer is negative, the result may not technically qualify as a “sequence”,
because it may not be defined on all whole numbers.

Exercise 28.9.13 Develop a function patch which, given two numbers n and x and
a sequence, produces a sequence exactly like the given sequence except that it returns x
on input n. (In other words, you’ve “patched” the sequence by changing its value at one
particular input.)

Exercise 28.9.14 Develop a function differences which, given a sequence, returns
its sequence of differences: element 1 minus element 0, element 2 minus element 1,
element 3 minus element 2, . . .

(You can write this from scratch, but try writing it by re-using some of the above
functions instead.)

424 CHAPTER 28. FUNCTIONS AS OBJECTS

Exercise 28.9.15 Develop a function partial-sum which, given a sequence, returns
its sequence of partial sums. The n-th element of the sequence of partial sums is the sum
of elements 0 through n− 1 of the original sequence. For example,

(define sum-of-wholes (partial-sum wholes))

(check-expect (take 5 sum-of-wholes) (list 0 1 3 6 10))

(define sum-of-odds (partial-sum odds))

What does sum-of-odds do? Why?

Define a variable to hold the sequence of partial sums of (geometric-sequence 1

1/2), and play with it. What can you say about its value?

Exercise 28.9.16 Define a variable fact to hold the sequence 1, 1, 2, 6, 24, 120, . . . of
factorials.

(Obviously, you can do this from scratch using recursion. But try doing it by using
operations on sequences, like the above.)

Many important mathematical functions can’t be computed exactly by a few additions
or multiplications, but are instead approximated by adding up the first entries of a par-
ticular sequence of numbers; the more entries you add up, the closer the approximation.
These are called Taylor series. For example, ex can be computed by the series

ex =

∞
∑

n=0

xn

n!)

where n! is the usual mathematical notation for (factorial n) from exercise 24.1.8. In
other words,

ex =
x0

1
+

x1

1
+

x2

2
+

x3

6
+

x4

24
+ . . .

Exercise 28.9.17 Develop a function e-to-the that takes in a number x and returns
the sequence of partial sums of this series.

Theoretically, ex · e−x should be exactly 1 for all values of x. So you can test an
approximation’s accuracy by multiplying these two and comparing with 1. Define a func-
tion exp-error that takes in the value of x and the number of terms of the series to use,
multiplies the approximations of ex and e−x, and tells how far this is from 1.

How many steps does it take to get within 0.1? Within 0.01? Within 0.001? Within
0.000001?

The built-in Racket function exp computes ex. Compare (e-to-the x) with (exp x)

for various positive and negative values of x, looking in particular at how many steps it
takes to get to various levels of accuracy.

28.10. REVIEW 425

Exercise 28.9.18 The trigonometric function sin(x) has the Taylor series

sin(x) =

∞
∑

n=0

(−1)n · x2n+1

(2n + 1)!

That is,

sin(x) =
x

1
− x3

6
+

x5

120
− x7

5040
+ . . .

Develop a function taylor-sine that takes in a number x and returns the sequence
of partial sums of this series. (Again, I did this by using previously-defined operations on
sequences.)

Compare (taylor-sine x) with (sin x) for various positive and negative values of
x, looking at how many steps it takes to get to various levels of accuracy.

Exercise 28.9.19 Did you ever wonder how people discovered that π was about 3.14159?
There are various series that compute π, of which the simplest and best-known is

π =
∞
∑

n=0

(−1)n · 4

2n + 1

In other words,

π =
4

1
− 4

3
+

4

5
− 4

7
+ . . .

Define the variable my-pi to be the sequence of partial sums of this series. (You can
do this from scratch, of course, but try doing it by using previously-defined sequences and
operations on sequences.)

Compare my-pi with the built-in Racket variable pi. How many steps does it take to
get to various levels of accuracy?

28.10 Review of important words and concepts

Racket treats function as a data type, just like number or string or list. One can write
a function that takes in, or returns, a function just as easily as one can write functions
working on other data types (although it’s a bit harder to write test cases). This technique
allows a programmer to write, test, and debug a single general function that covers the
functionality of many others, thus saving enormous amounts of programming time on
re-inventing the wheel. Some other languages allow you to do this too — for example,
some of this can be done in Java and C++ — but the syntax is usually more complicated
and confusing.

Racket also allows a programmer to construct functions “on the fly”, just in time to
pass them as arguments to other functions, without bothering to name them. Again,
some other languages allow this — including Java, but not C++ — but the syntax is
more complicated and confusing.

28.11 Reference: higher-order and anonymous func-
tions

This chapter introduced Syntax Rule 9, which constructs an anonymous function using
lambda and returns it.

426 CHAPTER 28. FUNCTIONS AS OBJECTS

It also introduced several predefined (mostly) higher-order functions:

• identity

• filter

• map

• build-list

• foldl

• foldr

Chapter 29

Input, output, and sequence

For this chapter, switch languages in DrRacket to “Advanced Student Language”.

In the real world, we don’t usually give a computer all the information it needs, all at
once, and then ask it to go off and produce an answer. More often, we start a program
and engage in a dialogue with it. For example, a word-processing program shows us the
current state of the document; we tell it to add, delete, or move some more words, the
program shows us the result, we request some more changes, and so on. We’ve seen
some ways to interact with a computer program through animations and event handlers,
and in this chapter we’ll see another (more old-fashioned, but still useful) approach to
interaction.

In an animation, the program typically goes on running all the time, but responds
whenever we move or click the mouse, type a key, etc. In some problems, however, the pro-
gram can’t go on until it gets some information from the user. A familiar (if unpleasant)
example are the dialogue boxes that pop up on your screen saying basically “something
went wrong; should I try again, or give up?”

Here’s another example. Suppose you were a mathematician who wanted a list of
prime numbers. Of course, there are infinitely many prime numbers, so if you wrote a
program to produce a list of all of them, it would never finish and you would never see
any results at all. A more useful approach would be for the program to show you a prime
number, then another, then another, and so on until you told it to stop.

Even a program that will eventually stop may need to show you some information
along the way, then do some more computation, show you some more information, and
so on. Of course, you can do this with an animation, but that seems like overkill for
information that’s basically textual.

427

428 CHAPTER 29. INPUT, OUTPUT, AND SEQUENCE

But first, we’ll introduce another data type, which has actually been available to us
all along, but we haven’t needed it until this chapter.

29.1 The symbol data type

Racket has a built-in type called symbol which behaves, in some ways, like string. The
most obvious difference is the spelling rules: a symbol literal starts with an apostrophe
and does not end with an apostrophe, but rather at the next space, parenthesis, etc. As a
result, a symbol literal cannot contain spaces, parentheses, and certain other punctuation
marks. Indeed, the spelling rules for symbol literals are basically the same as those for
variable names and function names, except for the apostrophe at the beginning. (You’ve
actually seen these before: the first argument to error is normally the name of the
function that found the problem, as a symbol.)

Like image literals, string literals, number literals, and boolean literals, a symbol literal
evaluates to itself; it doesn’t “stand for” anything else:

(check-expect ’blah ’blah)

(check-expect ’this-is-a-long-name ’this-is-a-long-name)

The most common operation on symbols is to test whether two of them are equal,
using the symbol=? function, which works analogously to the string=? function:

(check-expect (symbol=? ’blah ’snark) false)

(check-expect (symbol=? ’blah ’blah) true)

(define author ’Bloch)

(check-expect (symbol=? author ’Hemingway) false)

(check-expect (symbol=? author ’Bloch) true)

And as with all the other types we’ve seen, there’s a built-in function to test whether
something is a symbol, named (not surprisingly) symbol?. It works exactly as you would
expect, by analogy with number?, image?, posn?, etc.

Unlike strings, symbols are not thought of as made up of individual characters strung
together. A symbol is atomic, in the original sense of that word as meaning “not made up
of smaller parts”. So there is no symbol-length or symbol-append function analogous to
string-length and string-append. And symbols have no ordering, so there’s nothing
analogous to string<? and its friends: two symbols are either the same or different, and
that’s all you can say about them.

In exchange for these restrictions, computations on symbols are typically a little faster
than those on strings. However, this by itself wouldn’t be enough reason to introduce
them in this course. I’m mentioning them here because the built-in input and output
functions treat symbols a little differently from strings.

Exercise 29.1.1 Modify the choose-picture function of Exercise 15.3.1 so it takes in
a symbol rather than a string as its parameter, e.g. ’baseball, ’basketball, ’Monopoly.

Incidentally, the image functions that take in a color name (circle, rectangle,
triangle, etc.) also accept the corresponding symbols: ’red, ’orange, ’purple, ’black,
etc..

Exercise 29.1.2 Develop a function named random-color that takes in a “dummy”
argument and ignores it, but returns one of the symbols ’red, ’orange, ’yellow, ’green,
’blue, ’purple chosen at random.

29.2. CONSOLE OUTPUT 429

Exercise 29.1.3 Develop a function named different-color that takes in a color
name as a symbol, and returns a different color name, also as a symbol. Which input
color goes with which output color is up to you, as long as the result is always different
from the input.

Hint: DrRacket knows a lot of color names. You could try to write a cond with
dozens or hundreds of cases, but that would be horrible, and it would no longer work
if somebody added one more color name to Racket. Instead, think about how you can
satisfy the requirements of the problem without knowing all the possible colors.

Exercise 29.1.4 Modify exercise 17.1.1 so it uses symbols rather than strings as the
model.

29.2 Console output

Racket has a built-in function named display that does simple textual output.

; display : object -> nothing, but displays the object.

Practice Exercise 29.2.1 Try typing each of the following lines in the Interactions
pane:

(display 5)

(display "this is a string")

(display ’this-is-a-symbol)

(display (make-posn 3 4))

(display (list "a" "b" "c"))

(display (triangle 20 "solid" "blue"))

SIDEBAR:

Another built-in function, write, acts like display, but shows strings with double-
quotes around them, so you can easily tell the difference between a string and a
symbol.

So far this doesn’t look very exciting. If anything, it’s less useful than what we’ve been
doing up until now, because you can’t use the result of display in another expression:

(+ 1 (display 2))

produces an error message because display doesn’t return anything.
The display function becomes much more useful if we build something for it to display

from smaller pieces. For example,

Worked Exercise 29.2.2 Develop a function display-with-label that takes in a
string (the “label”) and an object, and prints the string followed by the object.

Solution: The contract is

; display-with-label : string object -> nothing

; Prints the string and the object.

430 CHAPTER 29. INPUT, OUTPUT, AND SEQUENCE

A more-or-less realistic test case is

(define my-age 46)

(display-with-label "Age: " my-age)

"should print" "Age: 46"

Make up some more test cases.
The skeleton and inventory are straightforward:

(define (display-with-label label thing)

; label a string

; thing an object of some kind

...

)

We could easily display just the label, or just the thing (since display takes in any
data type), but how can we combine them?

Recall the format function (first mentioned in Chapter 19), which is designed to build
complex strings from a “template” with values filled in in various places, returning a
string. Conveniently enough, each of the “values to fill in” can be of almost any data
type. So we could try

(define (display-with-label label thing)

; label a string

; thing an object of some kind

(display (format "~s~s" label thing))

)

Try this on the example above, and it prints

"Age: "46

Not bad, but the quotation marks are annoying. Fortunately, format has different
“formatting codes”: ˜s shows strings with their quotation marks, and ˜a shows strings
without their quotation marks. (The main reason to use ˜s is to allow the user to tell the
difference between strings and symbols.) So

(define (display-with-label label thing)

; label a string

; thing an object of some kind

(display (format "~a~a" label thing))

)

produces a better result:

Age: 46

This combination of format and display is common enough that Racket has a built-
in function to do it: the printf function acts just like calling display on the result of
format, so we could write the definition more briefly as

(define (display-with-label label thing)

; label a string

; thing an object of some kind

(printf "~a~a" label thing)

)

29.2. CONSOLE OUTPUT 431

SIDEBAR:

The display and write functions can indeed take in just about any data type,
including images. However, format’s job is to build a string, and strings cannot
contain images, so if you try format on an image, you’ll get weird results.

Testing functions that use console output

How can we write test cases for a function like display-with-label that uses display

or write? check-expect looks at the result returned by a function, but display and
write don’t return anything!

In Exercise 29.2.2, we used the “should be” approach. But as we already know,
automated testing using check-expect is much more convenient. If only we could find
out what the function printed, and compare it with a known right answer. . .

As it happens, there’s a built-in function named with-output-to-string to do this:
it evaluates an expression of your choice (presumably containing display or write), but
captures whatever that expression tries to write, and puts it into a string instead; you
can then check whether this string is what you expected with check-expect.

Its contract may seem a little strange at first:

; with-output-to-string : (nothing -> anything) -> string

That is, you give it a function of no parameters ; it calls this function, throws away any
result it produces, and returns a string constructed from whatever the function displayed.

Worked Exercise 29.2.3 Write automated test cases for Exercise 29.2.2.

Solution: We need a function of no arguments to pass into with-output-to-string.
We could write one for each test case:

(define age 46)

(define last-name "Bloch")

(define (test-case-1) (display-with-label "Age: " age))

(define (test-case-2) (display-with-label "Name: " last-name))

(check-expect (with-output-to-string test-case-1) "Age: 46")

(check-expect (with-output-to-string test-case-2) "Name: Bloch")

This seems silly. We can define the functions more simply using lambda:

(define age 46)

(define last-name "Bloch")

(check-expect

(with-output-to-string

(lambda () (display-with-label "Age:" age)))

"Age: 46")

(check-expect

(with-output-to-string

(lambda () (display-with-label "Name: " last-name)))

"Name: Bloch")

432 CHAPTER 29. INPUT, OUTPUT, AND SEQUENCE

Functions of no arguments can be thought of as a way to pass around expressions
without evaluating them until later. They come up often enough in Racket that they
have a special name: they’re called thunks.

Exercise 29.2.4 Recall the struct definition

; An employee has a string (name) and two numbers (id and salary).

(define-struct employee [name id salary])

Develop a function print-employee that takes in an employee and returns nothing,
but prints out the information about the employee, nicely formatted. For example,

(print-employee (make-employee "Joe" 17 54000))

"should print" "Joe, employee #17, earns $54000/year"

29.3 Sequential programming

When you evaluate an expression like (+ (* 3 4) (* 5 6)), Racket needs to compute
both 3·4 and 5·6, then add them. It doesn’t really matter which of the two multiplications
it does first, as long as it knows both answers before it tries to add them.

But display and write don’t produce “answers”, they produce side effects, and it
matters very much which of two display expressions happens first. Racket has a syntax
rule to specify doing things in a particular order:

Syntax Rule 10 (begin expr1 expr2 ...exprn) is an expression. To evaluate it,
DrRacket evaluates each of the exprs in order, throwing away any results they produce
except the last one, which it returns.

For example, type the following into the Interactions pane:

(define result

(begin

(display (+ 12 5))

(* 5 3)))

result

It prints out the number 17, but gives result the value 15.

Now let’s try that in the opposite order:

(define other-result

(begin

(* 5 3))

(display (+ 12 5)))

other-result

This still prints out the number 17, but other-result has no value at all (because
display doesn’t return anything). The result of (* 5 3) has been thrown away com-
pletely.

Worked Exercise 29.3.1 Rewrite the function display-with-label to use begin in-
stead of format.

Solution: The contract, test cases, skeleton, and inventory are exactly as before.

In the function body, clearly, we need to display both the label and the object:

29.3. SEQUENTIAL PROGRAMMING 433

(define (display-with-label label thing)

...

(display label)

...

(display thing)

...)

More specifically, we want to display the label first, followed by the thing. To do this,
we’ll use begin:

(define (display-with-label label thing)

(begin

(display label)

(display thing)

))

Controlling lines

Sometimes you need to specify that the output should be on more than one line. There
are several ways to do this:

• Use the built-in function

; newline : nothing -> nothing

; advances the display to the next line

in between displays in a begin, e.g.

> (begin (display "abc")

(newline)

(display "def"))

abc

def

• Hit ENTER in the middle of a quoted string, e.g.

> (display "abc

def")

abc

def

• Some languages don’t allow you to do this, so they use a third approach instead:
you can put the special character \n in the middle of a quoted string to indicate a
“new line”:

> (display "abc\ndef")
abc

def

Notice that all three produced the exact same output; which one you use is largely a
matter of personal taste.

434 CHAPTER 29. INPUT, OUTPUT, AND SEQUENCE

Worked Exercise 29.3.2 Modify the print-employee function to display its informa-
tion on three separate lines, e.g.

Joe

Employee #17

$54000/year

Solution: The contract, skeleton, and inventory are unchanged, but we’ll need to modify
the test cases. Here are two versions; either one should work.

(check-expect

(with-output-to-string

(lambda () (print-employee (make-employee "Joe" 17 54000))))

"Joe\nEmployee #17\n$54000/year")

(check-expect

(with-output-to-string

(lambda () (print-employee (make-employee "Joe" 17 54000))))

"Joe

Employee #17

$54000/year")

Next, we’ll need to modify the function body. This can be done in any of several ways:

(begin

(display (employee-name emp))

(newline)

(display "Employee #")

(display (employee-id emp))

(newline)

(display "$")

(display (employee-salary emp))

(display "/year"))

(begin

(display (employee-name emp))

(display "

Employee #")

(display (employee-id emp))

(display "

$")

(display (employee-salary emp))

(display "/year"))

(begin

(display (employee-name emp))

(display "\nEmployee #")

(display (employee-id emp))

(display "\n$")
(display (employee-salary emp))

(display "/year"))

29.3. SEQUENTIAL PROGRAMMING 435

(printf "~a

Employee #~a

~a/year"

(employee-name emp)

(employee-id emp)

(employee-salary emp))

(printf "~a\nEmployee #~a\n~a/year"
(employee-name emp)

(employee-id emp)

(employee-salary emp))

Any of these five solutions should work; which one you use is largely a matter of
personal taste.

Exercise 29.3.3 Develop a function try that takes in a string (function-name), a
function of one argument, and a value for that argument. It should print that it is “about
to call” the function name on the specified argument, then call the function, then print
that it has “returned from ” the function and what the result was, and finally return that
result. For example,

(try "cube" cube 5)

should print out

About to call (cube 5)

Returned from (cube 5) with result 125

and finally return the result 125. For another example,

(try "display" display "blah")

should print out

About to call (display "blah")

blah

Returned from (display "blah") with result

Exercise 29.3.4 Develop a function count-down-display that takes in a whole num-
ber. It doesn’t return anything, but displays the numbers from that number down to 0,
one on each line, with ”blastoff!” in place of the number 0. For example,

> (count-down-display 5)

5

4

3

2

1

blastoff!

436 CHAPTER 29. INPUT, OUTPUT, AND SEQUENCE

Exercise 29.3.5 Modify exercise 21.7.10 by adding two buttons, labelled “save” and
“load”. If the user clicks the “save” button, the current image (not including the color
palette, “save” and “load” buttons) will be stored in the file “current.png” with save-image;
the image on the screen shouldn’t change. If the user clicks the “load” button, the image
on the screen should be replaced with the contents of “current.png” (although the color
palette, “save” and “load” buttons should be unaffected).

29.4 Console input

29.4.1 The read function

The opposite of display, in a sense, is the built-in function read.

; read : nothing -> object

; waits for the user to type an expression, and returns it

Try typing (read) into the Interactions pane. You should see a box with a typing
cursor in it. Type a number like 17 into the box, and hit ENTER; the read function will
return 17.

Type (read) again, and type a quoted string like "hello there" (complete with the
quotation marks) into the box; read will return that string.

What happens when you type (read) and type a couple of words like this is a

test (without quotation marks) into the box?

What happens when you type (read) and type a parenthesized expression like (+ 3

4) into the box? What about (+ 3 (* 4 5))?

What happens when you type (read) and type a Boolean literal (true or false) into
the box?

What happens when you type (read) and type a comment like ; this is a comment

into the box?

What happens when you type (read) and type a symbol like ’snark (with its apos-
trophe) into the box?

SIDEBAR:

This last example should come out looking similar to a function call, but with the
“function” being named quote. In fact, there is a quote function; play with it to
find out what it does, then look it up in the Help Desk.

There’s also a function read-line which reads a whole line of input as a single string,
even if it has spaces, parentheses, etc. inside it. Try it.

29.4.2 Testing functions that use console input

It’s harder to write test cases for a function that involves input: some information may be
provided as arguments, but some will be provided as input. So we could write, essentially,
an actor’s script: I’ll say this, the program should say that, I’ll say something else, the
program should reply with such-and-such.

But that’s even more of a pain than using “should be”. So there’s a built-in function

; with-input-from-string : string (nothing -> anything) -> anything

29.4. CONSOLE INPUT 437

which calls the specified thunk, but any time it tries to read from the console, it actually
gets input from the string instead. with-input-from-string returns whatever the thunk
returns.

Worked Exercise 29.4.1 Develop a function ask that takes in a string, prints it,
waits for input, and returns that input.

Solution: Contract:

; ask : string -> object

; prints the string, waits for input, and returns it

Test cases, written as an “actor’s script”:

(ask "What is your name?)

; It prints "What is your name?".

; I type "Stephen" (without the quotation marks).

; It returns the symbol ’Stephen.

(define age (ask "How old are you?"))

; It prints "How old are you?".

; I type 46.

; It defines age to be 46.

Test cases, written using check-expect and with-input-from-string:

(check-expect

(with-input-from-string "Stephen"

(lambda () (ask "What is your name?")))

’Stephen)

(define age

(with-input-from-string "46"

(lambda () (ask "How old are you?"))))

(check-expect age 46)

Definition:

(define (ask question)

(begin

(display question)

(read)))

Remember that begin always returns the value of its last expression, which in this case
is whatever read returns, which is whatever the user typed.

Note: Even after your function has passed all its automated tests, it’s probably a good
idea to try a few tests in the Interactions pane, to make sure your program interacts with
the user the way you want it to.

Worked Exercise 29.4.2 Develop a function greet-by-name that takes no parame-
ters, asks for your name, then displays “Hello, your-name-here!”.

Solution: Since this function takes keyboard input and also prints to the screen, we’ll
need both with-input-from-string and with-output-to-string:

438 CHAPTER 29. INPUT, OUTPUT, AND SEQUENCE

(check-expect

(with-output-to-string

(lambda ()

(with-input-from-string "Steve" greet-by-name)))

"What’s your name?Hello, Steve!")

This works, but it’s a bit of a pain. The with-io-strings function combines the jobs
of with-input-from-string and with-output-to-string; its contract is

; with-io-strings: string thunk -> string

For example, the above test case could be rewritten as

(check-expect (with-io-strings "Steve" greet-by-name)

"What’s your name?Hello, Steve!")

I leave the rest of the definition as an exercise for the reader (and it’s in the Help Desk
documentation for with-io-strings).

29.4.3 Exercises

Exercise 29.4.3 Develop a function repeat-input that takes in a string (the “ques-
tion”). It prints the question, waits for input, then prints the result twice, on separate
lines, and returns nothing.

Hint: You need to read only once, but use the result twice, so you’ll need either a
helper function or a local.

Exercise 29.4.4 Develop a function ask-posn that takes in no arguments, asks the
user for an x coordinate and a y coordinate, and creates and returns a posn with those
coordinates.

Hint: This one does not require local.

Exercise 29.4.5 Modify exercise 29.3.5 so that when the user clicks the “load” or
“save” button, the program asks you for a filename (using ask or something similar),
then loads or saves that file rather than always using “current.png”. You’ve now written
a simple graphics editor.

An optional nice feature would be to have “load”, “save”, “load from”, and “save to”
buttons: “load from” and “save to” should behave as above, but “load” and “save” will
operate on the last filename you used.

Hint: You may want to use read-line rather than read, to avoid worrying about
whether the input is treated as a symbol or a string, and to allow filenames to contain
spaces.

29.5 Input streams

Many programs need to operate on a variable amount of information. We’ve seen how to
do this with lists, but what if the information isn’t provided in the form of a completed
list?

29.5. INPUT STREAMS 439

Throughout this book, we’ve designed functions to correspond to the data type they
take in. To handle a sequence of data coming from input, we’ll need to describe it as a
data type — an “input stream”.

We’ve been using read to read information from the keyboard. But computer pro-
grams often read from files too: word processing documents, spreadsheets, image and
music files, etc. Such files “feel” like lists: they’re either empty or they have a sequence
of finitely many objects. As you know, the end of a list is indicated by a special ob-
ject named empty, which is recognized by the empty? function; similarly, the end of a
file is indicated by a special object named eof, which is recognized by the eof-object?

function.
While practicing with the read function, you may have noticed an eof button next

to the input box. Clicking this button causes read to return an eof object, as though at
the end of a file. (You’ll also get an eof object if you read past the end of the string in
with-input-from-string.)

The read function, in essence, returns the first object, or eof, from an input stream,
and has the side effect of “advancing” the input stream so that the next call to read will
return the next object in the stream. As a result, if we want to use the result more than
once, we’ll need to store it in a local variable.

We can now write a function template for functions that operate on input streams.

#|

(define (function-on-input-stream)

(local [(define obj (read))]

(cond [(eof-object? obj) ...]

[else

; obj non-eof object

; (function-on-input-stream) whatever this returns

...

)))

|#

440 CHAPTER 29. INPUT, OUTPUT, AND SEQUENCE

Worked Exercise 29.5.1 Develop a function add-from-input which asks the user
for a sequence of numbers, one at a time, terminated by eof, and returns their sum.

Solution: The function takes no parameters, but reads from input and returns a number.

; add-from-input : nothing -> number

; (reads zero or more numbers from input, terminated by eof)

We’ll need several test cases. As with lists, we’ll need an empty test case, and a one-
element test case, and a more complicated test case. The function assumes that the inputs
are numbers, so we don’t need test cases with non-numbers.

First, I’ll write them in the form of an “actor’s script”:

(add-from-input)

; It asks for a number.

; I hit the EOF button.

; It should return 0.

(add-from-input)

; It asks for a number.

; I type 7.

; It asks for a number.

; I hit the EOF.

; It should return 7.

(add-from-input)

; It asks for a number; I type 7.

; It asks for a number; I type -3.

; It asks for a number; I type 6.

; It asks for a number; I hit EOF.

; It should return 10.

29.5. INPUT STREAMS 441

But it’s easier to run the test cases if we automate them with check-expect. Conve-
niently, add-from-input is already a thunk, so we don’t need to wrap it up in a lambda:

(check-expect (with-input-from-string "" add-from-input)

0)

(check-expect (with-input-from-string "7" add-from-input)

7)

(check-expect (with-input-from-string "7 -3 6" add-from-input)

10)

The template gives us a good deal of the definition:

(define (add-from-input)

(local [(define obj (read))]

(cond [(eof-object? obj) 0]

[else

; obj number

; (add-from-input) number

...

)))

But this doesn’t actually “ask” for numbers; to do this, let’s replace the call to read

with a call to ask. The only other thing left to do is add the two numbers:

(define (add-from-input)

(local [(define obj (ask "Next number?"))]

(cond [(eof-object? obj) 0]

[else

; obj number

; (add-from-input) number

(+ obj (add-from-input))

)))

If we want to make the function more “idiotproof”, we can change the contract to
read a sequence of objects rather than numbers, and have the function signal an error in
that case.
(check-error (with-input-from-string "7 eight 9" add-from-input)

"add-from-input: That’s not a number!")

...

(define (add-from-input)

(local [(define obj (ask "Next number?"))]

(cond [(eof-object? obj) 0]

[(number? obj)

(+ obj (add-from-input))

[else

(error ’add-from-input "That’s not a number!")

)))

442 CHAPTER 29. INPUT, OUTPUT, AND SEQUENCE

Exercise 29.5.2 Develop a function read-objects which asks the user for a sequence
of objects, terminated by eof, and returns a list of those objects, in the order that they
were typed in.

Exercise 29.5.3 Develop a function read-objects-until which takes in an object
(which we’ll call the “terminator”) and acts just like read-objects above except that it
stops when it gets either the eof object or the “terminator”.

For example, suppose I type (read-objects-until ’quit).
It asks me for an object; I type 3.
It asks me for an object; I type snark.
It asks me for an object; I type quit.
It returns the list (list 3 snark).

Hint: Since you don’t know what type the terminator object will be, you’ll need equal?.

Exercise 29.5.4 Develop a function echo which asks the user for a sequence of ob-
jects, terminated by eof, and displays each of them on a separate line, in the same order
that they were typed in.

Hint: You’ll need begin.

29.6 Files

In the real world, programs read and write files at least as often as they read from the
keyboard or write to the screen. There are predefined functions to make that easy:

; with-input-from-file : string(filename) thunk -> anything

; Calls the thunk in such a way that if the thunk uses read or

; similar functions, it will read from the specified file instead

; of from the keyboard.

; Returns the result of the thunk.

; with-output-to-file : string(filename) thunk -> anything

; Calls the thunk in such a way that if the thunk uses display,

; write, print, printf, etc., they will write to the specified file

; instead of to the screen.

Note: if you plan to write from a program into a file, and later read from the same file
into a program, it’s a good idea to use write rather than display; otherwise you may
write out a string and read it in as a symbol. Also, write and display do a good job of
showing images on the screen, but they don’t know how to save an image to a file; if you
need to store images in files, use save-image and bitmap instead.

29.7. THE WORLD WIDE WEB 443

Exercise 29.6.1 Modify exercise 21.7.9 to add “save” and “load” buttons as in exer-
cise 29.3.5, and optionally “save-to” and “load-from” buttons as in exercise 29.4.5. Note
that when you save to a file and re-load later from the same file, the cursor position
(as well as the contents) should be preserved. You’ve now written a very simple word
processor.

29.7 The World Wide Web

Another common source of information to programs is the World Wide Web. There’s a
predefined function that helps you get information from Web sites:

; with-input-from-url : string thunk -> anything

; Calls the thunk in such a way that if it uses read or similar functions,

; they’ll read from the specified Web page instead of from the keyboard.

For example,

(with-input-from-url "http://www.google.com" read-line)

will give you back the first line of the Google website (headers, HTML, Javascript, the
whole works).

Of course, extracting really useful information from the Web requires recognizing the
structure of an HTML or XML document. DrRacket comes with libraries to help with
that, but they’re beyond the scope of this book; look up “XML” in the Help Desk.

29.8 Review of important words and concepts

Historically, most programs have expected to “read” their input, either from a file or from
the user’s keyboard, and “write” their results, either to a file or in text form to the user’s
screen. In this chapter we’ve learned how to do that in (Advanced Student Language)
Racket. These are our first examples of functions with side effects (almost: define and
define-struct can be thought of as functions with side effects), and hence the first for
which the order of calling functions makes a big difference. To tell Racket that we want
to evaluate a series of expressions in order, not for their values but for their side effects,
we use the begin form.

444 CHAPTER 29. INPUT, OUTPUT, AND SEQUENCE

29.9 Reference: input, output, and sequence

In this chapter, we’ve seen the following new built-in functions:

• display

• write

• printf

• begin

• newline

• read

• read-line

• with-input-from-string

• with-output-to-string

• with-io-strings

• with-input-from-file

• with-output-to-file

• with-input-from-url

Chapter 30

Mutation

For this chapter, switch languages in DrRacket to “Advanced Student Language”.

30.1 Remembering changes

Suppose you wanted to keep track of a grocery shopping list. You could easily define a
variable to hold such a list:

> (define groceries (list "milk" "eggs" "chocolate" "cheese"))

And you know how to write functions that search the list, count elements in the list, do
something to every element in the list . . . but how do people really use shopping lists?
At least in my house, there’s a list stuck to the refrigerator. Every time I run out of an
ingredient, or decide I need a particular ingredient for tomorrow’s dinner, I add it to the
list. The next time I go to the grocery store, I take the list with me, crossing things off
the list as I put them in the cart. In other words, I’m changing the list all the time.

How would we do this in Racket? Well, we know how to add something to a list, sort
of:

> (cons "broccoli" groceries)

(list "broccoli" "milk" "eggs" "chocolate" "cheese")

> groceries

(list "milk" "eggs" "chocolate" "cheese")

Notice that cons creates a new list one longer than the old one, but it doesn’t change
the old list.

For purposes of maintaining a shopping list, we’d really like a function that behaves
like this:

> (add-grocery "broccoli")

> groceries

(list "broccoli" "milk" "eggs" "chocolate" "cheese")

> (add-grocery "cereal")

> groceries

(list "cereal" "broccoli" "milk" "eggs" "chocolate" "cheese")

In other words, we can find what’s on the grocery list at any time by typing groceries,
and we can add things to the list at any time by typing (add-grocery ingredient),
which changes the value of the variable groceries.

445

446 CHAPTER 30. MUTATION

So far, we haven’t seen any way to do that in Racket. Here’s how.

30.2 Mutating variable values

Syntax Rule 11 (set! variable expression)

is an expression with no value. It evaluates expression, and then changes the already-
defined variable variable to have that value. If variable isn’t already defined, it’s illegal.

SIDEBAR:

The exclamation point is part of the function name; Racketeers usually pronounce it
“bang”, as in “I used set-bang to change the grocery list.” Recall the convention that
functions that return a boolean usually have names ending in a question mark (“?”).
There’s a similar convention that functions that modify one of their arguments have
names that end in an exclamation point.

With this in mind, we can do things like
> (define groceries (list "milk" "eggs" "chocolate" "cheese"))

> groceries

(list "milk" "eggs" "chocolate" "cheese")

> (set! groceries (list "broccoli" "milk" "eggs" "chocolate" "cheese"))

> groceries

(list "broccoli" "milk" "eggs" "chocolate" "cheese")

Of course, re-typing the whole list just to add "broccoli" to the front is a pain. But
here’s the magic: set! evaluates the expression before changing the variable, and there’s
no rule against the expression containing the same variable. So realistically, we would
probably write something like
> (define groceries (list "milk" "eggs" "chocolate" "cheese"))

> groceries

(list "milk" "eggs" "chocolate" "cheese")

> (set! groceries (cons "broccoli" groceries))

> groceries

(list "broccoli" "milk" "eggs" "chocolate" "cheese")

Even more realistically, we could write the add-grocery function as follows:

Worked Exercise 30.2.1 Develop a function add-grocery that takes in a string and
adds that string to the list groceries.

Solution: The assignment doesn’t say what the function should return, because we’re
really interested in it more for its side effects than for its return value. There are two
reasonable choices: we could have it return nothing, or we could have it return the new
list of groceries. Let’s first try returning nothing.

; add-grocery : string -> nothing, but modifies groceries

How do we write test cases for such a function? Since it doesn’t return anything, we
can’t use check-expect on the result of add-grocery. On the other hand, we need to
be sure add-grocery is called before we look at groceries. This sounds like a job for
begin:

30.2. MUTATING VARIABLE VALUES 447

(define groceries empty)

(check-expect (begin (add-grocery "cheese")

groceries)

(list "cheese"))

(check-expect (begin (add-grocery "chocolate")

groceries)

(list "chocolate" "cheese"))

(check-expect (begin (add-grocery "eggs")

groceries)

(list "eggs" "chocolate" "cheese"))

The definition is easy, now that we know about set!:

(define (add-grocery item)

(set! groceries (cons item groceries)))

Worked Exercise 30.2.2 Modify the definition of add-grocery so it returns the new
grocery list (as well as modifying groceries).

Solution: The contract changes to
; add-grocery : string -> list of strings, and modifies groceries

The test cases change too, since now add-grocery is supposed to return something
specific.

(define groceries empty)

(check-expect (add-grocery "cheese")

(list "cheese"))

(check-expect groceries

(list "cheese"))

(check-expect (add-grocery "chocolate")

(list "chocolate" "cheese"))

(check-expect (add-grocery "eggs")

(list "eggs" "chocolate" "cheese"))

(check-expect groceries

(list "eggs" "chocolate" "cheese"))

The definition changes slightly:

(define (add-grocery item)

(begin (set! groceries (cons item groceries))

groceries))

Exercise 30.2.3 Define the variable age to be your current age. Develop a function
birthday that takes no arguments, increases age by 1, and returns your new age.

Exercise 30.2.4 Develop a function buy-first that takes no arguments, returns noth-
ing, and removes the first element of groceries (as though you had bought it and crossed
it off the list). If groceries is empty, it should throw an appropriate error message.

448 CHAPTER 30. MUTATION

Exercise 30.2.5 Develop a function lookup-grocery that takes in a string and tells
whether that string appears in groceries.

Write a bunch of test cases involving add-grocery, buy-first, and lookup-grocery

in various sequences. (For example, if you add a particular item, then look it up, you
should get true; if you then buy the first item and look it up again, you should get
false.)

Hint: The function definition doesn’t require set!.

Exercise 30.2.6 Develop a function buy that takes in a string, returns nothing, and
removes the specified string from groceries. If groceries is empty, or doesn’t contain
that string, it should throw an appropriate error message. If groceries contains more
than one copy of the string, it should remove all of them.

Write a bunch of test cases involving various combinations of add-grocery, buy-first,
buy, and lookup-grocery.

Hint: The easiest way to write this function is to use non-mutating list functions to
see whether the string appears in groceries and build the correct new grocery list, and
then use set! to change the variable’s value.

The functions add-grocery, buy-first, lookup-grocery, and buy illustrate a com-
mon situation in which we need mutation: when you want to provide several functions
that share information (as well as needing to remember things from one call to the next).

Exercise 30.2.7 Develop a function next that takes no arguments and returns how
many times it has been called. For example,

> (next)

1

> (next)

2

> (next)

3

Exercise 30.2.8 Develop a function reset that resets the counter on next (see ex-
ercise 30.2.7) back to zero, and returns nothing. For example,

> (next)

1

> (next)

2

> (next)

3

> (reset)

> (next)

1

Exercise 30.2.9 Develop a function next-color that takes no arguments; each time
you call it, it returns the next element in the list (list "red" "orange" "yellow"

"green" "blue" "violet"). If you call it more than six times, it returns false. For
example,

30.3. MEMOIZATION 449

> (next-color)

"red"

> (next-color)

"orange"

...

> (next-color)

"violet"

> (next-color)

false

30.3 Memoization

Recall Exercise 25.4.15, finding the longest sequence of characters that appear (in the
same order) in two strings. In that exercise, you found a solution that works, but was
probably fairly slow and inefficient. If you use the Stepper to watch what’s going on in the
execution of your function, you’ll probably find that it’s solving the exact same problem
many times.

For another example of this, consider the Fibonacci function of Exercise 24.1.9. The
“obvious” recursive definition works, but once n gets larger than about 20, it’s surprisingly
slow and inefficient. To illustrate this, let’s change the test cases to use the time function,
which displays how long it took to do something before returning the answer:

; fibonacci : natural -> natural

(check-expect (time (fibonacci 0)) 1)

(check-expect (time (fibonacci 1)) 1)

(check-expect (time (fibonacci 2)) 2)

(check-expect (time (fibonacci 3)) 3)

(check-expect (time (fibonacci 4)) 5)

(check-expect (time (fibonacci 5)) 8)

(check-expect (time (fibonacci 6)) 13)

(check-expect (time (fibonacci 10)) 89)

(check-expect (time (fibonacci 15)) 987)

(check-expect (time (fibonacci 20)) 10946)

(check-expect (time (fibonacci 25)) 121393)

Exercise 30.3.1 Tabulate how long the function takes on the above arguments. Predict

approximately how long it will take on 30. Try it.

To see what’s going wrong, let’s use the Stepper on a simple example like (fibonacci

5).

450 CHAPTER 30. MUTATION

Notice that (fib 3) is called twice, (fib 2) three times, and (fib 1) five times.
We’re asking and answering the exact same question over and over.

We’ve seen something like this before: in Section 27.1 we had a function that called
itself on the exact same question twice, and we made it much more efficient by using
a local variable. Unfortunately, the fibonacci function doesn’t call itself on the same
question twice as “siblings” in the call tree, but rather as cousins, aunts, and more distant
places in the call tree. So it’s not clear how a local variable defined inside the function
body could avoid this duplication. Instead, we’ll need a more “global” solution.

Worked Exercise 30.3.2 Modify the definition of fibonacci so it doesn’t ask the same
question over and over, and runs much faster.

Solution: The contract and test cases are exactly the same as before; we’re just trying
to make things faster.

The idea of memoization is that once you answer a particular question, you write down
the answer (a “memo to yourself”) so the next time you are asked the same question,
you can just return the same answer again rather than re-calculating it. Of course, this
means every time you are asked a question, you first need to check whether you’ve been
asked that question before. This calls for a mutable data structure to remember what
we’ve been asked, and what the answer was last time.

One way to do this is to build up, in a global variable, a list of structures that each
contain the question being asked and its answer.

; A pair has two natural numbers: n and answer

(define-struct pair [n answer])

; *fibonacci-answers* is a list of pairs.

(define *fibonacci-answers* empty)

30.3. MEMOIZATION 451

Every time fibonacci is called, it will start by looking in this global variable to see
whether it already knows the answer; if so, it’ll return it immediately. If not, it’ll compute
the answer as above, but before returning the answer, it will record the answer in the
global variable.

(define (fibonacci n)

(local [(define old-answer (lookup n *fibonacci-answers*))]

(cond [(number? old-answer) old-answer]

[(<= n 1) (record-and-return n 1)]

[else (record-and-return n (+ (fibonacci (- n 1))

(fibonacci (- n 2))))])))

This assumes we have two helper functions: a lookup function that looks in the table
for a question and returns the answer, if known, or false if not; and a record-and-return
function that takes in a question and its computed answer, adds that information to the
table, and returns the answer. These are both easy:

; lookup : nat-num(n) list-of-pairs -> nat-num or false

(check-expect (lookup 4 empty) false)

(check-expect (lookup 4 (list (make-pair 4 12))) 12)

(check-expect (lookup 4 (list (make-pair 3 12))) false)

(check-expect

(lookup 4 (list (make-pair 5 3) (make-pair 4 12) (make-pair 3 2)))

12)

(define (lookup n pairs)

(cond [(empty? pairs) false]

[(= n (pair-n (first pairs)))

(pair-answer (first pairs))]

[else (lookup n (rest pairs))]))

; record-and-return : nat-num(n) nat-num(answer) -> nothing, but

; modifies *fibonacci-answers*

(check-expect

(begin (set! *fibonacci-answers*

(list (make-pair 5 3) (make-pair 4 12) (make-pair 3 2)))

(record-and-return 6 213))

213)

(check-expect

(begin (set! *fibonacci-answers*

(list (make-pair 5 3) (make-pair 4 12) (make-pair 3 2)))

(record-and-return 6 213)

fibonacci-answers)

(list (make-pair 6 213) (make-pair 5 3)

(make-pair 4 12) (make-pair 3 2)))

(define (record-and-return n answer)

(begin (set! *fibonacci-answers*

(cons (make-pair n answer) *fibonacci-answers*))

answer))

452 CHAPTER 30. MUTATION

The resulting fibonacci function passes all the same tests as before, but much faster:
on my old computer,

n CPU time, simple version CPU time, memoized version
10 4 ms 2 ms
15 40 ms 2 ms
20 366 ms 3 ms
25 4051 ms 4 ms

Exercise 30.3.3 Let the mathematical function fib3 be as follows:

• fib3(0) = fib3(1) = fib3(2) = 1

• fib3(n) = fib3(n− 1) + fib3(n− 2) + fib3(n− 3) for n ≥ 3

Define a fib3 function in Racket, the obvious way without memoization.
Define a fib3-memo function in Racket, computing the same thing using memoization.
Test that both functions produce the same answers on a variety of inputs.
Compare (e.g. using the time function) the time it takes to compute each of the two.

Try to predict how long it will take on a new input, and compare your prediction with the
reality.

Exercise 30.3.4 Write a memoized version of the lcsubsequence function from Exer-
cise 25.4.15. Run some timing tests: is it significantly faster?

Hint: Since lcsubsequence takes two parameters rather than one, you’ll need a table
of structures that each have room for both parameters, as well as an answer.

Memoization and a closely-related technique called dynamic programming can some-
times turn an unacceptably-slow program into quite an efficient one; they’re important
techniques for professional programmers to know.

30.4 Static and dynamic scope

Recall the add-grocery function of Section 30.2. Suppose we called this inside a local

definition of groceries:

(define groceries (list "milk" "eggs"))

(define (add-grocery item)

(begin (set! groceries (cons item groceries))

groceries))

...

(local [(define groceries (list "tuna"))]

(add-grocery "chocolate"))

Here’s a puzzle: without actually typing in the code and running it, try to predict what
this expression returns.

The problem is that we have two different variables named groceries: the one defined
at the top level, and the one defined in the local. This is perfectly legal: the one in
the local temporarily hides the outer one, as we’ve seen before. But which one does
add-grocery look at and change? Is it the variable that was in effect when add-grocery

was defined (returning (list "chocolate" "milk" "eggs")), or the variable that’s in
effect when add-grocery is called (returning (list "chocolate" "tuna"))?

30.5. ENCAPSULATING STATE 453

Different programming languages have made this subtle decision differently. The for-
mer (use the variable in effect at the time the function was defined) is called static scope,
because it depends on where the function is defined in the program source code, which
doesn’t change while the program is running. The latter (use the variable in effect at
the time the function was used) is called dynamic scope, because it depends on which
function calls which as the program is running.

Racket uses static scope, as do most programming languages. But not all: some
versions of the Lisp language, which is closely related to Racket, use dynamic scope. For
purposes of this book, you only need to worry about static scope. Functions use the

variables in effect at the time they were defined.

30.5 Encapsulating state

We’ve seen a number of functions that “remember” something from one call to the next
by changing the value of a global variable. This is somewhat inelegant, and raises possible
security issues: if some user mistakenly changed the value of that variable him/her-self,
our function would no longer work correctly. It would be cleaner if the function had its
own private variable that nobody else could see.

Fortunately, local is very good at creating private variables that can only be seen in
one small part of the program.

Exercise 30.5.1 Rewrite the next function of exercise 30.2.7 to not use a global vari-
able.

Hint: See section 28.7 for ideas.

Exercise 30.5.2 Rewrite the next-color function of exercise 30.2.9 to not use a global
variable.

Exercise 30.5.3 Rewrite the fibonacci function from exercise 30.3.2 to avoid using a
global variable (or struct, for that matter).

Hint: Remember that the record-and-return function refers to the table variable, so
it needs to be defined inside the scope of that variable.

Exercise 30.5.4 Rewrite the fib3 function from exercise 30.3.3 to avoid using a global
variable (or struct, for that matter).

Exercise 30.5.5 Develop a function make-lister that takes in a list, and returns a
function like next-color: it takes no arguments, but each time you call it, it returns the
next element in the list that was given to make-lister. If you run out of list elements,
it returns false. For example,

454 CHAPTER 30. MUTATION

> (define next-bird (make-lister (list "robin" "bluejay" "crow")))

> (define next-day

(make-lister (list "sun" "mon" "tues" "wed" "thurs" "fri" "sat")))

> (next-bird)

"robin"

> (next-day)

"sun"

> (next-day)

"mon"

> (next-bird)

"bluejay"

> (next-day)

"tues"

Note: Note that if make-lister is called several times, each of the resulting functions
must have its own “memory”; you can’t use a global variable, but must use the technique
of section 28.7.

Exercise 30.5.6 Rewrite the lcsubsequence function of exercise 30.3.4 to avoid using
a global variable (or struct, for that matter).

Note: This one must be done with its own private table, not a global variable, because
the right answers to sub-problems would be different if somebody called the function
again on different strings.

Exercise 30.5.7 Develop a function make-cyclic-lister that takes in a list, and
returns a function that lists its elements, but once it gets to the end, it starts over from
the beginning rather than returning false.

SIDEBAR:

The Java and C++ languages don’t allow you to define a variable locally and then
create a function that modifies it, but they give you another way to encapsulate
state: a class with private instance variables and public methods that modify those
instance variables.

Exercise 30.5.8 Rewrite the definitions of next and reset so they don’t use a global
variable (but they still talk to one another).

Hint: You’ve already rewritten next by itself, in exercise 30.5.1, but now there’s a
difficulty: you need to define two functions inside the scope of the local and give them
both top-level names. One way to do this is to have the body of the local return a list
of two functions, store this in a top-level variable, then define next as one element of this
list and reset as the other element.

The above solution has a couple of problems. First, it seems inelegant that we need
to define a top-level variable in order to hold the list of two functions just so we can give
them names. (One way around this is a Racket form named define-values, but that’s
not available in the Student languages.) Second, it’s a fair amount of work just to build a
resettable counter, and we’ll have to do it all over again with different names if we want
to build another.

30.5. ENCAPSULATING STATE 455

Inspired by exercise 30.5.5, we might define a make-counter function that returns a
two-element list of functions, the “next” and “reset” functions for this particular counter.
That would solve the second problem, but not the first.

Another approach is to have make-counter return a function that serves both pur-
poses. It takes in a string: if the string is "next", it acts like next, and if it’s "reset",
the function acts like reset. (If the string is anything else, it should produce an error
message. And of course, if you’d prefer to use symbols rather than strings, that’s fine,
and slightly more efficient.) For example,

> (define count-a (make-counter))

> (define count-b (make-counter))

> (count-a "next")

1

> (count-a "next")

2

> (count-b "next")

1

> (count-a "next")

3

> (count-b "next")

2

> (count-a "reset")

> (count-a "next")

1

> (count-b "next")

3

SIDEBAR:

Languages such as Java and C++ have this technique built in; they call it “method
dispatch”. Now that you’ve seen how you could have done it by yourself, you may
better appreciate having it built into the language.

Exercise 30.5.9 Develop this make-counter function.

Exercise 30.5.10 Develop a function make-door that constructs a “door” object that
represents whether a door is open or closed. A “door” object is a one-argument function:

• if the argument is “get-state”, it returns the current state of the door, either ”open”
or ”closed”

• if the argument is “open”, it makes the state open, and returns nothing

• if the argument is “closed”, it makes the state closed, and returns nothing

• if the argument is “toggle”, it makes the state the opposite of what it was, and
returns nothing.

456 CHAPTER 30. MUTATION

30.6 Mutating structures

When we learned about define-struct in chapter 21, we learned that certain functions
“come for free”: one constructor, one discriminator, and a getter for each field. In fact,
another group of functions also “come for free”: a setter for each field.

For example, you already know about make-posn, posn?, posn-x, and posn-y. There
are also two other functions

; set-posn-x! : posn number -> nothing

; modifies the x coordinate of an existing posn

; set-posn-y! : posn number -> nothing

; modifies the y coordinate of an existing posn

Similarly, if you type

; An employee has a string (name) and two numbers (id and salary).

(define-struct employee [name id salary])

you get not only a constructor, a discriminator, and three getters, but also three setters:

; set-employee-name! : employee string -> nothing

; set-employee-id! : employee number -> nothing

; set-employee-salary! : employee number -> nothing

This has subtly different effects from set!. Consider

> (define joe (make-employee "joe" 386 80000))

> (define schmoe joe) ; two names for the same employee

> (define emps (list joe (make-employee "alice" 279 72000)))

> (set-employee-salary! joe 85000)

> (employee-salary joe) ; 85000

> (employee-salary schmoe) ; 85000

> (employee-salary (first emps)) ; 85000

By contrast, if we changed joe’s salary with set!, the results would be different:

> (define joe (make-employee "joe" 386 80000))

> (define schmoe joe) ; two names for the same employee

> (define emps (list joe (make-employee "alice" 279 72000)))

> (set! joe (make-employee "joe" 386 85000))

> (employee-salary joe) ; 85000

> (employee-salary schmoe) ; 80000

> (employee-salary (first emps)) ; 80000

30.6. MUTATING STRUCTURES 457

When we define schmoe to be joe, Racket now thinks of both variable names as
referring to the same location in the computer’s memory, so any change to the contents
of that memory (as with set-employee-salary!) will be reflected in both. But (set!

joe ...) tells Racket that the variable name joe should now refer to a different object
in a different place in memory; schmoe still refers to the same thing it did before, and
doesn’t show a change.

Similarly, when we define emps to be a list containing joe, the list structure refers to
the same location in memory that joe currently refers to. If joe is redefined to refer to
something else, that doesn’t change what the list refers to.

The phenomenon of two names referring to the same object in the computer’s memory
(rather than two objects with the same value) is called aliasing. We haven’t had to
worry about it until this chapter, because without setters and set!, there’s no detectable
difference between “two names for the same object” and “two objects with the same
value”. But professional programmers (in almost any language) have to worry about the
difference.

Neither of these behaviors is inherently better than the other: sometimes you want
one behavior and sometimes the other. The point is that before you write code that
modifies things, you need to decide which of these behaviors you want.

Another interesting difference is that the first argument of set! must be a variable
name:

(set! (first emps) ...)

wouldn’t make sense. However,

(set-employee-salary! (first emps) ...)

458 CHAPTER 30. MUTATION

makes perfectly good sense, and can be quite useful.

Worked Exercise 30.6.1 Develop a function give-raise! that takes in an employee

struct and a number (e.g. 0.10 for a 10% raise), and modifies the employee to earn that
much more than before.

Solution:

; give-raise! : employee number -> nothing, but modifies the employee

(define joe (make-employee "joe" 386 80000))

(define schmoe joe) ; two names for the same employee

(define emps (list joe (make-employee "alice" 279 72000)))

(give-raise! joe 0.10)

(check-expect (employee-salary joe) 88000)

(check-expect (employee-salary schmoe) 88000)

(check-expect (employee-salary (first emps)) 88000)

(give-raise! (second emps) 0.15)

(check-expect emps

(list (make-employee "joe" 386 88000)

(make-employee "alice" 279 82800)))

(define (give-raise! emp percentage)

; emp an employee

; percentage a number

; (employee-name emp) a string

; (employee-id emp) a number

; (employee-salary emp) a number

(set-employee-salary! emp

(* (+ 1 percentage) (employee-salary emp))))

Exercise 30.6.2 Develop a function change-name-to-match! that takes in two person
structures and modifies the first one to have the same last name as the second. Any other
variables or lists that already referred to the first person should now show the changed
name.

Exercise 30.6.3 Develop a function flip-posn! that takes in a posn and modifies
it by reversing its x and y coordinates.

Hint: You may need a local for this.

Exercise 30.6.4 Develop a function give-raises! that takes a list of employees
and a number, and gives them all that percentage raise.

Develop a function give-raises-up-to-100K! that takes a list of employees and
a number, and gives that percentage raise to everybody who earns at most $100,000.

Hint: It makes sense to do this with map, but map always returns a list of the same
length as what it was given, even if the function it’s calling doesn’t return anything.
So you may well get back a list of (void)’s: void is a built-in function that takes no
arguments, does nothing with them, and returns nothing.

30.7. REVIEW 459

If this bothers you, you could rewrite give-raise! so it returns the modified em-
ployee; then give-raises! will naturally return a list of all the modified employees.
What will give-raises-up-to-100K! return? What do you want it to return?

Exercise 30.6.5 Develop a function ask-and-give-raises that takes in a list of
employees. For each one in turn, it prints the person’s name and current salary, asks
(via console I/O) how much percentage raise to give, and does so. It should return the
list of all the employees with their new salaries.

30.7 Review of important words and concepts

The set! form changes the value of a variable.
Some functions are terribly inefficient because they call themselves recursively more

than once. In particular, functions that, in the course of a call tree, ask the exact same
question several times can often be improved through a technique called memoization:
maintain a table of known function answers, and start each function call by checking
whether you’ve already computed the answer.

When a function needs to remember things in a variable (e.g. for memoization),
it’s often safer to define the variable locally, so that only that function can see them.
We encapsulate the state of the program in this hidden variable. In some cases (e.g.
make-lister and lcsubsequence) it’s not just a matter of safety. In addition, when
several different functions need to share the same state variable, sometimes the best
solution is to encapsulate the information into a single function that performs several
different tasks.

The set! form modifies a variable definition, but sometimes it’s more useful to
modify part of a data structure, leaving it in place so that all existing references to
it show the change. This can be done using setters, functions that “come for free” with
define-struct.

30.8 Reference: Built-in functions for mutation and
assignment

This chapter introduced one new function (technically a special form): set! . It also
introduced the family of setter functions: when you do a define-struct, you get not
only a constructor, a discriminator, and a getter for each field, but also a setter for each
field. These have names like set-posn-x!, set-employee-salary!, etc.

460 CHAPTER 30. MUTATION

Chapter 31

Next Steps

There are lots of other things I’d like to discuss in this book, but I don’t want it to get
too long and expensive. So now that you’ve gotten this far, I’ll suggest some other books
to read next.

As I’ve mentioned before, much of this book is based on How to Design Programs [FFFK01].
I recommend getting that book (it’s available on the Web for free at
http://www.htdp.org) and reading the following chapters:

• 14-16 about binary and n-ary trees,

• 25-32 about “generative recursion” and “accumulative recursion”, which enable you
to do a number of things more easily than you could with the “structural recursion”
we’ve used in this book

• 39-43 about object-oriented programming and how it works.

(Some of these chapters refer to an old “draw.ss” teachpack, which has since been replaced
by the picturing-programs teachpack. Ignore the graphics parts of the book.)

As I write this, the authors of How to Design Programs are working on a second
edition. It’s not finished yet, but it should be good. Do a Web search on “htdp2e” and
you’ll find it.

If you want more exercises involving animation, see How to Design Worlds [FFF+08a],
on the Web for free at http://world.cs.brown.edu.

If you want to learn Java, there are lots of good (and not-so-good) books on the
market, but there’s one that builds on what you’ve learned in this book: How to Design
Classes [FFF+08b]. As I write this, How to Design Classes isn’t finished, but you can
find out about it and request a draft copy at http://www.ccs.neu.edu/home/vkp/HtDCH
.

Racket comes with lots of powerful tools we haven’t discussed. Most of these are
documented in the Help Desk. Here are some that might interest you:

• The picturing-programs library allows you to write programs that run on sev-
eral computers at once, communicating over a network. It takes a client/server
approach: one computer (the “server”) keeps track of information that all the com-
puters share, and each “client” computer shows its own view of that shared infor-
mation. This could be used, for example, to develop a multi-player game. To find
out more about this, look up the 2htdp/universe module in the Help Desk, then
look for the section entitled “The World is not Enough”.

461

462 CHAPTER 31. NEXT STEPS

• Racket comes with a built-in Web server, with which you can easily write powerful,
interactive Web applications. A Racket feature called continuations, which most
languages don’t have, makes it much easier to write Web programs. Open the Help
Desk and follow the link “Continue: Web Applications in Racket”.

• In this book, we’ve written “contracts” in comments. In fact, Racket allows you to
write contracts as part of the code, and will automatically enforce them for you:
look in the Help Desk for define/contract and define-struct/contract. Or
open the Help Desk, follow the link “Guide: Racket” and look for the chapter on
“Contracts”.

• Modules allow you to break a large program into separate source files, each with
a well-defined interface (in the same way that each individual function has a well-
defined interface). Open the Help Desk, follow the link “Guide: Racket”, and look
for the chapter on “Modules”.

• Racket supports class-based object-oriented programming, similar to classes in Java
and C++ but more flexible. Open the Help Desk, follow the link “Guide: Racket”,
and look for the chapters on “Classes and Objects” and “Units”.

• One of Racket’s most powerful features is called “macros”: they’re basically func-
tions which, rather than taking in and returning values, instead take in and return
Racket code. They allow you to write functions that don’t pre-evaluate their argu-
ments (like or, and, define, and define-struct), and even completely change the
syntax of the language. Most programming languages don’t offer anything similar,
so if you’re trying to solve a problem that lends itself to macros, it may be much
easier and simpler to solve in Racket than in most other languages. Open the Help
Desk, follow the link “Guide: Racket”, and look for the chapter on “Macros”.

• If you want to write Racket programs that run on their own, without the user
needing to know about DrRacket, open the “Guide: Racket”; first read the chap-
ter on “Modules” (above) and then read the chapter on “Running and Creating
Executables”.

• The graphics and GUI programming we’ve been doing in this book are pretty simple:
great for a beginning programming course, but if you want to do industrial-strength
graphics programming, especially 3-D graphics, you’ll need more flexibility. Open
the Help Desk and look for the section on “GUI and Graphics Libraries”.

Index

<, 197
<=, 197
>, 197
>=, 197
*, 134
+, 134
-, 134
/, 134
=, 197
 Lukasiewicz, Jan, 112

above, 11, 12, 24
above/align, 32, 49
abs, 122, 129, 134
accumulative recursion, 461
ActionListener, 107
add-curve, 45, 50
add-line, 50
add1, 110, 134
add1?, 359
aliasing, 457
all-defined-out, 178, 179
all-from-out, 179
ambiguity, 113
ambiguous expressions, 112, 114
and, 194, 197
append, 345, 353
arguments, 11, 23, 55
auxiliary function, 166, 179
awk, 1

base case, 325
BASIC, 1
begin, 432, 444
Beginning Student language, 2, 4
Beginning Student with List Abbreviations,

347
beside, 12, 24
beside/align, 31, 49
big-bang, 91, 100, 105, 108, 138, 140, 154,

155, 204

binary trees, 461
bit-maps, 131
bitmap, 49, 442
black magic, 2
blank lines, 53
boolean, 185
Boolean operators, 192
boolean=?, 192, 197
boolean?, 191, 197
borderline, 187–190, 211, 214
box diagrams, 20, 28, 48, 63
build-image, 131, 135, 276, 278
build-image/extra, 277, 278
build-list, 415, 426
build3-image, 125, 135
bullseye, 72, 74, 79, 82, 86

C++, 1, 2
callback, 107
callbacks, 96
caption-below, 87
char, 338
char-alphabetic?, 339, 341
char-downcase, 350, 353
char-lower-case?, 350, 353
char-upcase, 350, 353
char-upper-case?, 350, 353
char=?, 338, 341
char?, 338, 341
characters, 338
Check Syntax, 78
check-error, 256, 258
check-expect, 61, 68
check-member-of, 132, 135
check-range, 132, 135
check-with, 137, 138, 154, 204
checkerboard2, 72, 74, 79, 80, 84
circle, 35, 49
circle-in-square, 87
classes, 462
client-server programming, 461

463

464 INDEX

Cobol, 1
color, 275
color-blue, 275, 278
color-green, 275, 278
color-red, 275, 278
color=?, 278
color?, 275, 278
comments, 39, 49
components, 125
compose, 421
cond, 208, 229
conjugation, 42
cons, 318, 341
cons?, 318, 341
constructor, 279
constructors, 302
continuations, 461
contract, 88
contracts, 38, 48, 70, 462
Conway, John, 404
copies-beside, 71, 74, 79, 80, 84
Copying images, 9
counterchange, 55, 71, 73, 75, 80, 82, 83
CPU time, 391
crop, 42, 45, 50
crop-bottom, 41, 49
crop-left, 42, 49
crop-right, 42, 49
crop-top, 42, 49

data types, 36, 48, 66
define, 29, 68
define-struct, 280, 303
define-struct/contract, 462
define/contract, 462
Definitions Pane, 9, 18, 27
dialects, 2
diamond, 87
discriminator, 279
discriminators, 192, 229, 302
display, 429, 444
dot-grid, 72, 75, 79, 82, 84
draw handlers, 91, 97, 100, 138–140, 154,

155, 204
DrRacket, 2, 3
dynamic programming, 452
dynamic scope, 453

ellipse, 35, 49
else, 210, 229

empty, 318, 341
empty-scene, 45, 50
empty?, 318, 341
equal?, 229, 329
error, 256, 258
error messages, 13, 86
event handler, 107
event handlers, 91, 92
event-driven programming, 96
examples, 72, 88
executables, 462
expressions, 11, 66

field, 279
fields, 302
filter, 426
finite-state automaton, 332
finite-state machine, 332
first, 318, 341
flip-horizontal, 10, 24
flip-vertical, 10, 24
foldl, 417, 426
foldr, 417, 426
format, 257, 258
Fortran, 1
four-square, 54
frame, 45, 50
function body, 53, 79, 83, 88
function contract, 88
function definitions, 51, 62
function header, 53, 79
function inventories, 79
function skeleton, 88
function skeletons, 75
function template, 232, 235, 238
functions, 11, 23, 66

Game of Life, 404
garbage collection, 391, 392
GC time, 391
generative recursion, 461
get-pixel-color, 277, 278, 403
getter, 279
getters, 302
graphics, 462
GUI, 462

Help Desk, 5
helper function, 124, 133, 166, 179
higher-order functions, 404, 405, 408

INDEX 465

hope, 13
HTML, 1

identifiers, 15, 27–29
identity, 414, 426
idioms, 1
if, 218, 229
image-height, 42, 49
image-width, 42, 49
image=?, 197
image?, 137, 191, 197
Importing images, 9
improper nouns, 66
indentation, 14, 54
infix operators, 112
information-hiding, 399, 401, 405
Inserting images, 9
instance, 279
instance variable, 279
instance variables, 302
instances, 302
Interactions Pane, 3, 9, 27
inventories, 79, 88
inventories with values, 82, 88, 118, 120,

122, 158, 173, 268–270, 272, 277,
288, 290, 291, 293, 294, 303, 315,
322, 327, 334, 357, 365, 369

inventory, 235
isosceles-triangle, 50

jaggies, 131
Java, 1, 2, 461
Javascript, 1

key handler, 250
key handlers, 100, 105, 138, 140, 154, 155,

204
key=?, 254
KeyListener, 107

lambda, 425
lambda-calculus, 1
lexical scope, 453
libraries, 4, 10
life, 404
line, 50
Lisp, 1
List Abbreviations, 347
list function, 347
list->string, 353

list-ref, 332, 341, 378
literals, 11, 23, 26, 28, 36, 48, 65
local, 405
lollipop, 72, 75, 79, 82, 86

macros, 462
make-color, 45, 49, 275, 278
make-posn, 261, 277
map, 426
map-image, 131, 276, 278
map-image/extra, 277, 278
map3-image, 135
max, 122, 134
memoization, 450
method dispatch, 455
min, 122, 127, 134
mirror-image, 52
misspellings, 15
model, 91, 97, 105, 107
model checking, 138, 154
model type checkers, 204
model-view framework, 139, 153, 156
models, 140
modules, 462
mouse handlers, 100, 101, 105, 138, 140,

154, 155, 204
MouseListener, 107

n-ary trees, 461
name->color, 46
name-¿color, 49
natural?, 355
network programming, 461
newline, 444
not, 194, 197
noun phrases, 66
number->string, 152
number?, 137, 191, 197
numbers, 33, 48

object-oriented programming, 461, 462
on-draw, 92, 100, 108, 138, 154, 204
on-key, 100, 105, 106, 108, 138, 140, 154,

155, 204
on-mouse, 100, 105, 106, 108, 138, 140, 154,

155, 204
on-release, 253, 254
on-tick, 92, 100, 105, 106, 108, 138, 140,

154, 155, 204
operations, 11, 23

466 INDEX

or, 194, 197
order of operations, 112, 113
outventories, 80
outventory, 235
overlay, 12, 24, 92
overlay/align, 33, 49
overlay/xy, 50

paint method, 107
parameter names, 77, 79
parameterizing, 407
parameters, 55, 63
parenthesis matching, 13
PEMDAS, 112, 113
PHP, 1
pi, 135
pinwheel, 71, 74, 79, 80, 84
pixel-maps, 131
pixels, 125
PL/I, 1
place-image, 43, 49, 92
place-image/align, 49
Polish notation, 112
polymorphic functions, 229
positive?, 359, 373
posn-x, 261, 277
posn-y, 261, 278
posn?, 261, 278
prayer, 13
precedence, 112
predicates, 192, 196
prefix notation, 112
prefix operators, 112
prefix-out, 179
printf, 430, 444
procedures, 11
programming languages, 1
pronouns, 65
proper nouns, 65
provide, 177, 179
purpose statement, 88
purpose statements, 70
Python, 1, 2

quadratic formula, 111
quote, 436
quotient, 134

Racket, 1, 2
radial-star, 50

random, 134
read, 436, 444
read-line, 436, 438, 444
Real time, 391
real->int, 127
record?, 107, 108
rectangle, 34, 49, 92
recursion, 324
recursive, 324
regular-polygon, 50
remainder, 134
rename-out, 179
require, 4, 10, 24, 177, 179
reserved word, 229
rest, 318, 341
reverse, 345, 353
RGB, 125
RGBA, 125
rhombus, 50
right-triangle, 50
rotate, 33, 49
rotate-180, 11, 24
rotate-ccw, 11, 24
rotate-cw, 11, 24
Ruby, 1

save-image, 47, 49, 442
scale, 33, 49
scale/xy, 33, 45, 50
scene+curve, 45, 50
scene+line, 45, 50
Scheme, 1
scope, 63, 65
selector, 279
selectors, 302
set, 459
setter functions, 459
setters, 456
sh, 1
short-circuit evaluation, 196
show-it, 91, 92, 97, 100, 108, 138, 154, 155,

204
sin, 134
skeleton, 88
skeletons, 75
special form, 196, 209, 258
special forms, 93
SQL, 1
sqrt, 134
square, 45, 50

INDEX 467

star, 49
star-polygon, 50
static scope, 453
Stepper, 19, 29, 56
stop handlers, 204
stop-when, 204, 205
stop-with, 205
string<?, 197
string<=?, 197
string>?, 197
string>=?, 197
string->list, 338, 341
string->number, 152
string-append, 151
string-ci<?, 197
string-ci<=?, 197
string-ci>?, 197
string-ci>=?, 197
string-ci=?, 197
string-length, 151
string=?, 197
string?, 191, 197
strings, 32, 36, 48
struct-out, 179
structural recursion, 461
Structure and Interpretation of Computer

Programs, 419
sub-expressions, 17
sub-range, 190, 211, 214
sub1, 110, 134, 373
sub1?, 359
substring, 152
surround, 55
Syntax rules, 28
syntax rules, 20

teachpacks, 4
template, 238
test cases, 3, 72, 88
test-driven development, 73
testing, 58, 86, 88
text, 44, 49
text-box, 87
text/font, 45, 50
thunks, 432
tick handlers, 92, 99, 100, 105, 138, 140,

154, 155, 204
time, 393
triangle, 35, 49
two-eyes, 87

type predicates, 192, 197, 226, 229

underlay, 45, 50
underlay/align, 45, 50
underlay/xy, 45, 50
universe, 91, 461

value of an expression, 9, 11
variable definitions, 25, 28
variables, 25, 26, 29, 36, 65
verbs, 66
vert-mirror-image, 54
visibility, 63
void, 458

web server, 461
white space, 53
whole numbers, 355
with-input-from-file, 444
with-input-from-string, 436, 444
with-input-from-url, 444
with-io-strings, 438, 444
with-output-to-file, 444
with-output-to-string, 431, 444
world, 91
write, 429, 444

XML, 1

zero?, 359, 373

468 INDEX

Bibliography

[ASS96] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and
Interpretation of Computer Programs. McGraw-Hill, 1996.

[FFF+08a] Matthias Felleisen, Robert Bruce Findler, Kathi Fisler, Matthew Flatt, and
Shriram Krishnamurthi. How to Design Worlds: Imaginative Programming
in DrScheme. self-published on Web, http://world.cs.brown.edu, 2008.

[FFF+08b] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Kathryn Gray,
Shriram Krishnamurthi, and Viera K. Proulx. How to design class hierarchies.
In preparation, 2008.

[FFFK01] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Kr-
ishnamurthi. How to Design Programs: an Introduction to Programming and
Computing. MIT Press, 2001. See http://www.htdp.org.

[Mil56] George A. Miller. The magical number seven, plus or minus two: Some limits
on our capacity for processing information. The Psychological Review, 63:81–
97, 1956.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the Association for Computing Machinery, 15(12):1053–
1058, Dec 1972.

469

