

PART I

Running and writing programs

Chapter 1

Picture this! Drawing pictures

in DrRacket

As you probably know, computers are very good at doing arithmetic. But frankly, arith-
metic is pretty boring. So to get our first taste of computer programming, we’ll work with
pictures instead. (Behind the scenes, the computer is really using arithmetic to control
these pictures, but we don’t need to worry about that for now.)

Before trying anything in this chapter, make sure you’ve installed DrRacket and the
picturing-programs teachpack, as described in section 0.3.

1.1 Working with pictures

1.1.1 Importing pictures into DrRacket

The easiest ways to get a picture to work with is to copy it from somewhere: a Web page,
or a file that’s already on your computer. Here’s how.

Without quitting DrRacket, open a Web browser and find aWeb page that has pictures
on it. For example, many of the pictures used in this textbook are on the book Web
site at http://www.picturingprograms.com/pictures/. And you can find lots of good
examples on Google Image Search (http://images.google.com); for purposes of this
chapter I recommend restricting your search to “small” images.

Right-click (or control-click) on a picture, and choose “Copy image”. Now switch back
to DrRacket, click in the Interactions pane (the lower half of the window) to the right of
the “> ” prompt, and paste. You should see the same image in the DrRacket window.

That’s fine for pictures onWeb pages. If you have picture files (GIF, JPEG, TIFF, etc.)
already on the computer you’re using, there’s another way to get them into DrRacket.
Click in the Interactions pane (to the right of the “> ” prompt), then pull down the
“Insert” menu and select “Insert image....” Find your way to the image file you want and
select it; the image will appear in the DrRacket window.

1.1.2 The Interactions and Definitions panes

When you type anything into the Interactions pane and hit RETURN/ENTER, DrRacket
shows you the “value” of what you typed. In many cases, that’ll be exactly the same thing
as you typed in. For example, if you import an image into DrRacket in either of the above

9

10 CHAPTER 1. DRAWING PICTURES

ways, and then hit the RETURN or ENTER key on the keyboard, you’ll see it again.
Try this.

When you start manipulating pictures in section 1.2, things will get more interesting.
The upper half of the window is called the “Definitions pane”. We’ll get to it shortly,

but for now, especially if you’re using large pictures, you may want to hide it. Pull down
the “View” menu and select “Hide Definitions”; now the Interactions pane takes up the
whole window, and you can see more of your pictures.

1.1.3 Choosing libraries

Once you’ve installed a library such as picturing-programs, you still have to decide
whether you need it for a particular problem. For everything in the rest of this chapter,
and most of this book, you’ll need picturing-programs . To tell DrRacket that you
want to use that library, type

(require picturing-programs)

in the Interactions Pane and hit RETURN/ENTER.
(If your DrRacket is older than version 5.1, use

(require installed-teachpacks/picturing-programs)

instead.)
Any time you re-start DrRacket, or hit the “Run” button at the top of the window,

DrRacket will erase everything that was in the Interactions pane, so you’ll need to type
this require line again before you can do anything else with pictures. We’ll see a way to
avoid repeating this in section 1.6.

1.2 Manipulating pictures

Now we’ll learn to do some more interesting things with pictures: move them around,
combine them into larger pictures, and so on.
For the examples in this section, I suggest copying a reasonably small,
but interesting, picture from the web, such as this “calendar” picture from
http://www.picturingprograms.com/pictures .

Click to the right of the “> ” prompt and type

(flip-vertical

then paste or insert an image as above. Then type a right-parenthesis to match the left-
parenthesis at the beginning of what you typed, and hit ENTER/RETURN. You should
see the image upside-down:

> (flip-vertical)

Practice Exercise 1.2.1 Try the same thing, with flip-horizontal in place of
flip-vertical, and the image will be reflected left-to-right.

1.2. MANIPULATING PICTURES 11

Practice Exercise 1.2.2 Try rotate-cw, which rotates clockwise; rotate-ccw, which
rotates counterclockwise; and rotate-180, which rotates by 180 degrees. See if you can
predict (e.g. by drawing a rough sketch on paper) what each result will look like before
you hit ENTER/RETURN.

By the way, at the end of this chapter is a list of the picture-manipulating functions
covered in the chapter.

1.2.1 Terminology

All the stuff you’ve typed (from the left parenthesis through the matching right paren-
thesis) is called an expression.

rotate-cw, rotate-ccw, and rotate-180 are all functions (also called operations or
procedures) which, given a picture, produce a different picture.

The picture you give them to work on is called an argument to the function.

The new picture you see as a result of applying the function to the argument is called
the value of the expression.

By way of analogy, consider an English sentence like “Eat the banana.” It contains
a verb, “eat”, which tells what to do, and an object, “the banana”, which tells what to
do it to. In computer programming, we use the words function and argument instead of
verb and object, but the idea is similar.

A picture by itself, without parentheses or a function name, can also be thought of
as an expression. It’s an extremely simple expression in which there is nothing to “do”;
the value of the expression is the expression itself. Such expressions (whose values are
themselves) are called literals.

1.2.2 Combining pictures

Pick two different images of similar size and shape, both reasonably small. Click to the
right of the “> ” prompt and type (above, then an image, then another image, then a
right-parenthesis. Hit ENTER/RETURN, and you should see one image stacked above
the other. Try it again with the images in the opposite order. Note that whichever image
you put in first ends up above the one you put in second.

> (above)

12 CHAPTER 1. DRAWING PICTURES

Practice Exercise 1.2.3 Try the same experiment, but using the same image twice
rather than two different images.

Practice Exercise 1.2.4 Try the same experiment with beside, which puts one image
next to the other.

Worked Exercise 1.2.5 Try the same experiment with overlay, which draws two im-
ages in the same place, the first one overwriting part of the second. (If the first is larger
than the second, you may not see any of the second at all.)

Be sure to try overlay with two different images in both possible orders.

Solution:

> (overlay)

> (overlay)

Exercise 1.2.6

Now try the above, beside, and overlay operations with three or more pictures. (For
overlay, you’ll want to pick a small picture as the first one, then larger and larger
pictures, so you can see all of the results.)

1.2.3 A Syntax Rule, Sorta

We can summarize what we’ve learned so far as follows:

1.3. MAKING MISTAKES 13

Syntax Rule 0 To do something to one or more images, type a left-parenthesis, the
name of the operation you want to do, then the image(s) you want to do it to, then a
right-parenthesis.

Note that beside, above, and overlay are functions too, just like flip-vertical,
rotate-ccw, etc., but they work on two or more arguments rather than one; they wouldn’t
make sense applied to only one picture.

1.3 Making mistakes

In the course of typing the examples so far, you’ve probably made some mistakes. Perhaps
you left out a left-parenthesis, or a right-parenthesis, or misspelled one of the operation
names. This is nothing to be ashamed of: every programmer in the world makes mistakes
like this every day. In fact, being a programmer is largely about mistakes: making them,
recognizing them, figuring out how to fix them, figuring out how to avoid making the
same mistake next time, making a different mistake instead.

In many math classes, you’re given a large number of exercises to do, of which the
odd-numbered ones have solutions given in the back of the book. What happens if you
work out an exercise and your solution doesn’t match the one in the back of the book?
In many cases, all you can do is go on to the next problem and “hope and pray” that you
get that one right.

Hope and prayer are not particularly effective in computer programming. Almost no
computer program is exactly right on the first try. Rather than “hoping and praying”
that the program will work, you need to develop the skills of identifying and categorizing
mistakes, so that when you see a similar mistake in the future, you can recognize it as
similar to this one, and fix it in the same way.

DrRacket provides a variety of useful error messages. Let’s look at several of the most
likely mistakes you might have made up to this point, make them on purpose, and see
what message we get. That way, when you make similar mistakes by accident in the
future, you’ll recognize the messages.

1.3.1 Leaving out the beginning left-parenthesis

Ordinarily, when you type a right-parenthesis, DrRacket helpfully shades everything be-
tween it and the matching left-parenthesis.

> (flip-vertical)

Your first sign that you’ve left out a left-parenthesis is that when you type the right-
parenthesis, it’ll be highlighted in RED because DrRacket can’t find “the matching left-
parenthesis”. To see this, try typing flip-vertical, then pasting a picture, and typing
a right parenthesis.

> flip-vertical)

If you go ahead and hit RETURN/ENTER anyway, one of several things will happen.
Some versions of DrScheme/DrRacket will treat flip-vertical and the picture as two

14 CHAPTER 1. DRAWING PICTURES

separate expressions: you’ll see the word flip-vertical; then on the next line, the
picture you pasted in; and on the next line, the error message

read: unexpected ’)’.

In other versions, it just waits for you to type something reasonable. But nothing you
can add after the right-parenthesis will make it reasonable. There are several things you
can do: you can move (with the arrow keys or the mouse) to where the left parenthesis
should have been, put it in, then move to the end and hit ENTER again; or you can
hit BACKSPACE or DELETE until the right-parenthesis is gone (at which point you’ve
simply typed two expressions on one line, and it’ll give you the values of both).

1.3.2 Leaving out the ending right-parenthesis

Sometimes what you need to type between parentheses is longer than will fit on one typed
line, e.g. several large pictures. So DrRacket allows you to hit ENTER/RETURN in the
middle, and type or paste the next thing on the next line.

Note also that DrRacket will automatically indent the next line to line up nicely
with the previous line. This is another clue that DrRacket thinks you’re still inside an
expression. If you don’t want the line indented, you can hit DELETE/BACKSPACE a
few times, but that doesn’t change the fact that you’re still inside an expression.

If you leave out the ending right-parenthesis, DrRacket thinks you’ve just gone to the
next line and still want to type some more, so it’ll quietly wait for you to finish. There is
no error message, because DrRacket doesn’t know that you’ve done anything wrong.

Fortunately, this is easy to fix, even if you’ve already hit ENTER/RETURN: just
type the missing right-parenthesis, DrRacket will shade back to the left-parenthesis on
the previous line, and you can hit ENTER/RETURN again to apply the operation.

1.3. MAKING MISTAKES 15

1.3.3 Misspelling the operation name

Suppose you mistyped flip-vertical as flip-verticle. Any human would realize what
was wrong, and guess that you actually meant flip-vertical. But computers aren’t
particularly good at “common sense” or guessing what you meant, so instead DrRacket
produces the error message

reference to an identifier before its definition: flip-verticle

What does this mean? “Identifier” simply means “name”; all the operations like
flip-vertical, above, overlay, etc. are referred to by their names, but the name
flip-verticle hasn’t been defined. However, DrRacket leaves open the possibility that
it might be defined in the future.

By the way, you might wonder why DrRacket isn’t programmed to recognize that
flip-verticle was probably supposed to be flip-vertical. This could be done, but
if DrRacket had this “guessing” capability, it would eventually guess wrong without even
telling you it was making a guess at all, and that kind of mistake is incredibly difficult
to track down. The authors of DrRacket decided it was better to be picky than to try to
guess what you meant. For the same reason, DrRacket is case-sensitive, that is, it doesn’t
recognize FLIP-VERTICAL or Flip-Vertical.

Likewise, DrRacket doesn’t recognize names that have spaces in the middle, such
as flip - vertical: it thinks you’re calling a function named flip with - as its first
argument and vertical as the second, which doesn’t make sense.

1.3.4 Too few or too many arguments

Try typing (flip-vertical) and hitting ENTER/RETURN. You’ll see the error message

procedure flip-vertical: expects 1 argument, given 0.

This is a more helpful message, telling you precisely what went wrong: the flip-vertical
operation (or “procedure”) expects to work on an image, and you haven’t given it one to
work on.

Try typing (flip-vertical, then pasting in two images (or the same one twice), then
typing a right-parenthesis. Again, the error message is fairly helpful:

procedure flip-vertical: expects 1 argument, given 2:...

The rest of the error message tells what the arguments were, which isn’t very helpful
for images, but will be very helpful when we start working with numbers, names, etc.

1.3.5 Putting the operation and arguments in the wrong order

Suppose you wanted to put two pictures side by side, but had forgotten that the operation
goes before the arguments; you might type something like

(beside)

You would get the error message

16 CHAPTER 1. DRAWING PICTURES

function call: expected a defined name or a primitive operation after an open
parenthesis, but found something else

Again, this is a fairly specific and helpful message: the only things that can legally come
after a left-parenthesis (for now) are function names, and a picture of a calendar is not a
function name.

1.3.6 Doing something different from what you meant

All these error messages can get really annoying, but they’re really your friends. Another
kind of mistake is much harder to figure out and fix because there is no error message.

Suppose you wanted a left-to-right reflection of a particular picture, and you typed
(flip-vertical, then pasted in the picture, and typed a right-parenthesis. You wouldn’t
get an error message, because what you’ve typed is perfectly legal. You would, however,
get a wrong answer because what you’ve typed isn’t what you meant. DrRacket can’t
read your mind, so it doesn’t know what you meant ; it can only do what you said. (This
is one of the most frustrating things about computers, so much so that computer science
students sometimes joke about a newly-defined function named dwim, for “Do What I
Mean”.) Of course, typing flip-vertical when you mean flip-horizontal is a fairly
simple mistake, but in general these “wrong answer” errors are among the hardest ones
to find and fix, because the computer can’t give useful error messages to help you.

1.4 Getting Help

You’ve seen a number of builtin functions above, and you’ll see many more in future
chapters. Nobody can remember all of these, so (as mentioned in section 0.3.5) DrRacket
has a “Help Desk” feature that allows you to look up a function by name. From the
Help menu, choose “Help Desk”; it should open a Web browser window with a search
box near the top. (By the way, this works even if you don’t have a net connection at
the moment.) Type the name of a function you want to know about, like rotate-cw or
above, and it’ll show you links to all the pages it knows about that function. (If there
are more than one, look for one that’s “provided from picturing-programs” or “provided
from 2htdp/image”.)

You can also type picturing-programs into the search box, and it’ll show you a link
to documentation about the whole teachpack.

1.5 More complex manipulations

Worked Exercise 1.5.1 What would you do if you wanted to see a picture, beside its
left-to-right reflection?

Solution: You know how to get a reflection using flip-horizontal, and you know how
to put one image next to another using beside, but how do you do both? You really want
to put one image beside another, one of which is a reflection of the other.

Very simply, instead of pasting an image as one of the operands of the beside function,
type in an expression involving flip-horizontal:

1.5. MORE COMPLEX MANIPULATIONS 17

> (beside (flip-horizontal))

Since (flip-horizontal) would be a perfectly good expression in its own
right, but it’s also a part of a larger expression, we call it a sub-expression.

Exercise 1.5.2

Write an expression which displays a picture beside its
top-to-bottom reflection.

Exercise 1.5.3

Write an expression which displays a picture beside its
180-degree rotation.

Exercise 1.5.4

Write an expression which displays four copies of a pic-
ture arranged in a two-by-two square.

Hint: There are at least two different ways to do this, using what you’ve seen so far.
Either one is acceptable, as long as you type an expression that uses the smaller picture,
and its value is the correct larger picture.

Exercise 1.5.5

Write an expression which displays four copies of a picture in a two-by-
two square, each rotated differently: the top-right one should be rotated
90 degrees clockwise, the bottom-left one 90 degrees counter-clockwise,
and the bottom-right one 180 degrees.

18 CHAPTER 1. DRAWING PICTURES

Hint: This expression will be fairly long and complicated; feel free to break it up over
several lines. In particular, if you hit ENTER/RETURN after each right-parenthesis,
DrRacket will automatically indent the next line in a way that indicates the structure of
the expression: things inside more layers of parentheses are indented farther.

Hint: If you solve this problem the way I expect, it’ll work well with square or nearly-
square pictures, but won’t look so good with long skinny pictures. We’ll see how to
improve it later.

1.6 Saving Your Work: the Definitions pane

When you type an expression in the Interactions pane and hit RETURN/ENTER, you
immediately see the value of that expression. But as soon as you quit DrRacket, all your
work is lost. Furthermore, even if you’re not quitting DrRacket yet, sometimes you want
to write expressions now and see the results later.

If you’ve hidden the Definitions pane earlier, show it again: pull down the “View”
menu and choose “Show Definitions”.

Click the mouse in the Definitions pane and type in the line

(require picturing-programs)

or, if you have an older version of DrRacket,

(require installed-teachpacks/picturing-programs)

as the first line of the Definitions pane. (Now that it’s in the Definitions pane, you won’t
have to keep typing it again and again in the Interactions pane.) Hit RETURN/ENTER,
and nothing will happen (except that the cursor will move to the next line). From now
on, almost every Definitions Pane should start with that line.

On the next line of the Definitions pane, type in one of the expressions you’ve already
worked with. Hit RETURN/ENTER. Type in another expression, and another. (These
don’t have to be on separate lines, but it’s easier to keep track of what you’re doing if
they are. In fact, if they’re long, complicated expressions, you might want to put a blank
line or two in between them so you can easily see where one ends and the other begins.)

Now, to see how these expressions work, click the “Run” button just above the Def-
initions pane. Anything that was in the Interactions pane before will disappear and be
replaced by the values of the expressions in the Definitions pane, in order. If any of them
were illegal (e.g. mismatched parentheses, misspelled function names, etc.) it’ll show an
error message in the Interactions pane, and won’t go on to the next expression.

If you’ve worked out a big, complicated expression (or several), and want to save it to
use again tomorrow,

1. type the expression(s) into the Definitions window,

2. pull down the “File” menu,

3. choose “Save Definitions”,

4. navigate to the appropriate folder on your computer,

5. type a suitable filename (I recommend a name ending with “.rkt”), and

6. click “Save” or “OK” or whatever it is on your computer.

1.7. THE STEPPER 19

Now you can quit DrRacket, double-click the new file, and it should start DrRacket
again with those expressions in the Definitions window. Or you can double-click DrRacket,
pull down the “File” menu, choose “Open...”, and find the desired file to bring it into the
Definitions window.

1.7 Working through nested expressions: the Stepper

When you develop a big, complicated expression and it doesn’t work the way you expected
it to, you need a way to see what it’s doing along the way. The Stepper feature of DrRacket
allows you to see the values of sub-expressions, one at a time, until you get to the whole
expression.

For example, suppose you were working on exercise 1.5.2, and your (incorrect) attempt
at the answer was

(beside (flip-horizontal))

If you type this into Interactions and hit RETURN/ENTER, or type it into Definitions
and click the “Run” button, you’ll get an answer, but not the right answer. To see what’s
going wrong, type the expression into the Definitions pane and, instead of clicking the
“Run” button, click the “Step” button. You should see a new window, showing you
the original expression on the left, and a slightly modified version of it on the right. In

particular, the sub-expression (flip-horizontal) on the left will be highlighted
in green, while its value, another picture, will be highlighted in purple on the right.
Everything else about the two expressions should be identical.

Worked Exercise 1.7.1 Show the sequence of steps the Stepper would take in eval-
uating the expression

(beside (flip-horizontal))

At each step, underline the sub-expression that’s about to be replaced.

Solution:

Step 1: (beside (flip-horizontal))

Step 2: (beside)

Step 3:

20 CHAPTER 1. DRAWING PICTURES

Exercise 1.7.2 Show the sequence of steps the Stepper would take in evaluating the
expression

(beside (rotate-ccw) (rotate-cw))

1.8 Syntax and box diagrams

Recall rule 0: To do something to one or more images, type a left-parenthesis, the
name of the operation you want to do, then the image(s) you want to do it to, then a
right-parenthesis.

In fact, as we’ve seen, things are a little more general and flexible than that: instead
of putting images inside the parentheses, we can also put sub-expressions whose values
are images. Indeed, these sub-expressions may in turn contain sub-expressions of their
own, and so on.

At the same time, we’ve seen that certain attempts at expressions aren’t grammatically
legal. Computer scientists often explain both of these issues — how do you perform an
operation, and what is or isn’t a legal expression — at the same time, by means of syntax
rules, and we now rephrase things in that style.

Syntax Rule 1 Any picture is a legal expression; its value is itself.

Syntax Rule 2 A left-parenthesis followed by a function name, one or more legal expres-
sions, and a right parenthesis, is a legal expression. Its value is what you get by applying
the named function to the values of the smaller expressions inside it.

Note that we can understand all the expressions we’ve seen so far by using a combi-
nation of these two rules, even the ones with several levels of nested parentheses, because
rule 2 allows any legal expressions to appear as arguments to the function, even expres-
sions constructed using rule 2 itself.

Let’s illustrate this using “box diagrams”. We’ll start with an expression, then put
a box around a sub-expression of it. Over the box we’ll write a 1 or a 2 depending on
which rule justifies saying that it is an expression.

Worked Exercise 1.8.1 Draw a box diagram to prove that the picture is a legal
expression.

Solution: Rule 1 tells us that any picture is a legal expression, so we put a box around

it with the number 1 over it:

1

Worked Exercise 1.8.2 Draw a box diagram to prove that

(rotate-180)

is a legal expression.

1.8. SYNTAX AND BOX DIAGRAMS 21

Solution: We’ll start from the inside out. The picture of the calendar is a legal expression

by rule 1, so we have (rotate-180

1

)

Now that we know that the inner part is a legal expression, we can use Rule 2 (which
requires a left-parenthesis, a function name, an expression, and a right-parenthesis) to
show that the whole thing is a legal expression:
2

(rotate-180

1

)

Exercise 1.8.3 Draw a box diagram to prove that

(rotate-cw)

is a legal expression.

Worked Exercise 1.8.4 Draw a box diagram to prove that

(beside)

is a legal expression.

Solution: We need to use rule 1 twice:

(beside

1

1

)

Once we’re convinced that both pictures are legal expressions, we need to use rule 2 to
show that the whole thing is a legal expression:
2

(beside

1

1

)

Worked Exercise 1.8.5 Draw a box diagram to prove that

(beside)

is a legal expression.

22 CHAPTER 1. DRAWING PICTURES

Solution: We can use rule 1 twice to convince ourselves that the two pictures are legal
expressions:

(

1

beside

1

)

But now we’re stuck: there is no rule in which an expression can appear between a
left parenthesis and a function name. Since we are unable to prove that this is a legal
expression, we conclude that it is not a legal expression. Indeed, if you typed it into
DrRacket, you would get an error message:

function call: expected a defined name or a primitive operation name after an
open parenthesis, but found something else.

Whenever you type a left-parenthesis, Scheme expects the next things to be the name of
an operation, and the calendar picture is not the name of an operation.

Exercise 1.8.6 Draw a box diagram to prove that

(rotate-cw

is a legal expression.

Hint: This should be impossible; it isn’t a legal expression. But how far can you get?
Why is it not a legal expression?

Exercise 1.8.7 Draw a box diagram to prove that

(rotate 5)

is a legal expression.

Hint: This too should be impossible. In fact, it is a legal expression, but not using the
two rules you’ve seen so far; we’ll add some more syntax rules later.

Worked Exercise 1.8.8 Draw a box diagram to prove that

(beside (flip-horizontal))

is a legal expression.

Solution: As usual, we’ll work from the inside out. Each of the two pictures is obviously
a legal expression by rule 1:

(beside

1

(flip-horizontal

1

))

Next, we can apply rule 2 to the part of the expression starting with the inner left-

1.9. REVIEW 23

parenthesis:

(beside

1
2

(flip-horizontal

1

))

Finally, we can apply rule 2 to the whole expression:
2

(beside

1
2

(flip-horizontal

1

))

Exercise 1.8.9 Draw a box diagram to prove that your solution to Exercise 1.5.2 or 1.5.4
is a legal expression.

At this point you may be wondering how these “box diagrams” are supposed to help
you write programs. The box diagram for a really simple expression (as in exercises 1.8.1
or 1.8.2), frankly, isn’t very interesting or useful. But as the expressions become more
complicated, the box diagrams become more and more valuable in understanding what’s
going on in your expression. Furthermore, every time you type an expression, DrRacket
actually goes through a process (behind the scenes) very similar to these box diagrams,
so by understanding them you can better understand DrRacket.

Ultimately, you should be able to avoid most syntax error messages by never typing
in any expression that isn’t grammatically legal; you’ll know which ones are legal because
you can draw box diagrams for them yourself.

1.9 Review of important words and concepts

Regardless of which pane you’re typing into, you type expressions and (immediately or
eventually) see their values.

A literal is an expression whose value is itself; the only examples you’ve seen so far are
pictures copied-and-pasted into DrRacket, but there will be other kinds of literals in later
shapters. More complicated expressions are built by applying a function or operation
to one or more arguments, as in

(rotate-cw)

In this example, rotate-cw is the name of a predefined function, and the literal picture
is its argument. The parentheses around the whole expression let DrRacket know which
function is being applied to which arguments. Note that different functions make sense for
different numbers of arguments: rotate-cw only makes sense applied to one argument,
while beside only makes sense for two or more. Other expressions can be even more
complicated, containing smaller expressions in place of some of the pictures; these smaller
expressions are called sub-expressions.

24 CHAPTER 1. DRAWING PICTURES

DrRacket has many built-in functions, and they each have to be called in a specific
way with a specific number of arguments. Nobody memorizes all of them, so DrRacket’s
“Help Desk” feature allows you to look up a function by name.

1.10 Reference: functions that work on images

We’ve seen a number of built-in Scheme functions that work with images. These aren’t
really “important concepts”, but here’s a list of them that you can refer to later:

• flip-vertical

• flip-horizontal

• rotate-cw

• rotate-ccw

• rotate-180

• above

• beside

• overlay

We’ve also seen a special function named require, which is used to tell DrRacket that
you need a particular library.

