
Chapter 5

A recipe for defining functions

5.1 Step-by-step recipes

I will now give you a simple recipe to accomplish anything in the world. Ready?

Design recipe for anything, version 0

1. Decide what you want to do.

2. Do it.

3. Check that you did it right.

4. Keep doing it.

Okay, I admit that’s a little vague; you’d need to fill in a lot of details. But it’s
basically right. In fact, many of the bad inventions, bad laws, bad wars, bad teaching,
and bad computer programs in the world can be blamed on somebody skipping either
step 1 or step 3 (or both).

Skipping step 3 is understandable, since after you’ve done your great creative work,
checking it is boring and unrewarding. But, you may ask, how could anybody skip
step 1? In practice, people often charge into “doing it” before they’ve decided clearly,
unambiguously, and in detail what they want to do and how they’ll know when they’ve
done it. Since they have only a vague mental picture of what they want to accomplish,
what actually gets done is a hodgepodge of different goals. (This is especially bad when
the task is undertaken by a group of people, each of whom has a slightly different idea of
what they’re trying to do!)

5.2 A more detailed recipe

Here’s a version that’s more useful for actual programming.

69



70 CHAPTER 5. A RECIPE FOR DEFINING FUNCTIONS

Design recipe for functions, version 1

1. Write a function contract (and possibly a purpose statement) for the function
you want to write.

2. Write several examples of how the function will be used, with their correct
answers.

3. Write a skeleton of the function you want to write.

4. Add to the skeleton an inventory of what you have available to work with.

5. Add the body of the function definition.

6. Test your program on the examples you chose in step 2.

7. Use your program to solve other problems.

Steps 1 and 2 correspond to “decide what you want to do”; steps 3–5 to “do it”; and
step 6, obviously, to “check that you did it right.” Step 7 corresponds roughly to “keep
doing it”: in the real world, programs aren’t a goal in themselves, but are written in order
to get answers to questions. We’ll look at all these steps in more detail in a moment.

But first, why do we need a recipe like this? For very simple functions, frankly, we
don’t. But we won’t always be writing “very simple functions”. I want you to get into
the habit of following these steps now, so that by the time you really need them, they’ll
be second nature. So how does it help?

• Each step is small and manageable. Even if you have no idea how to solve the whole
problem, you can do one step of it and have a small feeling of accomplishment.

• You always know what to work on next, and what questions to ask yourself.

• The contract, purpose, and examples help you understand the question before you
start trying to solve it.

• In my class, you get partial credit for each step you solve correctly.

• In my class, the teacher stubbornly refuses to give you any help with a later step
until you’ve finished all the previous ones.

Now let’s look at the individual steps and see how to do them.

5.3 Function contracts and purpose statements

Before you can solve any programming problem, you have to understand the problem.
Sounds obvious, but I’ve had a lot of students over the years charge into writing the
program before they had finished reading the assignment. (They ended up writing the
wrong program and getting lousy grades.) In particular, you need to be able to write a
function contract (remember Section 4.2?) for the function you’re about to define.

What’s in a function contract? Three essential pieces of information: the name of
the function, the type(s) of the input(s), and the type of the result. (So far, the type of
the result has always been “image”, but that will change soon.) Once you’ve written this
down (in a comment, in the usual notation from Section 4.2), both you and any other
programmer who reads the contract will know how to use your function.



5.3. FUNCTION CONTRACTS AND PURPOSE STATEMENTS 71

Sometimes, if the program’s purpose isn’t obvious from its name, it’s useful to also
write a “purpose statement”: a brief sentence or two, also in Racket comments, explaining
what the program does. This does not substitute for a contract, but expands on the
contract.

Worked Exercise 5.3.1 Write a contract and purpose for the counterchange func-
tion of Exercise 4.2.3.

To remind you what Exercise 4.2.3 was, I’ll repeat it here:
Define a function named counterchange which, given two images, produces a two-by-two
square with the first image in top-left and bottom-right positions, and the second image

in top-right and bottom-left positions. The result should look like .
Solution: The function name is obviously counterchange. The assignment says it is
to be “given two images”, which tells us that it takes two parameters of type “image”.
It “produces a two-by-two square”, which must be an image. So we could write (in the
Definitions pane) something like

; counterchange : image image -> image

This technically answers all the questions, but it doesn’t really give a user all the necessary
information to use the function. Which of the two images is which? So a better contract
would be

; counterchange : image (top-left) image (top-right) -> image

If we think it’s necessary to add a purpose statement, we might write

; counterchange : image (top-left) image (top-right) -> image

; Produces a square arrangement with the top-left image also

; in the bottom right, and the top-right image also in the

; bottom left.

Exercise 5.3.2 Write a contract and purpose statement for a function named
copies-beside that takes in a number and an image, and produces that many copies of
the image side by side.

Exercise 5.3.3 Write a contract and purpose statement for a function named
pinwheel that takes in a picture and produces four copies of it in a square, differently
rotated: the original picture in the top left, rotated 90◦ clockwise in the top right, rotated
180◦ in the bottom right, and rotated 90◦ counterclockwise in the bottom left. The result

should look like .
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Worked Exercise 5.3.4 Write a contract and purpose statement for a function
named checkerboard2 that produces a 2x2 square checkerboard in specified colors. Each
square should be 20 pixels on a side.

Solution: The function name is obviously checkerboard2. The result is an image. As
for the input, the assignment refers to “specified colors”, but doesn’t say what they are,
which implies that they can vary from one function call to the next — in other words,
they are inputs to the function. The only way we know to specify colors so far is by their
names, which are strings in Racket. There are two colors, and the assignment doesn’t
say which is which, so let’s decide arbitrarily that the first one will be in the top-left
corner of the checkerboard, and the second in the top-right corner. The “2x2” and “20
pixels on a side” don’t concern us yet. Furthermore, it doesn’t make sense to call the
function with strings that aren’t color-names, e.g. "screwdriver". So we might write (in
the Definitions pane)

; checkerboard2 : string (top-left-color)

; string (top-right-color) -> image

; Assumes that both strings are color names.

; Produces a 2x2 checkerboard, with each small square 20

; pixels on a side, with the top-left color in the top-left

; and bottom-right positions, and the top-right color in

; the other two positions.

Exercise 5.3.5 Write a contract and purpose statement for the following problem:
Design a program named bullseye which produces a “bull’s eye” style target with two
rings. It takes in two numbers indicating the radii of the outer ring and the inner disk,
and two strings representing the colors of the outer ring and the color of the inner disk.

Exercise 5.3.6 Write a contract and purpose statement for the following problem:
Design a program named dot-grid which expects two numbers (the width and height of
the grid, respectively) and produces a rectangular grid of radius-5 circular blue dots .

Exercise 5.3.7 Write a contract and purpose statement for the following problem:
Design a program named lollipop which produces a picture of a lollipop. It takes in
two numbers — the radius of the lollipop “head” and the length of the “stick” — and a

string, indicating the color of the lollipop. For the stick, use a rectangle of width 1.



5.4. EXAMPLES (ALSO KNOWN AS TEST CASES) 73

5.4 Examples (also known as Test Cases)

A function contract and purpose statement are big steps towards understanding what
the program needs to do, but they’re not specific enough. So for the next step, we’ll
write down several examples of how we would use the program if it were already written.
Next to each example, we’ll write down, as precisely as we can, the right answer to that
example (as in Chapter 4).

Why? Several reasons. Most obviously, it provides you with test cases that you can
use later in testing. Since testing can be the most frustrating part of programming, your
mind will take any excuse it can find to avoid testing. (After all, how often do you do
something for which the whole point is to get bad news? Do you look forward to doing
such things?) And since testing is also the last thing you do before turning in the program,
it tends to get skipped when you’re running behind schedule. Writing the test cases in
advance — before you write the program itself — means you have one less excuse for not
testing.

Your mind will try to trick you in another way, too: you’ll look at the results of a test
run and say to yourself “yes, that’s right; that’s what I expected,” when you really had
only a vague idea what to expect. This is why you must write down right answers next
to each test case: it’s much harder to fool yourself into thinking everything is fine when
a picture of a blue box is next to the words "should be a green circle". If you use
check-expect, it becomes even harder to fool yourself.

Another benefit: it makes you specify very precisely what the program is supposed to
produce. No room for vagueness here. Of course, we’ll have to be precise when we write
the program; this gives us a chance to “warm up” our precision muscles, and come up
with suitably nasty “special cases” that might possibly throw the program off, without
having to think about Racket syntax at the same time.

By the way, if you have friends who are professional programmers, you can tell them
you’re learning “test-driven development”. (There’s more to test-driven development than
this, but its most important feature is writing test cases before you write the program.)

Worked Exercise 5.4.1 Write several test cases for the counterchange function of
Exercise 5.3.1.

Solution: We’ve already identified the contract for this function, so we should be able
to call it with any two images. By Syntax Rules 1 and 2, an example would be

(counterchange )

What should this produce? Since the contract tells us the first parameter will go into
the top-left position and the second into the top-right, we could write

"should be a picture with a calendar in the top-left

and bottom-right corners, and a hacker in the top-right

and bottom-left"

If we wanted to give a more precise “right answer”, we could come up with an expression
that actually builds the right picture, e.g.
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(check-expect (counterchange )

(above (beside )

(beside )))

This is, of course, more work, but it also brings two extra benefits: when we get to
writing the body, this example will help us do it, and “check-expect” style test cases are
much easier to check.

So far we’ve given only one test case, and it’s possible that the function might get
that case right even though it’s wrong in general. So let’s try another:

(check-expect (counterchange )

(above (beside )

(beside )))

Exercise 5.4.2 Write several test cases for the copies-beside function described
in Exercise 5.3.2.

Hint: the function takes in a “number”, but in fact it wouldn’t make sense to call this
function on a fraction, a negative number, or an irrational number. The only numbers
that make sense are whole numbers, also known as counting numbers : 0, 1, 2, 3, . . . .
In trying to break the program, think about whole numbers that might be considered
“special cases”. We’ll revisit whole numbers in Chapter 24.

Exercise 5.4.3 Write several test cases for the pinwheel function of Exercise 5.3.3.

Exercise 5.4.4 Write several test cases for the checkerboard2 function of Exer-
cise 5.3.4.

Hint: Technically, any two strings would satisfy the contract, but since the purpose
statement adds "Assumes that both strings are color names", you don’t need to
test it on strings that aren’t color names. Ideally, a program to be used by human beings
should be able to handle a wide variety of incorrect inputs, and we’ll learn techniques for
handling such situations in Chapter 19.
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Exercise 5.4.5 Write several test cases for the bullseye function of Exercise 5.3.5.

Exercise 5.4.6 Write several test cases for the dot-grid function of Exercise 5.3.6.

Exercise 5.4.7 Write several test cases for the lollipop function of Exercise 5.3.7.

5.5 The function skeleton

A function skeleton is a “first draft” of the function definition, based only on Syntax
Rule 5 and the information in the contract (not what specific problem the function is
supposed to solve). As you recall from Chapter 4, every function definition follows a
simple pattern:

( define (function-name param-name param-name ...)

...)

Once you’ve written the contract, you already know the function name as well as the
number, types, order, and meanings of all the parameters. So it’s easy to write the header;
the only faintly creative part is choosing good, meaningful names for the parameters. We’ll
come back to this in a moment.

Worked Exercise 5.5.1 Write a function skeleton for the counterchange function
of Exercise 5.3.1.

Solution: Recall that the function takes in two images, which we referred to in the
contract as top-left and top-right. These are probably good choices for parameter
names: they make clear what each parameter is supposed to represent. Following Syntax
Rule 5, the function definition must look like

(define (counterchange top-left top-right)

...)

5.6 Common beginner mistakes

Here are some of the things I’ve seen a lot of students do wrong in writing examples and
skeletons.

Not calling the function by name

A student working on counterchange writes the example

(check-expect

(above (beside )

(beside )))
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This “example” never actually mentions the counterchange function, so DrRacket
doesn’t know what to do with the two pictures. See Section 4.5.2.

The contract, examples, and skeleton must agree on the number, type, and

order of parameters.

For example, suppose I were writing a function that took in a string and two numbers,
and returned an image:

; do-it : string number number -> image

A student writes the example (check-expect (do-it "boojum") "fnord"). This
example violates the contract in at least two ways: it gives the function only a string
rather than a string and two numbers, and it expects the answer to be a string rather
than an image. A correct test case would have to call do-it on a string and two numbers,
and have an image as the “right answer”:

(check-expect (do-it "boojum" 0 3.14)

(circle 10 "outline" "green"))

(check-expect (do-it "blah" 7 32) )

(check-expect (do-it "fnord" 5/3 -6)

(triangle 10 "solid" "blue"))

Another student writes the example

(check-expect (do-it 3 4 "boojum") ). This has the right number of param-
eters, and the right return type, but the parameters are in a different order from what
the contract said: the string is third rather than first.

Next, a student writes the skeleton (define (do-it word) ...). Again, this vio-
lates the contract because do-it takes in three parameters, and this skeleton has only
one. A correct skeleton for this function would have to have three parameter names, the
first standing for a string and the second and third standing for numbers, for example

(define (do-it word num1 num2)

...)

Notice how the contract, examples, and skeleton must “match up”:
; do-it: string number number → image

(check-expect ( do-it "blah" 7 32 ) )
(define ( do-it word num1 num2 ) ...)

The function name is the same in all three places. The number and order of parameters
in the contract are the same as the number and order of arguments in each test case,
which are the same as the number and order of parameters in the skeleton. The return
type in the contract is the same as the type of the “right answer” in each test case, which
is the same type as the “body” expression which will eventually replace the “. . . ” in the
skeleton.
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Misleading parameter names

In the above example skeleton, the parameter names word, num1, and num2 were chosen
to suggest to the reader that the first is a string and the other two are numbers. There’s
actually quite a bit of art to choosing good parameter names.

Remember that a parameter name is a place-holder ; you can’t assume that a particular
parameter will always be a picture of a book, or will always be the string "yellow", or will
always be the number 7. If the contract says that the first parameter is a picture, you can
assume that it’s a picture, but not what picture. I’ve seen students write a perfectly-good
example like

(counterchange )

but then write a function skeleton like
(define (counterchange calendar hacker) ...)

What’s wrong with this? It’s technically legal, but misleading: the parameter-name
calendar will stand for whatever first argument is provided when the function is called
(which may or may not be a calendar), and the parameter-name hacker will likewise
stand for the second argument (which may not be a hacker). For example, when you try
the second test case

(counterchange )

the parameter name calendar will stand for a stick figure, and the name hacker will
stand for a picture of a calendar! Remember that a function has to work on all possible
inputs, not only the ones you had in mind.

Duplicate parameter names

Another bad attempt at a skeleton for this function is
(define (counterchange picture picture) ...)

“picture” is a perfectly reasonable parameter name, but this student has used it twice
in the same function header. The purpose of parameter names is to allow you to refer
to them in the body of the function; if they both have the same name, how will Racket
know which one you mean? This is illegal in Racket, and it’ll produce an error message.
(Try it.)

Literals as parameter names

Yet another incorrect skeleton is (define (counterchange ) ...)

This one is also illegal: the parameters in a function header must be variable names,
not literals. DrRacket will give you an error message. (Try it.)
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More generally, this kind of mistake points to a common beginner confusion between
calling a function (on specific arguments, e.g. pictures or variables already defined to
stand for pictures) and defining a function (in which you specify place-holder parameter
names).

Remember, the parameter names in a function skeleton should indicate what the
parameter “means” in general (e.g. top-left and top-right), and/or what type it is
(e.g. picture), but should not assume anything about what specific value it is.

5.7 Checking syntax

Once you’ve written a contract, examples, and a function skeleton (with “. . . ” where the
function body will eventually be), DrRacket will help you check whether you’re on the
right track. Obviously, since you haven’t written the function body yet, it won’t produce
correct answers, but at least you can check whether you’re following all the syntax rules
and calling the function with the right number of arguments, thus catching many common
beginner mistakes. Click the “Check Syntax” button near the top of the screen. If your
examples use the function with the wrong number of arguments, DrRacket will tell you
so.

For example, if you made the first of the “common beginner mistakes” above,

(check-expect

(above (beside )

(beside )))

and hit “Check Syntax”, DrRacket would notice that you were calling check-expect with
three arguments rather than two, and tell you so. On the other hand, if you provided
just a picture and an answer:

(check-expect

(above (beside )

(beside )))

“Check Syntax” wouldn’t be able to tell that there was anything wrong, because all your
function calls are with the right number of arguments.

The second of the “common beginner mistakes” above is calling a function with the
wrong number of arguments, or arguments in the wrong order. “Check Syntax” will
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complain if you define a function with two parameters but call it with one or three; it
can’t tell if you call it with two parameters in the wrong order.

The third of the “common beginner mistakes” above, misleading parameter names, is
beyond “Check Syntax”’s ability to catch: all your function calls are legal.

However, it can easily catch the fourth and fifth:

(define (counterchange picture picture) ...)

(define (counterchange ) ...)

In both of these cases, the function definition doesn’t fit Syntax Rule 5, and “Check
Syntax” will tell you so.

5.8 Exercises on writing skeletons

In doing the following exercises, use “Check Syntax to see whether your examples and
skeletons match up properly.

Exercise 5.8.1 Write a function skeleton for the copies-beside function of Exer-
cise 5.3.2.

Exercise 5.8.2 Write a function skeleton for the pinwheel function of Exercise 5.3.3.

Exercise 5.8.3 Write a function skeleton for the checkerboard2 function of Exer-
cise 5.3.4.

Exercise 5.8.4 Write a function skeleton for the bullseye function of Exercise 5.3.5.

Exercise 5.8.5 Write a function skeleton for the dot-grid function of Exercise 5.3.6.

Exercise 5.8.6 Write a function skeleton for the lollipop function of Exercise 5.3.7.

5.9 The inventory

Imagine that you’re trying to bake cookies. A smart cook will get all the ingredients
(eggs, milk, butter, sugar, chocolate chips, etc.) out and put them on the counter before
mixing anything together: that way you can see whether you have enough of everything.
We’ll do something similar: list everything that’s available for you to use in defining the
function, before starting to put things together. At this stage, that basically means the
parameters (it will get more interesting later).

You should also recall from Chapter 4 that the parameter names that appear in the
function header must exactly match those that appear in the function body — same
spelling, same capitalization, etc. You may have no idea how the function body is going
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to work, but you can be pretty sure that the parameter names you put in the header will
be used in it. At this stage, I recommend writing the names of all the parameters, one on
each line, commented out, in between the function header and the “. . . ” where its body
will eventually be. It’s often helpful to also write down, next to each parameter, what
data type it is; this determines what you can reasonably do with it.

There may also be particular pieces of information that are always the same, regardless
of the arguments passed into the function. For example, a function that is supposed to
always draw in blue will presumably use the word "blue" at least once in its body.

I generally ask students to write a skeleton, as above, and then insert the inventory
information before the “. . . ”.

Worked Exercise 5.9.1 Add an inventory to the skeleton for the counterchange

function of Exercise 5.5.1.

Solution: We’ve already written the skeleton:

(define (counterchange top-left top-right)

...)

We don’t know yet how the function body will work, but we’re pretty sure it will
involve the variable names top-left and top-right. So we list these, one on each line,
commented out, along with their types. The complete function skeleton, with inventory
then reads

(define (counterchange top-left top-right)

; top-left image

; top-right image

...)

Together with the contract and examples we wrote before, the Definitions pane should
now look like Figure 5.1.

SIDEBAR:

Later in the book, we’ll talk about something analogous called an “outventory”.
Where an inventory answers the question “what am I given, and what can I do with
it?”, an outventory answers the question “what do I need to produce, and how can
I produce it?”. If the inventory is like collecting the raw ingredients for cookies, the
outventory is like observing that the last step in the recipe is baking, and concluding
that you’d better preheat the oven and make sure you have a cookie sheet.

We’ll come back to this concept when we have problems to solve that need it. For
now, inventories will do just fine.

Exercise 5.9.2 Add an inventory to the skeleton for the copies-beside function
of Exercise 5.8.1.

Exercise 5.9.3 Add an inventory to the pinwheel function of Exercise 5.8.2.

Exercise 5.9.4 Add an inventory to the checkerboard2 function of Exercise 5.8.3.
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Figure 5.1: Skeleton and inventory of counterchange
; counterchange : image (top-left)

; image (top-right) -> image

; Produces a square arrangement with the top-left image also

; in the bottom right, and the top-right image also in the

; bottom left.

(check-expect (counterchange )

(above (beside )

(beside )))

(check-expect (counterchange )

(above (beside )

(beside )))

(define (counterchange top-left top-right)

; top-left image

; top-right image

...)
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Hint: In addition to the parameters, this function will almost certainly need to use the
number 20 (the size of each small square), so you can include another line with 20 on it.
Its type, obviously, is number.

Exercise 5.9.5 Add an inventory to the bullseye function of Exercise 5.8.4.

Hint: This function will need to make some solid circles, so it’ll need the string "solid".
Include this fixed value, on a line by itself, along with the parameters.

Worked Exercise 5.9.6 Add an inventory to the dot-grid function of Exercise 5.8.5.

Solution: You should already have a skeleton, so we’ll discuss only what to add to it.
Suppose your parameter names are width and height. Obviously, you’ll need them inside
the body:

; width a number

; height a number

In addition, you know that the function will need radius-5 circular blue dots . To
produce these, we can be fairly certain that we’ll need the expression (circle 5 "solid"

"blue"). This too can be added to the inventory. The skeleton with inventory now looks
like
(define (dot-grid width height)

; width a number

; height a number

; (circle 5 "solid" "blue") an image

...)

Exercise 5.9.7 Add an inventory to the lollipop function of Exercise 5.8.6.

5.10 Inventories with values

Sometimes listing the available expressions and their types is enough for you to figure
out the body expression. But what if you do all that, and don’t have any flashes of
inspiration? A technique that has helped many of my students is writing an inventory
with values.

Here’s how it works. After you’ve written down all the “available expressions” and
their types, choose one of your test cases (preferably one that’s not too simple), and for
each of the expressions in the inventory, write down its value for that test case. Then add
another line to the inventory, labelled

; right answer

and write down the right answer for that test case. Finally, look at the value of the right
answer and the values of the available expressions, trying to find a way to get the right
answer from the available expressions.

Worked Exercise 5.10.1 Add values to the inventory of the counterchange func-
tion of Exercise 5.5.1.
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Solution: We already have a skeleton and test cases in Figure 5.1.

We’ll pick the second of our test cases, the one involving and , and
add the values of each inventory item to the inventory:

(define (counterchange top-left top-right)

; top-left image

; top-right image

; right answer image (above (beside )

; (beside )))

...)

Note that we’re not saying that top-left will always be a stick-figure, or top-right
will always be a calendar, only that we’re using those values as an example to see more
concretely what the inventory means. We still have to write the function in such a way
that it works on any values we give it.

5.11 The function body

Now it’s time to put some meat on the bones. This, frankly, is the hardest part of pro-
gramming: coming up with an expression which, no matter what arguments the function
is applied to, will always produce the right answer. We’ve done as much of the work ahead
of time as possible: we know what types the function is taking in and returning, we’ve
written a couple of specific examples, we have the basic syntax of a function definition,
we know what parameters and values are available for us to use, and we have a specific
example of them to compare with a specific right answer. Now we have to think about
how we would solve the problem if we were the computer. In doing this, you will find
function contracts (both for predefined functions and for your own functions) extremely
useful: for example, if you have a string that you know is supposed to be the name of a
color, you can be pretty sure it’ll appear as the last parameter to the circle, rectangle,
ellipse, or triangle function; which one depends on what the function is supposed to
draw.

Just as we added the inventory into the skeleton, we’ll add the function body just after
the commented-out “ingredients” from the inventory stage, still inside the parentheses,
in place of the “. . . ”, so the whole thing becomes a legal function definition that happens
to have a commented inventory in the middle.
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Worked Exercise 5.11.1 Add a body to the skeleton and inventory for the
counterchange function of Exercise 5.9.1.

Solution: Of course, we’ve already done this in Exercise 4.2.3. But if we hadn’t, here is
how we would figure it out. We already have the skeleton and inventory:
(define (counterchange top-left top-right)

; top-left image

; top-right image

; right answer image (above (beside )

; (beside )))

...)

We know that the body will (almost certainly) use the names top-left and top-right

(at least once each). If you immediately see how to put them together to get the right
results, great. If not, look at the examples, both of which fit the pattern

(above (beside something something-else )

(beside something-else something ))

They differ only in what pictures are used as something and something-else, both of
which must be images. Do we have any images available to work with? Yes: according
to the inventory, top-left and top-right are images, so the obvious thing to try is to
use those as something and something-else. But which one is which? In the “inventory
with values”, the image that was the value of top-left was the first argument to the
first beside and the second argument to the second, while the image that was the value
of top-right was the second argument to the first beside and the first argument to the
second. This suggests

(above (beside top-left top-right)

(beside top-right top-left))

as the body, and we’ll type this in between the inventory and the closing parenthesis of
the skeleton. We should now have a Definitions pane that looks like Figure 5.2.

Together with the contract and examples we wrote before, the Definitions pane should
now look like Figure 5.2.

Unfortunately, I haven’t yet told you everything you need to write the bodies of
copies-beside or dot-grid. (We’ll get to these in Chapter 24.) However, you should
be able to do the following four, especially if you’ve done all the steps up until now for
them.

Exercise 5.11.2 Add a body to the pinwheel function of Exercise 5.9.3.

Exercise 5.11.3 Add a body to the checkerboard2 function of Exercise 5.9.4.
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Figure 5.2: Complete definition of counterchange

; counterchange : image (top-left)

; image (top-right) -> image

(check-expect (counterchange )

(above (beside )

(beside )))

(check-expect (counterchange )

(above (beside )

(beside )))

(define (counterchange top-left top-right)

; top-left image

; top-right image

; right answer image (above (beside )

; (beside )))

(above (beside top-left top-right)

(beside top-right top-left))

)
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Hint: You can write this function directly, using beside and above, or you can write
it shorter and simpler by re-using another function we’ve already written. Shorter and
simpler is good!

Exercise 5.11.4 Add a body to the bullseye function of Exercise 5.9.5.

Exercise 5.11.5 Add a body to the lollipop function of Exercise 5.9.7.

5.12 Testing

Now it’s the moment of truth: the time to find out whether your function definition works.
If you’ve typed everything into the Definitions pane correctly, just click the “Run” button.
If you’re using “should be” for test cases, you’ll see the results in the Interactions pane,
each followed by the words “should be” and the right answer. Check that each of the
actual answers matches what you said it “should be”: if any of them don’t match, figure
out what’s wrong and fix it. If, on the other hand, you’re using check-expect, you should
see a report telling you exactly how many and which of your test cases failed.

If you get an error message like reference to an identifier before its definition, it
means that you tried to use the new function before defining it — for example, if you
have “should be”-style examples appearing ahead of the definition. (Examples using
check-expect are allowed to appear ahead of the definition.) A slightly different error
message, name is not defined, not an argument, and not a primitive name, means that
the name of the function in the examples doesn’t exactly match the name of the function
in the definition (in spelling, or capitalization, or something like that).

If you get an error message like this procedure expects 2 arguments, here it is provided
1 argument , it means your contract, examples, and skeleton disagree on how many argu-
ments the function is supposed to take in. An error message like expects type <number>
as 1st argument, given “hello” likewise indicates a disagreement among contract, exam-
ples, and skeleton on either the types or the order of the arguments.

Exercise 5.12.1 Test each of the functions whose definitions you wrote in Section 5.11.
If any of them produce wrong answers, fix them and test again until they produce correct
answers for every test case.

5.13 Using the function

Now that you’ve tested the function on problems for which you know the right answer,
you have confidence that it works correctly. So you can use it on problems for which you
don’t know the right answer, and be reasonably confident that the answers it produces
are right.

Just as important, you can now use your new function in writing other functions,
knowing that if something is wrong with the new function, it’s not the old function’s
fault. When a new piece of commercial software is written, it may rely on hundreds or
thousands of previously-written functions; if a programmer had to re-examine every one
of them to fix a bug in the new program, nothing would ever get done.
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5.14 Putting it all together

In reality, you would seldom want to write just the contract, or just the examples, of a
function. Much more common is to go through all the steps for a single function, then
go through all the steps for another function. In this section are several more function-
definition exercises: for each one, go through all the steps of the design recipe.

Exercise 5.14.1 Develop a function named diamond that takes in a string (the color
of the diamond) and a number (the length of one of its sides) and produces a diamond
shape, i.e. two triangles connected along one side.

Exercise 5.14.2 Develop a function named text-box that takes in two strings, of
which the second should be a color-name, and two numbers (width and height), and pro-
duces a picture of the first string, in 18-point black type, on a background rectangle of the
specified color, width, and height.

Exercise 5.14.3 (Thanks to Leon LaSpina for this problem)

Develop a function named two-eyes that, given a number and a color name, pro-
duces a picture of two circular “eyes”, 100 pixels apart horizontally. Each one should
have a black “pupil” of radius 10, surrounded by an “iris” of the specified color and ra-
dius (which you may assume is more than 10). The 100-pixel separation is measured from
edge to edge, not center to center.

Exercise 5.14.4 (Thanks to Leon LaSpina for this problem)

Develop a function named circle-in-square that takes in a number (the length
of a side of a square) and two strings (the colors of a square and a circle), and produces
a picture of a square of one color, with a circle of the other color inscribed inside it. The
diameter of the circle should be the same as the side of the square, so the circle just barely
touches the edge of the square at the middle of each side.

Hint: If you’ve already read Chapter 7, you’ll be tempted to do this using arithmetic.
But it can be done without arithmetic, using only what you’ve seen so far.

Exercise 5.14.5 Develop a function named caption-below that takes in an image
and a string, and produces a copy of the same image with a caption underneath it:
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5.15 Review of important words and concepts

Projects (such as writing a computer program) are more likely to be finished successfully
if you follow a recipe. In particular, you need to have a very clear, precise idea of what
a program is supposed to do before you start writing it. To design a Racket function,
follow the following seven steps:

1. Write a function contract (and possibly a purpose statement) for the function you
want to write. Include the function name, the numbers, types, and order of inputs,
and the type of the result (which so far is always “image”).

2. Write several examples of how the function will be used, with their correct answers.
Include special cases and anything else “weird” (but legal, within the contract) that
might help you uncover errors in your program.

3. Write a skeleton of the function you want to write, by combining Syntax Rule 5 with
the decisions you’ve already made about number, type, and order of parameters in
step 1. At this point you can use “Check Syntax” to confirm that your examples
and skeleton match one another.

4. Add an inventory to the skeleton, showing the names and types of all the parameters,
and any “fixed data” that you know will be needed no matter what arguments are
plugged in. If there are more complex expressions that you’re confident you’ll need,
you can write those at this point too. It’s often a good idea to choose a specific test
case and write down the values of all the inventory items for this test case, as well
as what the right answer should be for this test case.

5. Fill in the body of the function definition. This will be based on the skeleton, with
the help of any patterns you notice from the “right answers” of your examples. At
this point you can use “Check Syntax” again to confirm that all the parentheses
are matched correctly, you’re calling functions with the right number of arguments,
and so on.

6. Test your program on the examples you chose in step 2. If the actual answers don’t
match what you said they “should be”, figure out what’s wrong, fix it, and test
again.
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7. Use your program to answer questions for which you don’t already know the right
answer, or to build other, more complex functions, secure in the knowledge that
this one works.

Although this chapter didn’t introduce a lot of new Racket constructs, it is probably
the most important chapter in the book. If, a year after completing this course, you’ve
forgotten all your Racket but you remember the design recipe, I’ll be happy, and you’ll
be well on your way to being a good programmer.

5.16 Reference

No new functions or syntax rules were introduced in this chapter.


