
Chapter 10

Animations with arbitrary

models

10.1 Model and view

In Chapter 8, we saw that an animation involves two pieces of information: a model
(either an image or a number) and a view of that model (always an image). In fact,
things are more flexible than that: the model can be of any data type at all, as long as
you’re consistent within a given animation. The details are in Figure 10.1.

Note that all the examples of chapters 6 and 8 still work. But now we can also use
strings as models, and as we learn more data types in future chapters we’ll be able to use
those types as models too.

10.2 Design recipe for an animation, version 3

Our design recipe for an animation is now as in Figure 10.2.

Exercise 10.2.1 Write an animation that initially displays the letter “a” in 18-point
green type, and each second adds a “b” onto the end. So after one second it’ll say “ab”;
after two seconds “abb”; etc.

Hint: For this animation, your “model” should be a string, and your draw handler will
involve the text function.

Exercise 10.2.2 Add a mouse handler to the previous animation: every time the
mouse is moved or clicked, one character will be chopped off the beginning of the string.

Exercise 10.2.3 Write an animation that initially displays the word "cat". Each
second, it inserts the letters "xyz" in the middle (i.e. between the first half and the
second half) of the current word.

Hint: It may be useful to write a “helper” function insert-in-middle that takes two
strings, and inserts one of them into the middle of the other.

153

154 CHAPTER 10. ANIMATIONS WITH ARBITRARY MODELS

Figure 10.1: Event handlers for animations with arbitrary models

The big-bang function has the contract

; big-bang : model(start) handler ... -> number

tick handlers must have the contract

; function-name : model (old) -> model (new)

They are installed with (on-tick function-name interval). The interval
is the length of time (in seconds) between clock ticks; if you leave it out, the
animation will run as fast as it can.

key handlers must have the contract

; function-name : model (old) key -> model (new)

The “key” parameter indicates what key was pressed; we’ll see how to use it in
Chapter 18.

They are installed with (on-key function-name).

mouse handlers must have the contract

; function-name : model (old)

; number (mouse-x) number (mouse-y) event

; -> model (new)

The first parameter is the old model; the second represents the x coordinate,
indicating how many pixels from the left the mouse is; the third number represents
the y coordinate, indicating how many pixels down from the top the mouse is; and
the “event” tells what happened (the mouse was moved, the button was pressed
or released, etc.); we’ll see in Chapter 18 how to use this.

They are installed with (on-mouse function-name).

draw handlers must have the contract

; function-name : model (current) -> image

and are installed with (on-draw function-name width height). (If you leave
out the width and height arguments, the animation window will be the size of the
first image.)

An especially simple draw handler, show-it, is predefined: it simply returns the
same image it was given, and it’s useful if you need to specify the width and
height of the animation window but don’t want to write your own draw handler.

To specify the model type , use (check-with type-checker), where type-checker
is a function that checks whether something is of a specified type, e.g. image?,
number?, or string?, depending on what type you’ve chosen for this animation’s
model.

10.2. DESIGN RECIPE 155

Figure 10.2: Design recipe for an animation, version 3

1. Identify what handlers you’ll need (check-with, draw, tick, mouse, and/or
key).

• You should always have a check-with handler.

• If your animation needs to change at regular intervals, you’ll need a tick
handler.

• If your animation needs to respond to mouse movements and clicks, you’ll
need a mouse handler.

• If your animation needs to respond to keyboard typing, you’ll need a key
handler.

• You always need a draw handler. If your “model” is simply the image you
want to show in the animation window, you can use show-it; otherwise
you’ll need to write your own.

2. Decide what type a “model” is and what it means.

The model type should be something that you can easily update in response to
events, and also something from which you can figure out what to show on the
screen. Choosing an image as the model usually makes the draw handler easy to
write, but may make the other handlers more difficult.

For example, if your response to events is easily described by arithmetic, you
probably want a numeric model. If it’s easily described by image operations, you
probably want an image model. If it’s easily described by string operations, you
probably want a string model.

If you decide to use something other than an image as the model, you’ll definitely
need to write a draw handler.

3. Write the contracts for the handlers (using Figure 10.1). Again, the names of
the functions are up to you, but once you’ve chosen a type for your model, the
contracts must be exactly as in Figure 10.1.

4. Develop each of these functions, following the usual design recipe for each one.
Don’t go on to the next one until the previous one passes all of its test cases.

5. Decide on the initial value of the model.

6. Decide on the width and height (if the draw handler doesn’t produce some-
thing of the right size).

7. Decide on the time interval between “ticks” (if you have a tick handler).

8. Call big-bang with the initial picture and handlers (specified using check-with,
on-draw, on-tick, on-mouse, and on-key). See whether it works.

156 CHAPTER 10. ANIMATIONS WITH ARBITRARY MODELS

The following exercise is a step towards the “digital clock” we described earlier:

Exercise 10.2.4 Develop an animation that displays a digital counter, in 18-point
blue numerals. It should start at 0 and increase by 1 each second.

Hint: Since the change every second is a numeric change — adding 1 — you should use
a number as the model. But to display it on the screen, you’ll need to turn the number
into an image. Have you written a function that does this?

Exercise 10.2.5 Develop an animation that displays a number that starts at 0 and
increases by 1 each second, while simultaneously moving one pixel to the right each second.
So, for example, after 24 seconds you should see the decimal number 24, 24 pixels from
the left edge of the window.

Exercise 10.2.6 Develop an animation that, at all times, shows the mouse’s coor-
dinates as an ordered pair in the animation window. For example, if the mouse were
currently 17 pixels from the left and 43 pixels down from the top, the screen would show
(17, 43)

10.3 Review of important words and concepts

Interactive programs are generally written following the model/view framework : the
model changes in response to events, and the view is computed from the model. The
model in an animation may be of any data type you choose, as long as you pick a type
and stick to it consistently for all the relevant handlers.

10.4 Reference

There are no new built-in functions or syntax rules in this chapter, but some previously-
defined functions have broader contracts than you knew about before; see Figure 10.1.

