
Chapter 11

Reduce, re-use, recycle

11.1 Planning for modification and extension

Professional programmers learn very quickly that program requirements change. You
may be given an assignment, be halfway through writing it, and suddenly be told that
the program needs to do something different (usually something additional) from what
you were told originally. Even after you’ve turned in an assignment, or released a piece
of software to the public, the requirements can continue to change: either somebody will
complain about the way a particular feature works, and ask you to change it, or somebody
will think of a neat new feature that they want you to add for the next version. In some
of the courses I teach, I warn students in advance “I reserve the right to change the
assignment slightly on the day that it’s due; you’ll have a few hours to accommodate the
change.”

How can anybody work in such conditions? One thing you can do is, when you first
get an assignment, start thinking about likely ways it might change. Then you can plan
your program in such a way that, if it does change in those ways, you can handle the
change quickly and easily.

To be more specific, try to design things so that each likely change affects only one
variable or function. Or, as Parnas writes in “On the Criteria to be Used in Decomposing
Systems into Modules” [Par72],

. . . one begins with a list of difficult design decisions or design decisions
which are likely to change. Each module is then designed to hide such a
decision from the other [modules].

The rest of this chapter will discuss various ways to do this.

11.2 Re-using variables

Worked Exercise 11.2.1 Design a function named gas-cost that estimates how
much you’ll spend on gasoline for a trip. It should take in the number of miles you’re
driving, and return how much you expect to spend, in dollars. Your car gets approximately
28 miles per gallon (i.e. this is an inexact number), and gasoline costs $2.459 per gallon.
(This example was written in 2006, when that was a reasonable price for gasoline!)

Solution:

Contract: The function takes in one number and returns another. (The 28 and 2.459

157

158 CHAPTER 11. REDUCE, RE-USE, RECYCLE

are important parts of the problem, but they’re fixed numbers: they’ll be the same every
time you call the function, so they shouldn’t be specified as parameters.) Thus

; gas-cost : number(miles) -> number

Examples: As usual, we’ll start with easy examples and gradually work up to more
complicated ones: 0 miles requires 0 gas, hence costs $0.00. 28 miles requires 1 gallon of
gas, so it costs $2.459. And so on.
"Examples of gas-cost:"

(check-within (gas-cost 0) 0 .01)

(check-within (gas-cost 28) 2.459 .01) ; i.e. one gallon

(check-within (gas-cost 56) 4.918 .01) ; i.e. two gallons

(check-within (gas-cost 77) 6.76 .01) ; 2-3/4 gal; use calculator

(check-within (gas-cost 358) 31.44 .01) ; yecch; use calculator

Skeleton:

(define (gas-cost miles)

...)

Inventory:

(define (gas-cost miles)

; miles a number

; #i28 a fixed number I know I’ll need

; 2.459 ditto

...)

Body: If you already see how to write the expression, great. If not, let’s try the
“inventory with values” trick. Pick a not-too-simple example, e.g.

(check-within (gas-cost 56) 4.918 .01) ; i.e. two gallons

and fill in values:

(define (gas-cost miles)

; miles a number 56

; 28 a fixed number 28

; 2.459 ditto 2.459

; should be a number 4.918

...)

The number 4.918 doesn’t look much like any of the previous numbers, but the one it
resembles most closely is 2.459. In fact, it is exactly twice 2.459. So where did the 2 come
from? Well, the number of miles in this example is exactly twice the miles-per-gallon
figure, so one might reasonably guess that the formula is

(* (/ miles 28) 2.459)

Of course, this formula works for this example; we still need to test it on the remaining
examples to be convinced that it works in general.

11.2. RE-USING VARIABLES 159

The arithmetic expression in the body could be simplified somewhat: multiplying by
2.459 and dividing by 28 is equivalent to multiplying by approximately 0.08782142857, so
we could have written

(define (gas-cost miles)

; miles a number

; #i0.08782142857 a fixed number I know I’ll need

(* #i0.08782142857 miles)

)

However, this program is much harder to understand. If one of your classmates (or
yourself, three months from now) were to look at it, they’d have no idea where the
0.08782142857 came from, whereas in the previous version the algebraic expression “ex-
plains itself.”

Why is this important? Because program requirements change. Imagine that you’ve
worked out this program, and are just about to turn it in, when you learn that the price
of gasoline has gone up to $3.899 per gallon. In the original version of the program,
you simply replace 2.459 with 3.899 wherever it appears (and change the “right answers”
accordingly), and it should work. In the “simplified” version, however, it’s not obvious
how the number 0.08782142857 needs to be changed, unless you remember that you got
it by dividing the gasoline price by the fuel efficiency.

Now suppose you’ve written not just one but several programs that involve the current
price of gasoline: say, there’s also one that estimates how much money is wasted through
spills, and one that estimates how much profit oil companies are making, etc. When the
price of gasoline rises again, you’ll need to change all the programs. This is a pain, and
it violates the principle that “each change to requirements should affect only one variable
or function.” So to make our lives easier, let’s define a variable to represent this number,
and rewrite all the functions that use the price of gasoline to use the variable name, rather
than the number, e.g.

(define PRICE-PER-GALLON 2.459)

; gas-cost : number (miles) -> number

(define (gas-cost miles)

; miles a number

; #i28 a fixed number I know I’ll need

; PRICE-PER-GALLON ditto

(* PRICE-PER-GALLON (/ miles #i28))

)

"Examples of gas-cost:"

(check-within (gas-cost 0) 0 .01)

(check-within (gas-cost 28) 2.459 .01) ; i.e. one gallon

(check-within (gas-cost 56) 4.918 .01) ; i.e. two gallons

(check-within (gas-cost 77) 6.76 .01) ; 2-3/4 gal; use calculator

(check-within (gas-cost 358) 31.44 .01) ; yecch; use calculator

160 CHAPTER 11. REDUCE, RE-USE, RECYCLE

; spillage-cost : number (gallons spilled) -> number

(define (spillage-cost gallons)

; gallons a number

(* PRICE-PER-GALLON gallons)

)

"Examples of spillage-cost:"

(check-within (spillage-cost 0) 0 .01)

(check-within (spillage-cost 1) 2.459 .01)

(check-within (spillage-cost 20000) 49180 1)

; etc.

SIDEBAR:

The use of ALL-CAPITALS in the variable name is a convention among Racket
programmers (as well as C, C++, and Java programmers) to indicate a variable
that represents a “fixed” or “constant” value. Of course, it isn’t really constant, but
it changes much less frequently than the number of miles driven or the number of
gallons spilled. In this book, we’ll often use ALL-CAPITALS for variables defined in
their own right, to distinguish them from function parameters (which are also a kind
of variable).

Now, the next time you hear that the price of gasoline has changed, you only need
to change the value of PRICE-PER-GALLON in one place, and all the functions should now
work with the new price. (You may also need to recalculate the “right answers” to your
examples, but if your program worked before, and the only thing that’s changed is the
price of gasoline, you can be reasonably confident that your program will still work.)

Obviously, there’s another “fixed” value in this problem that could change: the 28
miles per gallon.

Exercise 11.2.2 Replace 28 everywhere it appears in the program with a variable named
MILES-PER-GALLON, define that variable appropriately, and make sure the program still
works.
Change the values of the variable and the “right answers”, and test that the program
produces the new correct answers.

As a general rule, if the same number appears more than once in your program, it
deserves a name. Even if it appears only once, it’s often a good idea to give it a name; a
complex expression with a meaningful name in it is often easier to understand than the
same expression with a “magic number” in it.

Of course, by “give it a name” I don’t mean something silly like

(define TWELVE 12)

But if the number 12 appears several times in your program, figure out what each one
means, and define a variable that makes the meaning clear. You may even discover
that the same number currently appears in your program for two different reasons: for
example, a program dealing with annual orders for a grocery store that sells both eggs
and soda pop might include

(define MONTHS-PER-YEAR 12)

(define EGGS-PER-CARTON 12)

(define OZ-PER-CAN 12)

11.3. COMPOSING FUNCTIONS 161

If the store suddenly started selling eggs in 18-egg cartons, or 16-oz cans of soda pop, you
would need to change only one variable definition rather than going through the whole
program line by line, looking for twelves and deciding which ones were twelve for which
reason.

11.3 Composing functions

Recall Exercise 7.7.17, the fahrenheit->kelvin function, which could be written by
simply calling one previously-written function (celsius->kelvin) on the result of another
(fahrenheit->celsius). This sort of re-use has several benefits:

• fahrenheit->kelvin is easy to write, without needing to look up the formulæ or
numbers for the other two functions.

• If you make an improvement to the accuracy or efficiency of one of the other func-
tions, fahrenheit->kelvin will automatically become more accurate or efficient
too. (Remember using pi to make area-of-circle and area-of-ring more accu-
rate?)

• Each of the three functions can be tested and debugged separately (although, since
fahrenheit->kelvin depends on the other two, there’s not much point testing it
until you have confidence in the other two).

• If you have confidence in the correctness of the other two functions, but get wrong
answers from fahrenheit->kelvin, you don’t need to look at the other two func-
tions; you can confine your attention to how they’re combined (e.g. perhaps you
called them in the wrong order).

• Each of the three functions can be useful in its own right.

• Each of the three functions is shorter, simpler, and easier to understand than if they
were all combined into one big function.1

Now let’s think about gas-cost again. Intuitively, it first computes how many gallons
of gas we need (from the mileage and the fuel efficiency), and then computes how much
money that many gallons of gas cost (from the price of gas). Each of these questions (“how
much gas does it take to drive a specified distance?” and “how much does a specified
amount of gas cost?”) could be useful in its own right. So let’s break the program up into
three separate functions:

1The human mind seems to have a hard time thinking about more than seven “things” at a time,
according to George Miller’s famous paper “The Magical Number Seven, Plus or Minus Two” [Mil56]. If
your function definition has much more than seven variables and operators in it, it might be a good idea
to break it into smaller, simpler pieces so you can hold the whole thing in your mind at once.

162 CHAPTER 11. REDUCE, RE-USE, RECYCLE

; gas-needed : number (miles) -> number

"Examples of gas-needed"

(check-within (gas-needed 0) 0 .01)

(check-within (gas-needed 28) 1 .01)

(check-within (gas-needed 56) 2 .01)

(check-within (gas-needed 77) 2.75 .01)

(check-within (gas-needed 358) 12.8 .01)

; cost-of-gallons : number (gallons) -> number

"Examples of cost-of-gallons:"

(check-within (cost-of-gallons 0) 0 .01)

(check-within (cost-of-gallons 1) 2.459 .01)

(check-within (cost-of-gallons 2) 4.918 .01)

(check-within (cost-of-gallons 2.75) 6.76225 .01)

; gas-cost : number (miles) -> number

"Examples of gas-cost:"

(check-within (gas-cost 0) 0 .01)

(check-within (gas-cost 28) 2.459 .01) ; i.e. one gallon

(check-within (gas-cost 56) 4.918 .01) ; i.e. two gallons

(check-within (gas-cost 77) 6.76 .01) ; 2-3/4 gal; use calculator

(check-within (gas-cost 358) 31.44 .01) ; yecch; use calculator

Each of these functions is easy to write, particularly now that we’ve given names to the
price of gasoline and the fuel efficiency of the car. Note that gas-cost shouldn’t need to
use any numbers or those two variables; it should simply use the other two functions.

Exercise 11.3.1 Write, test, and debug the gas-needed, cost-of-gallons, and
(new, improved) gas-cost functions.

In general, there are several ways a new function can use an old function:

• rearranging or adding arguments, and passing these to the old function (e.g. the
convert-3-reversed function of Exercise 7.7.19, or the draw handler of Exer-
cise 10.2.1).

• calling one old function on the result of another (such as fahrenheit->kelvin and
the new gas-cost)

• using the same old function several times (e.g. the counterchange function, which
used beside twice).

Exercise 11.3.2 Develop a function cylinder-volume that takes in the radius and
height of a cylinder, and computes its volume.

Hint: Look for a previously-written function you can re-use to do part of the job.

Exercise 11.3.3 Develop a function cylinder-area that takes in the radius and
height of a cylinder, and computes its area.

Hint: The area includes the vertical sides and both ends.

11.4. DESIGNING FOR RE-USE 163

Exercise 11.3.4 Develop a function pipe-area that takes in the inner radius of a
pipe, the length of the pipe, and the thickness of the walls, and computes its area.

Hint: The area includes the inner surface, the outer surface, and the narrow top and
bottom.

Exercise 11.3.5 The nation of Progressiva has a simple tax code. The tax you pay is
your salary times the tax rate, and the tax rate is 0.5% per thousand dollars of salary.
For example, if you make $40,000, your tax rate is 0.5% times 40, which is 20%, so you
pay 20% of $40,000, which is $8,000.

Develop a function to compute the net pay (i.e. pay after taxes) of a person with a
given salary.

Hint: You’ll probably need two auxiliary functions as well as net-pay.

Exercise 11.3.6 This tax system has the peculiar feature that, beyond a certain income
level, if you earn more, you actually get less take-home pay. Use your net-pay function
to find this income level by experimentation.

Now imagine the tax rate rises to 0.6% per thousand dollars of salary. What would
you need to modify in the program to handle this change? What would be the new income
level beyond which you get less take-home pay?

11.4 Designing for re-use

When you’re writing a program, sometimes you’ll realize that there’s an existing program
that does most of the work for you. Take advantage of this opportunity (unless your
instructor has specifically told you not to in a particular case); a good programmer is
lazy, and refuses to re-invent the wheel. Recognizing and using such opportunities will
save you a lot of time in programming.

But if the previous program was written to solve only one very narrow, specific prob-
lem, you may not be able to re-use it for your new problem. So when you’re writing a
new function, even if you don’t immediately see any other application for it, design it to
be easily re-used ; you never know when some future problem will need it. What does this
mean?

• Don’t make unnecessary assumptions about your parameters.

Suppose you’re writing a function that takes in a string and displays it in an ani-
mation window. In the particular animation we’re working on, we know that the
string in question will always be just a single letter. But unless it’s considerably
easier or more efficient to write the function for single-letter strings, don’t assume
the parameter is a single letter. In fact, test it on different-length strings, even
though you’ll only need it for single letters in the current project, because a future
project might need it for other strings.

Here’s a situation I see often. I’ve assigned an animation, which will require writing
two or three event-handling functions, with (let’s say) a number as the model. In
the current animation, the model will never be bigger than 100, so one student
writes the functions so they only work on numbers less than 100, while another
writes them to work for any number. Later in the course, I give another assignment
that requires some of the same functions, but no longer guarantees that the model

164 CHAPTER 11. REDUCE, RE-USE, RECYCLE

is never bigger than 100. The student who wrote a general, re-usable function in
the first place can simply re-use the old function; the one who wrote a “narrower”
function has to write a new one from scratch.

• Write each function to do one clear, simple task, not several.

Suppose the current project requires computing how much I’m going to spend at
gasoline stations for a trip, considering that every time I stop for gas I also buy a
soda pop. You could write a single function that solves this whole problem, but
it would be fairly complicated, and it would “tie up” the solutions to all the sub-
problems so you can’t solve one without the others. In particular, if a future project
needed to compute the amount of gasoline used on a trip or the cost of a specified
amount of gasoline, you would have to write those functions (and figure out the
right formulæ, and test and debug) then anyway. A better approach is to write
several simple functions: how much gas do I need, how much will the gas cost, how
much will I spend on soda pop, etc. This way I can re-use whichever parts of the
current project are needed in the future project.

There are whole books written, and whole college courses taught, about “designing
programs for re-use”, but the above two rules will get you started.

11.5 Designing multi-function programs: a case study

Let’s take the gasoline-cost problem a step farther.

Worked Exercise 11.5.1 Design a function road-trip-cost which determines the
cost of a road trip, given the number of miles you’re driving and how many days you’ll
be away. The car gets roughly 28 miles to the gallon, gasoline costs $2.459 per gallon,
and motels cost $40 per night. Furthermore, you don’t actually own a car, so you have
to rent one. The car rental agency charges a fixed processing fee of $10, plus $29.95 per
day, plus $0.10 per mile . Assume that you’re bringing all your own food and drinks, so
you don’t need to worry about the cost of food on the road. Also assume that the “number
of days you’ll be away” includes both the day you leave and the day you return.

Solution: This is a more complicated problem than we’ve yet seen. If you try to solve
the whole thing at once, you’ll be overwhelmed. Even if you manage to write a single
function that solves the whole problem, it’ll be long, complicated, and confusing. We
need to take a more careful, methodical approach.

We can write a contract fairly easily:
; road-trip-cost : number (miles) number (days) -> number

The examples will be a pain, since they require that we solve the whole problem at
once, at least in specific cases. So before we jump into that, let’s think about how to
break the problem into smaller pieces.

What are the important values and quantities in the problem?

• the total cost of the road trip

• the number of miles we’re driving

• the number of days we’ll be away

11.5. DESIGNING MULTI-FUNCTION PROGRAMS: A CASE STUDY 165

• the fuel efficiency of the car

• the price of gasoline

• the amount of gasoline we need

• the amount we spend on gasoline

• the cost per night of a motel

• the number of nights we need to stay in a motel

• the amount we spend on motels

• the fixed processing fee for car rental

• the daily charge for car rental

• the per-mile charge for car rental

• the amount we spend on car rental

These quantities fall into several categories: some are fixed numbers (for which we prob-
ably want to use variables — see Section 11.2) — some are inputs (i.e. parameters) to
the function, some are output from the function, and some are intermediate results that
we need along the way.

Fixed numbers:

• the fuel efficiency of the car

• the price of gasoline

• the cost per night of a motel

• the fixed processing fee for car rental

• the daily charge for car rental

• the per-mile charge for car rental

Inputs to the road-trip-cost function:

• the number of miles we’re driving

• the number of days we’ll be away

Output from the road-trip-cost function: the total cost of the road trip
Intermediate results

• the amount of gasoline we need

• the amount we spend on gasoline

• the number of nights we need to stay in a motel

• the amount we spend on motels

• the amount we spend on car rental

166 CHAPTER 11. REDUCE, RE-USE, RECYCLE

The “fixed numbers”, at least, should be easy.

(define MILES-PER-GALLON #i28)

(define PRICE-PER-GALLON 2.459)

(define MOTEL-PRICE-PER-NIGHT 40)

(define CAR-RENTAL-FIXED-FEE 10)

(define CAR-RENTAL-PER-DAY 29.95)

(define CAR-RENTAL-PER-MILE 0.10)

Note that I’ve given all the variables names that a casual reader could understand. This
makes them a bit long, but experience shows that the time saved in figuring out what a
variable name means far exceeds the time spent typing long names.

At this point it is useful to figure out which quantities depend on which others ; see
Figure 11.1. Each of these intermediate results is a good candidate for a separate
function. Because they aren’t the function you originally intended to write, but will help
you write it, they’re called auxiliary functions or helper functions. Conveniently enough,
we’ve already written gas-cost, gas-needed, and cost-of-gallons, but if we hadn’t,
we could write them now in the same way we’ll write the rest. 2

We still have four functions to write: “the total cost of the road trip”, “the number of
nights we need to stay in a motel”, “the amount we spend on motels”, and “the amount
we spend on car rental”. At this point, we know enough about them that we could write
contracts and, perhaps, examples for all of them. This is often a good idea, because some
of the functions will need to call one another, so it’s best to decide how they’ll be called
as early as possible.

We already have a contract for road-trip-cost. Next let’s try “the amount we spend
on motels”. Since road-trip-cost will depend on this function (among others), let’s
insert it in the Definitions pane ahead of what we’ve written so far about road-trip-cost.
Anyway, a good name for this function might be motel-cost, and it obviously returns a
number in dollars. It depends on the number of nights we stay in motels, and the cost
per night of a motel. The latter is a fixed number, and the former is another intermediate
value which in turn depends on the number of days of the trip. So

; motel-cost : number (days) -> number

Since this depends on another function we haven’t dealt with yet, let’s postpone its
examples until we’ve handled that other function.

Next: “The number of nights we spend in motels”. A good name for the function could
be nights-in-motel; it returns a integer, like 0, 1, 2, etc. And since motel-cost depends
on this one, let’s insert this one ahead of what we’ve just written about motel-cost in
the Definitions pane.

This function obviously depends on the number of days of the trip, so

; nights-in-motel : number (days) -> number

As usual, we’ll pick examples from the easiest to more complicated, and often the easiest
number is 0. If the trip involves 0 days, then there is no “day that you leave” or “day
that you return”; this example doesn’t make sense. And a negative number or a fraction
certainly wouldn’t make sense. We’ve learned something about the limits of the problem;
let’s add this as an assumption.

2For some reason, many of my students seem to think that helper functions don’t need contracts or
test cases. This is analogous to building a house of cheap, low-quality bricks. If the bricks dissolve in
the first rainstorm, the house will fall apart no matter how well designed it is. Similarly, if you’re not
clear on your helper functions’ contracts, or you haven’t tested them adequately, your whole program is
unlikely to work.

11.5. DESIGNING MULTI-FUNCTION PROGRAMS: A CASE STUDY 167

Figure 11.1: Which quantities depend on which

• The fixed numbers don’t depend on anything else.

• The inputs (miles and days) don’t depend on anything else.

• “the total cost of the road trip” depends on three other quantities: how much
we spend on gas, how much we spend on motels, and how much we spend on car
rental.

• “the amount we spend on gasoline” depends on the amount of gasoline and the
price of gasoline.

• “the amount of gasoline we need” depends on the number of miles and the fuel
efficiency.

• “the number of nights we need to stay in a motel” depends on the number of days
(but it’s one less: if you leave on Monday and come back Tuesday, you’ve only
stayed over one night).

• “the amount we spend on motels” depends on the number of nights and the cost
per night of a motel.

• “the amount we spend on car rental” depends on the fixed fee, the daily charge,
the number of days, the per-mile charge, and the number of miles we drive.

168 CHAPTER 11. REDUCE, RE-USE, RECYCLE

; nights-in-motel : number (days) -> number

; Assumes the number of days is a positive integer.

The next simplest integer is 1, which would mean leaving today and coming back today,
thus spending zero nights in motels. Similarly, if we took a 2-day trip, leaving today
and coming back tomorrow, it would mean spending 1 night in a motel. In general, the
number of nights is one less than the number of days.

"Examples of nights-in-motel:"

(check-expect (nights-in-motel 1) 0)

(check-expect (nights-in-motel 2) 1)

(check-expect (nights-in-motel 38) 37)

Now we can come back to the examples of motel-cost:

"Examples of motel-cost:"

(check-expect (motel-cost 1) 0)

(check-expect (motel-cost 2) 40)

(check-expect (motel-cost 38) 1480)

(Again, I used a calculator for the last one.)

Next is “the amount we spend on car rental.” Let’s name it rental-cost. It depends
on five different quantities, but three of them are fixed numbers, and the other two are
the number of miles and the number of days, which we have available as parameters to
the main function. So

; rental-cost : number (miles) number (days) -> number

The examples will take some arithmetic, but we can pick the numbers to make the
arithmetic reasonably easy. Remember that we’ve already agreed 0 days doesn’t make
any sense. (One could make a good case that 0 miles doesn’t make sense either; however,
it’s theoretically possible that we might get in the car, turn on the radio, chat for a while,
and get out without ever going anywhere.)

As usual, we’ll start from the easiest cases:

"Examples of rental-cost:"

(check-within (rental-cost 0 1) 39.95 .01)

(check-within (rental-cost 0 2) 69.90 .01)

(check-within (rental-cost 100 1) 49.95 .01)

(check-within (rental-cost 100 2) 79.90 .01)

(check-within (rental-cost 28 1) 42.75 .01)

(check-within (rental-cost 77 2) 77.60 .01)

(check-within (rental-cost 358 3) 135.65 .01)

The only function for which we don’t have examples yet is road-trip-cost itself. So
let’s write some examples for it, using some of the numbers we’ve already worked out.
The cost of the whole road-trip is found by adding up three other things: the cost of
gasoline, the cost of motels, and the cost of car rental.

11.5. DESIGNING MULTI-FUNCTION PROGRAMS: A CASE STUDY 169

"Examples of road-trip-cost:"

(check-within (road-trip-cost 0 1) 39.95 .01)

; the gas and motels cost 0

(check-within (road-trip-cost 0 2) 109.90 .01)

; gas still 0, motel $40

(check-within (road-trip-cost 28 1) 45.209 .01)

; $42.75 for car, $0 for motel, $2.459 for gas

(check-within (road-trip-cost 77 2) 124.36 .01)

; $77.60 for car, c. $6.76 for gas, $40 for motel

(check-within (road-trip-cost 358 3) 247.09 .01)

; $135.65 for car, c. $31.44 for gas, $80 for motel

At this point, we’ve completed the “figure out what you want to do” for all four
functions. This will be useful as we go on, because the definitions of some of them will
depend on understanding what the others do. The Definitions pane should now look
something like Figures 11.2 and 11.3.

We still have to move each of the four functions through the “skeleton”, “inventory”,
“body”, and “testing” stages . . . but what to do first?

For the skeletons, inventories, and bodies, it doesn’t really matter which function
you work on first. Testing and debugging are another story. The motel-cost function
depends on the nights-in-motel function, so we can’t test the former until we’ve written
the latter, and we certainly can’t test the road-trip-cost function until everything else
works. In other words, we have to build the program from the bottom up, like a brick
building: finish the foundation before starting on the walls, and finish the walls before
starting on the roof. Don’t try to test and debug a function that depends on another
function that hasn’t been tested and debugged yet.

For clarity, I’ll do one function (skeleton, inventory, body, testing) at a time; you could
equally well do all the skeletons, then all the inventories, then all the bodies, then test
them in order.

We have to start with a function that doesn’t rely on any other functions (only fixed
numbers and parameters to the main function). According to Figure 11.1, we have two
choices: nights-in-motel, and rental-cost. Let’s try nights-in-motel.

The skeleton and inventory should be straightforward and routine by now:

; nights-in-motel : number (days) -> number

; Assumes the number of days is a positive integer.

(define (nights-in-motel days)

; days a number

...)

The formula is obvious:

; nights-in-motel : number (days) -> number

; Assumes the number of days is a positive integer.

(define (nights-in-motel days)

; days a number

(- days 1)

)

Test this on the already-written examples. (To avoid getting error messages on examples
of functions you haven’t written yet, use the “Comment Out with Semicolons” menu

170 CHAPTER 11. REDUCE, RE-USE, RECYCLE

Figure 11.2: Constants and old functions
; Constants for the road-trip-cost problem:

(define MILES-PER-GALLON #i28)

(define PRICE-PER-GALLON 2.459)

(define MOTEL-PRICE-PER-NIGHT 40)

(define CAR-RENTAL-FIXED-FEE 10)

(define CAR-RENTAL-PER-DAY 29.95)

(define CAR-RENTAL-PER-MILE 0.10)

; gas-needed : number (miles) -> number

(define (gas-needed miles)

; miles a number

; MILES-PER-GALLON a number

(/ miles MILES-PER-GALLON)

)

"Examples of gas-needed:"

(check-within (gas-needed 0) 0 .01)

(check-within (gas-needed 28) 1 .01)

(check-within (gas-needed 56) 2 .01)

(check-within (gas-needed 77) 2.75 .01)

(check-within (gas-needed 358) 12.8 .01)

; cost-of-gallons : number (gallons) -> number

(define (cost-of-gallons gallons)

; gallons number

; PRICE-PER-GALLON number

(* gallons PRICE-PER-GALLON)

)

"Examples of cost-of-gallons:"

(check-within (cost-of-gallons 0) 0 .01)

(check-within (cost-of-gallons 1) 2.459 .01)

(check-within (cost-of-gallons 2) 4.918 .01)

(check-within (cost-of-gallons 2.75) 6.76225 .01)

; gas-cost : number (miles) -> number

(define (gas-cost miles)

; miles number

(cost-of-gallons (gas-needed miles))

)

"Examples of gas-cost:"

(check-within (gas-cost 0) 0 .01)

(check-within (gas-cost 28) 2.459 .01) ; i.e. one gallon

(check-within (gas-cost 56) 4.918 .01) ; i.e. two gallons

(check-within (gas-cost 77) 6.76 .01) ; 2-3/4 gal; use calculator

(check-within (gas-cost 358) 31.44 .01) ; yecch; use calculator

11.5. DESIGNING MULTI-FUNCTION PROGRAMS: A CASE STUDY 171

Figure 11.3: Contracts and examples for new functions
; nights-in-motel : number (days) -> number

; Assumes the number of days is a positive integer.

"Examples of nights-in-motel:"

(check-expect (nights-in-motel 1) 0)

(check-expect (nights-in-motel 2) 1)

(check-expect (nights-in-motel 38) 37)

; motel-cost : number (days) -> number

"Examples of motel-cost:"

(check-expect (motel-cost 1) 0)

(check-expect (motel-cost 2) 40)

(check-expect (motel-cost 38) 1480)

; rental-cost : number (miles) number (days) -> number

"Examples of rental-cost:"

(check-expect (rental-cost 0 1) 39.95)

(check-expect (rental-cost 0 2) 69.90)

(check-expect (rental-cost 100 1) 49.95)

(check-expect (rental-cost 100 2) 79.90)

(check-expect (rental-cost 28 1) 42.75)

(check-expect (rental-cost 77 2) 77.60)

(check-expect (rental-cost 358 3) 135.65)

; road-trip-cost : number (miles) number (days) -> number

"Examples of road-trip-cost:"

(check-within (road-trip-cost 0 1) 39.95 .01) ; the gas and motels are 0

(check-within (road-trip-cost 0 2) 109.90 .01) ; gas still 0, motel $40

(check-within (road-trip-cost 28 1) 45.209 .01)

; $42.75 for car, $0 for motel, $2.459 for gas

(check-within (road-trip-cost 77 2) 124.36 .01)

; $77.60 for car, c. $6.76 for gas, $40 for motel

(check-within (road-trip-cost 358 3) 247.09 .01)

; $135.65 for car, c. $31.44 for gas, $80 for motel

172 CHAPTER 11. REDUCE, RE-USE, RECYCLE

command to comment out everything not related to nights-in-motel.) If it produces
correct answers in every case, go on to the next function.

Staying on the same subject, let’s do motel-cost. Uncomment the lines related to
this function, and write the skeleton and inventory:

; motel-cost : number (days) -> number

; Assumes the number of days is a positive integer.

(define (motel-cost days)

; days a number

...)

In addition, we know from Figure 11.1 that the answer depends on the cost per night,
MOTEL-PRICE-PER-NIGHT, so let’s add that to the inventory. Furthermore, we don’t ac-
tually care about the number of days so much as the number of nights, which we can get
by calling nights-in-motel, so we’ll add that to the inventory too:

; motel-cost : number (days) -> number

; Assumes the number of days is a positive integer.

(define (motel-cost days)

; days a number

; MOTEL-PRICE-PER-NIGHT a number

; (nights-in-motel days) a number

...)

Now, since (nights-in-motel days) represents the number of nights, the formula is
straightforward:

; motel-cost : number (days) -> number

; Assumes the number of days is a positive integer.

(define (motel-cost days)

; days a number

; MOTEL-PRICE-PER-NIGHT a number

; (nights-in-motel days) a number

(* MOTEL-PRICE-PER-NIGHT (nights-in-motel days))

)

Test this on the already-written examples. If it produces correct answers in every case,
go on to the next function. If it doesn’t, use the Stepper to decide whether the mistake is
in nights-in-motel (it shouldn’t be, since we’ve already tested that function) or in this
one (much more likely); fix the problem and re-test.

The only function we can do next is rental-cost. Uncomment its examples and write
a skeleton and (a start on an) inventory:

; rental-cost : number (miles) number (days) -> number

(define (rental-cost miles days)

; miles a number

; days a number

...)

According to Figure 11.1, it also depends on three fixed numbers: CAR-RENTAL-FIXED-FEE,
CAR-RENTAL-PER-DAY, and CAR-RENTAL-PER-MILE, so we’ll add these to the inventory:

11.5. DESIGNING MULTI-FUNCTION PROGRAMS: A CASE STUDY 173

; rental-cost : number (miles) number (days) -> number

(define (rental-cost miles days)

; miles a number

; days a number

; CAR-RENTAL-FIXED-FEE a number

; CAR-RENTAL-PER-DAY a number

; CAR-RENTAL-PER-MILE a number

...)

The “daily charge” obviously needs to be multiplied by the number of days, and the
“per mile charge” obviously needs to be multiplied by the number of miles; add these
expressions to the inventory. (If this isn’t “obvious”, try the “inventory with values”
technique.)

; rental-cost : number (miles) number (days) -> number

(define (rental-cost miles days)

; miles a number

; days a number

; CAR-RENTAL-FIXED-FEE a number

; CAR-RENTAL-PER-DAY a number

; CAR-RENTAL-PER-MILE a number

; (* days CAR-RENTAL-PER-DAY) > a number

; (* miles CAR-RENTAL-PER-MILE) a number

...)

These last two expressions represent the amount the rental company charges for days,
and for miles, respectively. If we add up these two and the fixed fee, we should get the
final answer:

; rental-cost : number (miles) number (days) -> number

(define (rental-cost miles days)

; miles a number

; days a number

; CAR-RENTAL-FIXED-FEE a number

; CAR-RENTAL-PER-DAY a number

; CAR-RENTAL-PER-MILE a number

; (* days CAR-RENTAL-PER-DAY) a number

; (* miles CAR-RENTAL-PER-MILE) a number

(+ (* days CAR-RENTAL-PER-DAY)

(* miles CAR-RENTAL-PER-MILE)

CAR-RENTAL-FIXED-FEE)

)

Test this on the already-written examples. If it produces correct answers in every case,
go on to the next function. If not, use the Stepper to locate the problem (as before); fix
it and re-test.

The only function remaining is road-trip-cost itself. We follow the same procedure:

; road-trip-cost : number (miles) number (days) -> number

(define (road-trip-cost miles days)

; miles a number

; days a number

...)

174 CHAPTER 11. REDUCE, RE-USE, RECYCLE

We know that the answer will involve what we spend on gas, what we spend on motels,
and what we spend on car rental. Fortunately, there are functions that compute each of
these, and the only inputs those functions require are miles and/or days, both of which
we have. So we can add calls to those functions to the inventory:

; road-trip-cost : number (miles) number (days) -> number

(define (road-trip-cost miles days)

; miles a number

; days a number

; (gas-cost miles) a number

; (motel-cost days) a number

; (rental-cost miles days) a number

...)

With these expressions in hand, the answer is obvious: add them up.

; road-trip-cost : number (miles) number (days) -> number

(define (road-trip-cost miles days)

; miles a number

; days a number

; (gas-cost miles) a number

; (motel-cost days) a number

; (rental-cost miles days) a number

(+ (gas-cost miles)

(motel-cost days)

(rental-cost miles days))

)

Test this on the already-written examples. If it produces correct answers in every case,
congratulate yourself: we’ve developed a fairly complex program by breaking it down into
small, digestible pieces.

Exercise 11.5.2 Choose one of the fixed numbers in the above problem: either
MILES-PER-GALLON, PRICE-PER-GALLON, etc. Change its numeric value. Before re-
running the program, predict which examples are affected, and recalculate (by hand
or calculator) their new correct values. Test the program to see if your predictions were
right.

By the way, we could in principle have written the whole function at once, without
breaking it down into small pieces, and the result might have looked like this:

(define (monolithic-rtc miles days)

(+ (* (/ miles MILES-PER-GALLON) PRICE-PER-GALLON)

(* MOTEL-PRICE-PER-NIGHT (- days 1))

(+ (* days CAR-RENTAL-PER-DAY)

(* miles CAR-RENTAL-PER-MILE)

CAR-RENTAL-FIXED-FEE)

))

If we got everything right on the first try, this would actually be quicker and easier than
writing seven separate functions . . . but computer programs are almost never right on the
first try, especially if they’re more than two or three lines long. If something were wrong
in this definition, it would be quite difficult to track down the mistake(s).

11.6. PRACTICALITIES OF MULTI-FUNCTION PROGRAMS 175

The approach we took, breaking the problem into several small functions, has at least
two major advantages: one can test each function individually, and some of the functions
may be re-usable from one project to another (e.g. the gas-needed, cost-of-gallons,
and gas-cost functions which we just copied from a previous problem).

11.6 Practicalities of multi-function programs

As you’ve seen, a multi-function program is written by applying the design recipe to each
of the functions in turn, and testing them “bottom-up” — that is, the functions that
don’t depend on any others first, then the ones that depend on the first few, and finally
the main function that depends on all the others. And you have a certain amount of
flexibility how far to go on which function in which order.

However, the final result should look as though you had written one function at a
time: the contract, skeleton-turned-body, and examples for one function should appear
together with no other function definitions in between. In other words, you may need to
do a certain amount of moving forward and backwards to find the right places to type
things.

Exercise 11.6.1 Develop a function build-house that draws a picture of a house,

like these: Note that houses
can be of different widths, heights, and colors, but the door is always the same size, and
centered on the floor of the house. The roof is also always the same height.

Hint: You may find it helpful to write some auxiliary functions that produce images,
and others that produce numbers.

Exercise 11.6.2 A small commercial airline company wants to figure out how much to
charge for its tickets. Specifically, for any given ticket price, they’d like to be able to
predict how much profit they’ll make. Given that ability, they can try various different
ticket prices, see which produces the most profit, and select that as their ticket price.

Profit, of course, is income minus expenses. There are two major expenses: paying
the salaries of the pilot, copilot, and two flight attendants (these four salaries add up
to $450 per flight, regardless of how many passengers are on the flight), and jet fuel, at
$2.999/gallon. The amount of jet fuel consumed is one gallon per twenty pounds of loaded
weight, which is the weight of the airplane itself plus the weight of the people and luggage
on it. The airplane itself weighs 50000 pounds. Each passenger and his/her luggage, on
average, weighs 250 pounds; same for the four crew members (pilot, copilot, two flight
attendants).

The airline is currently charging $200/ticket, and at that price they can typically sell
120 tickets. Raising the price means they make more money on each ticket, but it also

176 CHAPTER 11. REDUCE, RE-USE, RECYCLE

causes fewer people to buy tickets; conversely, lowering the price means they take in less
money on each ticket, but they can sell more of them. To be precise, they estimate that
for each $10 they raise (lower) the ticket price, they’ll lose (gain) 4 paying passengers.

Develop a function airline-profit that takes in a proposed ticket price, and re-
turns the estimated profit the airline will make at that price.

Use your function to determine the profit-maximizing ticket price. Also find the least
they could charge and make any profit at all.

Change one or two of the constants (e.g. the price of jet fuel, the number of people
who change their minds about buying tickets when the price goes up or down, the size of
the crew, the crew salaries, etc.) and repeat the previous paragraph.

Exercise 11.6.3 Develop a function that takes in the name of a color (e.g. "green")
and produces that word, followed by a randomly-chosen numeric font size (say, between
10 and 30 points inclusive), in text of that color and font size, surrounded by a box of the
same color which is 10 pixels wider and 6 pixels higher than the text. For example,

Hint: Since this function has random results, it’ll be difficult to write test cases for. I
did it with two helper functions, both of which contained no randomness and therefore
could be tested using check-expect.

11.7 Re-using definitions from other files

By this time you’ve probably gotten used to me saying things like

Hint: Re-use a function you’ve already written!

If the function you need to re-use is in the same Definitions pane, this is no problem: you
can just call it in the definition of your new function. But what if you want to re-use
something you wrote weeks ago, e.g. for a previous homework assignment? For example,
suppose you did some problems from chapter 9, saved them in the file chap9.rkt, then
started working on chapter 10 in the file chap10.rkt and realized that problem 10.2.4
would be easier if you re-used the number->image function you wrote for problem 9.2.7.

You could do this by opening chap9.rkt, copying the relevant definition (and its test
cases), pasting it into chap10.rkt, then using the function as usual. But doing this
should bother you: remember the rule if you write almost the exact same thing over and
over, you’re doing something wrong. (In fact, this time you’re writing exactly the same
thing over and over, just in different files.) One problem with this is that if you discover

11.7. RE-USING DEFINITIONS FROM OTHER FILES 177

a bug in that function definition, now it’s in two different files so you have to remember
to fix it in both places.

It’s quite common for professional programmers to realize, while working on one pro-
gram, that they need a function that they originally wrote as part of a different program.
And every modern programming language provides a way to re-use such things without
copying them; Racket is no exception.

11.7.1 require and provide

Depending on what version of DrRacket you have, this may not work. If not, you can
either use copy-and-paste, or download a newer version of DrRacket.

In a sense, you’ve already seen how Racket does this: require. Since the beginning
of this book, you’ve been writing

(require picturing-programs)

to tell DrRacket that you want to be able to use all the variables and functions defined
in the picturing-programs library. You can do something similar to tell DrRacket that
you want to be able to use things defined in a previous program of your own:

(require "chap9.rkt")

Note: I’ve put the name chap9.rkt in quotation marks. When you do this, DrRacket
expects it to be the name of a file you wrote yourself. On the other hand, if you require

something that’s not in quotation marks, DrRacket expects it to be the name of a standard
built-in library, like picturing-programs.

But just putting

(require "chap9.rkt")

into chap10.rkt isn’t quite enough: if you try to use image->number in chap10.rkt,
you’ll still get an error message like number->image: this variable is not defined .
This is because DrRacket respects the privacy of other files, and doesn’t read anything
from them for which it hasn’t specifically been given permission.

Each Racket file has its own “privacy settings”: each Racket file is expected to specify
which of the things defined in that file can be used in other files. Open chap9.rkt and
add the line

(provide number->image)

somewhere (I usually put things like this near the beginning, just after the (require

picturing-programs).) This tells DrRacket that other files are allowed to see the
number->image function defined in this file — but nothing else. Now save chap9.rkt, go
back to chap10.rkt, which should still have the line

(require "chap9.rkt")

in it, and run it; it should now be able to use image->number as though it were defined
in the same Definitions pane.
Note: When you require a file of your own like this, DrRacket looks for it in the same
folder that you’re already in. So if you want to take advantage of this feature, make sure
to save all your .rkt files in the same folder. There are ways to refer to files in other
folders; if you need to do that, you can read about it in the Help Desk.

This also means that if you open a new DrRacket window, start writing, and try to
run it without saving first, DrRacket doesn’t know what “folder you’re already in,” so it

178 CHAPTER 11. REDUCE, RE-USE, RECYCLE

can’t find the other file. So before you try to run a file that requires another file, make
sure you’ve saved both files.

Practice Exercise 11.7.1 Create two files part-a.rkt and part-b.rkt.
In part-a.rkt, define a variable my-pic to stand for some picture you’ve built, and

define the counterchange and surround functions from exercises 4.2.3 and 4.2.4. You
should provide my-pic and surround, but not counterchange.

In part-b.rkt, define a function surround-with-my-pic that takes in a picture
and surrounds it with two copies of my-pic, re-using (but not copying) the definitions
of surround and my-pic from part-a.rkt. Make sure this works, then add a call to
counterchange and confirm that it doesn’t pass a syntax check (much less run).

Hint: In part-a.rkt, you can write two separate provide lines:

(provide my-pic)

(provide surround)

or you can combine them into one:

(provide my-pic surround)

11.7.2 provide-ing everything

Now suppose you’ve written a file that contains a lot of definitions that you want to use
in other files. You can provide them all one by one:

(provide this-function

that-function

the-other-function

yet-another-function

lots-of-other-functions)

but for the common situation that you want to provide everything in the file, there’s a
shorthand:

(provide (all-defined-out))

Practice Exercise 11.7.2 Replace the (provide my-pic surround) in part-a.rkt from
exercise 11.7.1 with (provide (all-defined-out)), and confirm that the counterchange
call in part-b.rkt works again.

Hint: If it doesn’t, the most likely reason is that you haven’t saved the modified version
of part-a.rkt yet.

11.8 Review of important words and concepts

Program requirements change, so it’s in your interest to prepare for such change. One
way to do this is to use symbolic constants : variables with meaningful names to represent
important or likely-to-change values. When these values do change, you can just change
the variable definition in one place, and all the functions and programs that use this
variable will automatically be corrected. Another way is to design large programs so that
each likely change affects only one function.

11.9. REFERENCE 179

To paraphrase John Donne, “no program is an island.” Every program you ever write
has the potential to be re-used to make subsequent programs easier, and it’s in your
interest to design the current program to maximize the likelihood that you can re-use it
later. In particular, don’t make unnecessary assumptions about your input, and design
each function to do one clear, simple task.

A large program is often made up of a “main function” and one or more auxiliary
or “helper” functions. When faced with a large program to write, break it down into
manageable pieces Identify the important quantities in the problem, and categorize each
as an input, an output, a fixed value, or an intermediate computation. The inputs will
probably become parameters to your main function (and to some of the auxiliary func-
tions); the output will probably be the result of your main function; the fixed values will
probably become symbolic constants; and the intermediate computations will probably
become auxiliary functions. It’s often a good idea to write down contracts (and perhaps
examples) for all of these functions at once, so you have a clear idea what they’re all
supposed to do. Then start writing skeletons, inventories, and bodies, and testing the
functions one at a time, starting with the ones that don’t depend on any other functions.

Really large programs are often spread out over several files, either as an organiza-
tional technique to keep closely-related parts of the program together, or simply because
you wrote some of the functions for other purposes and want to re-use them. In Racket,
the require function allows you to specify that you want to re-use the definitions from
a particular other file, while the provide function allows you to specify which defini-
tions from this file can be re-used in others. (Other languages like Java have different
mechanisms to accomplish the same thing.)

11.9 Reference

The only new function introduced in this chapter is provide, which takes one or more
names defined in this file and makes them available to other files that require this file.
provide can also be given the shorthand (all-defined-out) to provide everything that
was defined in this file. There are other such shorthands — all-from-out, rename-out,
prefix-out, struct-out — but I don’t want to go into them here; you can read about
them if you’re interested.

We also learned a new way of using require: with a filename in quotation marks, for
which DrRacket will look in the same folder as the file that contains the require line.

