
Chapter 13

Booleans

13.1 A new data type

We’ve seen several data types so far: images, strings, numbers, and sub-types of number:
integers, fractions, inexact numbers, complex numbers. Each data type is suitable for
answering a different kind of question:

• images answer the question “what does . . . look like?”;

• strings answer questions like “what is your name?” or “what is the text of the
Gettysburg Address?”;

• integers answer questions like “how many . . . ?”;

• fractions and inexact numbers answer questions like “how much . . . ?”

Now consider “true/false” or “yes/no” questions: “is Joe older than Chris?”, “is your
name Philip?”, and so on. For each of these questions, there are only two possible answers:
yes and no. None of the data types above seems quite right for the purpose. So Racket,
like most programming languages, has a data type named “boolean”, which has exactly
two values, written true and false. You can type either of these into the Interactions
pane, hit ENTER, and you’ll get back the same value, just as if you had typed a number
or a quoted string. Note that true is different from "true": the former is a boolean, and
the latter is a string.

SIDEBAR:

The word “boolean” is named after the 19th-century mathematician George Boole,
who suggested that logical questions of truth and falsity could be addressed by the
techniques of algebra, using “numbers” that were restricted to the values 0 and 1
(representing false and true, respectively).

13.2 Comparing strings

Racket has a number of built-in functions that produce Booleans. The first one we’ll look
at is
string=? : string string -> boolean
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For example,
(check-expect (string=? "hello" "goodbye") false)

(check-expect (string=? "hello" "hello") true)

(check-expect (string=? "hello" "Hello") false)

(check-expect (string=? "hello" "hel lo") false)

(check-expect (string=? "hello" (string-append "hel" "lo")) true)

Note that the two strings have to be exactly the same, right down to capitalization,
spacing, and punctuation. Also note that, by convention, most functions that return
Booleans (like string=?) have names ending in a question mark. (Racket doesn’t force
you to do this, but it’s a good habit to follow, in order to get along with other Racket
programmers.)

So now you know how to tell whether two strings are exactly the same. You can also
test how two strings relate in alphabetical order:
; string<? : string string -> Boolean

; string<=? : string string -> Boolean

; string>? : string string -> Boolean

; string>=? : string string -> Boolean

Practice Exercise 13.2.1 Make up some examples involving string<?, string<=?,
string>?, and string>=?, and see whether they produce the answer you expect. Try
comparing a capitalized word like "DOG" with an uncapitalized one like "cat". Try com-
paring either of those with a string made up of punctuation marks, like "!#., &*", or a
string made up of digits, like "372.4".

SIDEBAR:

Sometimes it’s convenient to treat upper-case, lower-case, and mixed-case words
all the same. Racket also provides “case-independent” versions of each of these
functions:
; string-ci=? : string string -> Boolean

; string-ci<? : string string -> Boolean

; string-ci<=? : string string -> Boolean

; string-ci>? : string string -> Boolean

; string-ci>=? : string string -> Boolean

To see how these are used in practice, let’s write some simple functions.

Worked Exercise 13.2.2 Develop a function is-basketball? that takes in a string
representing the name of a game, and returns a Boolean indicating whether the game was
"basketball".

Solution: The contract is clearly
; is-basketball? : string(game) -> boolean

For examples, we note that there are two possible answers: true and false. To test
the program adequately, let’s make sure we have an example that produces true, and one
that produces false.
"Examples of is-basketball?:"

(check-expect (is-basketball? "basketball") true)

(check-expect (is-basketball? "cricket") false)
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Next, we need to write a skeleton. The important decisions have already been made
in the contract, so

(define (is-basketball? game)

...)

For the inventory, we obviously need the parameter game. In addition, since the
problem specifically mentions the string "basketball", that string is likely to appear in
the function:
(define (is-basketball? game)

; game a string

; "basketball" another string

...)

Now, to fill in the function body, we notice that we have two strings (game and
"basketball") and we want a Boolean; conveniently enough, there’s a built-in function
string=? that takes in two strings and returns a Boolean. So let’s use it:

(define (is-basketball? game)

; game a string

; "basketball" another string

(string=? game "basketball")

)

Now we can test the function on our two examples, and it should work.

Exercise 13.2.3 Develop a function is-nintendo? that takes in a string and tells
whether it was "nintendo".

Exercise 13.2.4 Develop a function empty-string? that takes in a string and tells
whether it was "".

Exercise 13.2.5 Develop a function in-first-half? that takes in a (lower-case)
string and tells whether it’s in the first half of the alphabet (i.e. it comes before "n" in
alphabetical order)

Hint: You’ll need at least two examples: one in the first half of the alphabet, and one
in the second half. It’s also a good idea to have an example that’s "n" itself; this is called
a borderline example. What do you think is the “right answer” for this example?

13.3 Comparing numbers

Just as string=?, string<?, etc. allow us to compare strings, there are built-in functions
that allow us to compare numbers. Here are the most common ones:
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; = : number number -> Boolean

; Tells whether the two numbers have the exact same value.

; < : number number -> Boolean

; Tells whether the first number is less than the second.

; > : number number -> Boolean

; Tells whether the first number is more than the second.

; <= : number number -> Boolean

; Tells whether the first number is at most the second.

; >= : number number -> Boolean

; Tells whether the first number is at least the second.

Note that these functions, despite returning Booleans, do not have names ending in a
question-mark; their traditional mathematical names were so well-established that the
designers of Racket decided to keep those names at the expense of the Racket convention.

To get some practice with these functions, let’s start by trying some expressions:

(check-expect (= 3 4) false)

(check-expect (< 3 4) true)

(check-expect (> 3 4) false)

(check-expect (<= 3 4) true)

(check-expect (>= 3 4) false)

(define age 21)

(check-expect (> age 12) true)

(check-expect (< age 18) false)

(check-expect (= (+ 3 4) 5) false)

(check-expect (= (+ 3 4) 7) true)

Feel free to make up and try some more examples of your own.

Now let’s try writing some simple functions that use the built-in number comparison
operators.

Worked Exercise 13.3.1 Develop a function may-drive? that takes in the age of
a person and returns whether that person is old enough to drive a car legally (which in
most of the U.S. means “at least 16 years old”).

Solution: For the contract, we note that the function “takes in the age of a person”,
which sounds like it should be a number, “and returns whether . . . ” The word “whether”
in a problem statement almost always means a Boolean. So the contract should be

; may-drive? : number(age) -> Boolean

For the examples, we note first that there are two possible answers — true and
false — and therefore there must be at least two examples. Furthermore, there’s a
borderline situation between sub-ranges of inputs (as there was with in-first-half?

above), so we should also test the borderline case.
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"Examples of may-drive?:"

(check-expect (may-drive? 15) false)

(check-expect (may-drive? 23) true)

(check-expect (may-drive? 16) true) ; borderline case

The skeleton is straightforward:

(define (may-drive? age)

...)

The inventory lists the parameter age and the literal 16:

(define (may-drive? age)

; age a number

; 16 a fixed number we’re likely to need

...)

Now we can fill in the body. We have two numbers, and we need a Boolean; con-
veniently enough, we know of several built-in functions (=, <, >, <=, >=) that take in
two numbers and return a Boolean. Let’s try >.

(define (may-drive? age)

; age a number

; 16 a fixed number we’re likely to need

(> age 16)

)

That wasn’t too bad. Now we test the function . . . and we see that it gets one of
the answers wrong ! In particular, it gets the “clear-cut” cases right, but it gets the
“borderline” example wrong. This is a common pattern; watch for it! It usually means
we’ve got the direction of the comparison right, but either we should have added an =
sign and didn’t, or we shouldn’t have but did. In this case, it means we should have used
>= rather than >.

(define (may-drive? age)

; age a number

; 16 a fixed number we’re likely to need

( >= age 16)

)

Now we test this again; it should work correctly for all cases.

Practice Exercise 13.3.2 Suppose we had mistakenly typed the < operator in the func-
tion body instead of > or >=. What pattern of right and wrong answers would we have
gotten? Try it and see whether your prediction was right.

Likewise, what pattern of right and wrong answers would we have gotten if we had
typed <= instead of >, >=, or <? Try it and see whether your prediction was right.

Now, suppose we had chosen the >= operator, but had its arguments in the opposite
order: (>= 16 age). What pattern of right and wrong answers would we have gotten?
Try it and see whether your prediction was right.

Watch for these patterns whenever you’re debugging a program that involves sub-
ranges of numbers or strings.
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Exercise 13.3.3 Develop a function may-drink? that takes in a person’s age and
returns whether the person is old enough to drink alcohol legally. (In most of the U.S.,
this means “at least 21 years old”.)

Exercise 13.3.4 Develop a function under-a-dollar? that takes in the price of an
item in dollars (e.g. 1.49 or .98) and tells whether it’s less than 1.00 .

Exercise 13.3.5 Develop a function is-17? that takes in a number and tells whether
it’s exactly 17.

13.4 Designing functions involving booleans

In the above examples, we’ve used the fact that the function returns a boolean to help
us choose test cases: you need at least one test case for which the right answer is true,
and at least one test case for which the right answer is false, or you haven’t tested the
function adequately. Furthermore, if the input consists of sub-ranges with borderlines
between them, you also need to test right at the borderline. We’ll incorporate this idea
into the design recipe as follows:

1. Write a contract (and perhaps a purpose statement).

2. Analyze input and output data types.

3. Write examples of how to use the function, with correct answers. If an input or
output data type consists of two or more cases, be sure there’s at least one example
for each case. If an input type involves sub-ranges, be sure there’s an example at
each borderline.

4. Write a function skeleton, specifying parameter names.

5. Write an inventory of available expressions, including parameter names and obvi-
ously relevant literals, along with their data types (and, if necessary, their values
for a specific example).

6. Fill in the function body.

7. Test the function.

We’ve added one new step: Analyze input and output data types. When we were
simply writing functions that took in or returned images or numbers, there wasn’t much
“analysis” to be done. But a function that returns a Boolean can be thought of as
distinguishing two sub-categories of input: those inputs for which the right answer is true,
and those for which it’s false. And in many cases there are even more sub-categories, as
we’ll see in Section 13.7. Identifying these sub-categories (and any borderlines between
them) early helps you choose good test cases.

Exercise 13.4.1 Develop a function much-older? that takes in two people’s ages and
tells whether the first is “much older” (which we’ll define as “at least ten years older”)
than the second.

Exercise 13.4.2 Develop a function within-distance? that takes in three numbers:
x, y, and distance. The function should return whether or not the point (x, y) is at most
the specified distance from the point (0, 0). The formula for the distance of a point to

(0, 0) is
√

x2 + y2.

Hint: You may want to write an auxiliary function to compute the distance.
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13.5 Comparing images

Just as we can compare strings or numbers to see whether they’re the same, we can also
compare two images to see whether they’re the same:

; image=? : image image -> Boolean

But images don’t have an “order”, so there are no image functions analogous to string<?,
string>?, etc..

Exercise 13.5.1 Develop a function is-green-triangle? that takes in an image
and tells whether it is exactly (triangle 10 "solid" "green").

13.6 Testing types

As we’ve seen, Racket has several built-in data types: numbers, strings, images, booleans,
etc. It also has built-in functions to tell whether something is of a particular type:

; number? : anything -> boolean

; tells whether its argument is a number.

; image? : anything -> boolean

; tells whether its argument is an image.

; string? : anything -> boolean

; tells whether its argument is a string.

; boolean? : anything -> boolean

; tells whether its argument is a boolean.

; integer? : anything -> boolean

; tells whether its argument is an integer.

...

You’ve already seen the image?, number?, and string? functions: we used them in the
check-with clause of an animation to specify what type the model is. In fact, check-with
can work on any function that has contract anything -> boolean: if you wanted to write
an animation with a Boolean model, you could say (check-with boolean?). We’ll see
more applications of this in Chapter 21.

Practice Exercise 13.6.1 Try the following expressions in the interactions pane. For
each one, predict what you think it will return, then see whether you were right. If not,
experiment some more until you understand what the function does. Make up some
similar examples of your own and try them similarly.
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(number? 3)

(number? 5/3)

(number? "3")

(number? "three")

(number? true)

(integer? 3)

(integer? 5/3)

(integer? "3")

(integer? "three")

(string? 3)

(string? "3")

(string? "three")

(image? 3)

(image? (circle 5 "solid" "green"))

(number? (+ 3 4))

(number? (> 3 4))

(boolean? (> 3 4))

(boolean? 3)

(boolean? false)

(boolean? true)

SIDEBAR:

Mathematicians use the word predicate to mean a function that returns a Boolean,
so sometimes you’ll hear Racket programmers referring to “type predicates”. A type
predicate is simply any one of these functions that tell whether something is of a
particular type. Another name for type predicate is discriminator.

Common beginner mistake

Students are often confused by the difference between string? and string=?, between
image? and image=?, etc. All of these functions return Booleans, but they do different
things.

The string=? function takes two arguments (which must be strings), and tells
whether they’re the same string. The string? function takes one argument (which
may be of any type), and tells whether it is a string at all.

Likewise, image=? tells whether two images are the same, while image? tells whether
something is an image at all.

And boolean=? (which you’ll almost never need!) tells whether two booleans are the
same, while boolean? tells whether something is a boolean at all.

Finally, = tells whether two numbers are the same, while number? tells whether
something is a number at all.

13.7 Boolean operators

Advertisers like to divide the world of consumers into age categories, and one of their
favorites is the “18-to-25 demographic”: these people are typically living on their own for
the first time, spending significant amounts of their own money for the first time, and
forming their own spending habits. If an advertiser can get a 19-year-old in the habit of
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buying a particular brand of shampoo or canned soup, it may pay off in decades of sales.
For this reason, advertisers concentrate their work in places that 18-to-25-year-olds will
see it.

Worked Exercise 13.7.1 Develop a function that takes in somebody’s age, and de-
cides whether the person is in the 18-to-25 demographic.

Solution: The contract is easy:

; 18-to-25? : number (age) -> Boolean

Analyzing the data types tells us nothing new about the output type. The input is
more interesting: it could be thought of as “18-to-25” and “everything else”, but it seems
more natural to break it down into three categories: under-18, 18-to-25, and over-25.

We’ll need at least one example in each of these three categories, plus borderline
examples for both borderlines — 18 and 25.

"Examples of 18-to-25?:"

(check-expect (18-to-25? 15) false)

(check-expect (18-to-25? 18) true)

(check-expect (18-to-25? 20) true)

(check-expect (18-to-25? 25) true)

(check-expect (18-to-25? 27) false)

We chose the examples based on the data analysis, and figured out the “right answers”
by applying common sense to the problem: if the advertisers want “18-to-25-year-olds”,
they probably mean to include both 18-year-olds and 25-year-olds (even though somebody
may be described as “25 years old” right up to the day before turning 26).

The skeleton is straightforward:

(define (18-to-25? age)

...)

The inventory throws in a parameter and two literals:

(define (18-to-25? age)

; age a number

; 18 a fixed number we’ll need

; 25 another fixed number we’ll need

...)

In fact, we can predict some things we’ll want to do with the numbers: we’ll probably
want to check whether age is at least 18, and whether age is at most 25:

(define (18-to-25? age)

; age a number

; 18 a fixed number we’ll need

; 25 another fixed number we’ll need

; (>= age 18) a Boolean

; (<= age 25) a Boolean

)

But now we face a problem: we have two Booleans, both of which represent part of
the right answer, but neither of which is the whole right answer. We need to combine the
two, using a Boolean operator.
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A Boolean operator is a function that takes in one or more Booleans and returns a
Boolean. Racket has three common Boolean operators: and, or, and not. The and and
or operators each take in two or more Booleans; the not operator takes in exactly one.

Let’s try some examples of these in the Interactions pane:

(check-expect (or false false) false)

(check-expect (or false true) true)

(check-expect (or true false) true)

(check-expect (or true true) true)

(check-expect (or (= 3 5) (= (+ 3 4) 7)) true)

(check-expect (or (< 3 5) (= (+ 3 4) 5)) true)

(check-expect (or (> 3 5) (= (+ 3 4) 5)) false)

(check-expect (and false false) false)

(check-expect (and false true) false)

(check-expect (and true false) false)

(check-expect (and true true) true)

(check-expect (and (= 3 5) (= (+ 3 4) 7)) false)

(check-expect (and (< 3 5) (= (+ 3 4) 7)) true)

(check-expect (not (= 3 5)) true)

(check-expect (not (< 3 5)) false)

(check-expect (or false true false) true)

(check-expect (or false false false) false)

(check-expect (and false true false) false)

(check-expect (and true true true) true)

Now back to our problem. We have two Boolean expressions: one represents whether
age is at least 18, and the other represents whether age is at most 25. To find out whether
both of those things are true simultaneously, we need to combine the expressions using
and:
(define (18-to-25? age)

; age a number

; 18 a fixed number we’ll need

; 25 another fixed number we’ll need

; (>= age 18) a Boolean

; (<= age 25) a Boolean

(and (>= age 18)

(<= age 25))

)

Now we can test the function, and it should work correctly on all five examples.

Practice Exercise 13.7.2 What would have happened if we had used or instead of
and in defining the 18-to-25? function? Predict the pattern of right and wrong answers,
then change the function definition and check whether you were right.

Exercise 13.7.3 Develop a function teenage? that takes in a person’s age and re-
turns whether the person is at least 13 but younger than 20.

Exercise 13.7.4 Develop a function negative-or-over-100? that takes in a number
and returns whether it is either negative (i.e. less than zero) or over 100.
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Exercise 13.7.5 Develop a function may-drive-but-not-drink? that takes in a
person’s age and tells whether the person is old enough to have a driver’s license (in most
of the U.S.) but not old enough to drink alcohol (in most of the U.S.).

Hint: Re-use previously-written functions!

Exercise 13.7.6 The game of “craps” involves rolling a pair of dice, and (in a simplified
version of the game) if the result is 7 or 11, you win. Develop a function named
win-craps? that takes in a number and tells whether it’s either a 7 or an 11.

Exercise 13.7.7 Develop a function named play-craps that takes a dummy argu-
ment, rolls two dice, adds them up, and returns true or false depending on whether you
won the roll.

Hint: Re-use previously defined functions!

SIDEBAR:

How would you test a function like play-craps? It ignores its argument, so all you
can see directly is that sometimes it returns true and sometimes false, regardless of
the argument. How much of the time should it return true? How many runs would
you need to make in order to tell whether it was behaving the way it should?

Exercise 13.7.8 Develop a function not-13? that takes a number and tells whether
it’s not exactly 13.

Exercise 13.7.9 Develop a function not-single-letter? that takes a string and
tells whether its length is anything other than 1.

Exercise 13.7.10 Develop a function over-65-or-teenage? that takes in a person’s
age and tells whether the person is either over 65 or in his/her teens.

Exercise 13.7.11 Develop a function lose-craps? that takes in a number and tells
whether it is not either 7 or 11. That is, the result should be false for 7 and 11, and
true for everything else.

Exercise 13.7.12 Develop a function is-not-red-square? that takes in an image
and tells whether it is anything other than a solid red square.

Hint: Use image-width to find out how wide the image is.

Exercise 13.7.13 Develop a function any-two-same-pics? that takes in three im-
ages and tells whether any two (or more) of them are exactly the same.

Hint: There are at least three different ways the answer could be true; test them all,
as well as at least one case in which the answer should be false.
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13.8 Short-circuit evaluation

Technically, and and or aren’t really functions in Racket but rather something called
special forms ; define is also a special form. The main difference, for now, is that every
argument to a function has to have a value, or the function call doesn’t make sense.
Obviously, define can’t work that way, because its whole purpose is to define a variable
or function that doesn’t already have a meaning. The and and or operators could have
been regular functions, but the designers of Racket chose to make them special forms in
order to get something called short-circuit evaluation.

The idea is, if the first argument of an or is true, you don’t really care what the rest
of the arguments are; you already know the answer. Suppose you had a variable named
x defined, and think about an expression like

(or (= x 0) (> (/ 7 x) 2))

If or were an ordinary function, DrRacket would compute the Boolean values of (= x

0) and (> (/ 7 x) 2), and then apply or to the results. If x = 0, the sub-expression
(/ 7 x) would crash (because you can’t divide by zero) before or ever got a chance to
do its job. Instead, DrRacket computes the Boolean value of (= x 0), and if it’s true,
or returns true immediately without even looking at its second argument (which doesn’t
have a value). Only if x 6= 0 does DrRacket try to compute (> (/ 7 x) 2), and if x 6= 0,
this expression is guaranteed to have a value so everything’s OK.

Similarly, if the first argument of an and is false, you already know the answer
and don’t need to even look at the rest of the arguments. Try typing each of the two
expressions

(and (> 2 3) y)

(and y (> 2 3))

in the Interactions pane of DrRacket. The first should return false; the second should
complain that it’s never heard of the variable y. (If you try these two expressions in
the Definitions pane and hit “Step”, “Check Syntax”, or “Run”, both will produce error
messages, because the Definitions pane checks that all variable names are defined before
they are used.)

For most purposes, you can ignore short-circuit evaluation. But on rare occasions, it
makes a difference to your programming: you can make a program run faster, or even
run without crashing, by putting the arguments of or or and in a different order.

13.9 Review of important words and concepts

Racket has a Boolean data type with two values — true and false — which is used
for yes/no questions. A number of built-in functions allow you to compare strings for
equality or order, compare numbers for equality or order, compare images for equality,
and combine two or more Booleans into one.

We’ve added a new step to the design recipe for functions: analyze the input and
output data types. For now, this means identifying interesting “sub-categories” of input
and output. Once you’ve done this, it helps you in choosing good test cases: make sure
to have at least one test case for each sub-category. In addition, if the sub-categories are
ranges with borderlines in between them, make sure to test the function at the borderlines.

If the function doesn’t pass all its tests, pay attention to patterns of right and wrong
answers : was it always wrong, or only sometimes? Did it work on the “clear-cut” cases
but not the borderlines? The borderlines but not the “clear-cut” cases? These patterns
give you valuable clues in figuring out what’s wrong with the program.
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A predicate is any function that returns a Boolean. In Racket, most such functions (by
convention) have names ending in a question mark. There are built-in type predicates —
functions that take in any type of argument, and tell whether or not it is, say, a number.
They tend to have obvious names: number?, image?, string?, boolean?, integer?, etc.

You can handle much more complicated and sophisticated categories of input by com-
bining Boolean-valued expressions using the Boolean operators and, or, and not.

13.10 Reference: Functions involving Booleans

Here are the new built-in functions (and special forms) we’ve discussed in this chapter:

• string=?

• string<?

• string<=?

• string>?

• string>=?

• string-ci=?

• string-ci<?

• string-ci<=?

• string-ci>?

• string-ci>=?

• =

• <

• >

• <=

• >=

• image=?

• image?

• number?

• string?

• boolean?

• boolean=?

• and

• or

• not


