
206

Chapter 15

Conditionals

15.1 Making decisions

We saw in Chapter 13 how to write functions that answer yes/no questions, and we saw
in Chapter 14 how to use such a function as the stopping criterion for an animation. But
Booleans are used much more generally to make decisions about what computation to
do.

For example, imagine an e-commerce site that sells games and game equipment of
several different kinds: basketballs, baseballs, mitts, bats, Monopoly boards, chess boards
and pieces, Nintendo consoles, etc.. One part of the site might give a list of the names of
different games; a user would select one from the menu, and the site would then display
a picture of the selected game.

You know how to display pictures, but this application requires displaying one of
several pictures, depending on which menu item the user selected. The computer needs
to do something like the following:

If the user selected "basketball",

display the picture of a basketball.

If not, see whether the user selected "baseball";

if so, display the picture of a baseball.

If not, see whether the user selected "Monopoly";

if so, display the picture of a Monopoly set.

etc.

(We’ll solve this problem in Exercise 15.3.1.)

This is such a common pattern in programming that Racket (and most other lan-
guages) provides a construct to do it, called a conditional (or cond for short). A Racket
conditional includes a series of “question/answer” pairs: Racket evaluates the first ques-
tion, and if the result is true, it returns the first answer. If not, it goes on to the second
question: if the second question evaluates to true, it returns the second answer; if not,
it goes on to the third question, and so on.

207

208 CHAPTER 15. CONDITIONALS

Syntax Rule 6 Anything matching the following pattern is a legal expression:
(cond [question1 answer1]

[question2 answer2]

[question3 answer3]

...

[questionn answern]

)

as long as each of the questions is an expression of type Boolean, and each answer is an
expression.

Note that the questions and answers must come in pairs, surrounded by square brack-
ets. Each question/answer pair is sometimes called a “cond-clause”.

SIDEBAR:

In fact, you can use parentheses instead of the square brackets. To avoid confusion,
I prefer to use parentheses only for calling functions, as we’ve been doing so far, and
to use square brackets to group together each question/answer pair in a conditional.

Practice Exercise 15.1.1 Type the following into the Interactions pane:
(cond [(string=? "hello" "goodbye") "something is wrong!"]

[(string=? "snark" "snark") "this looks better"]

)

The result should be the string "this looks better".
Type (or copy-and-paste) the same three lines into the Definitions pane and hit “Run”;

you should get the same result.
Then hit “Step” instead of “Run”: note that it first evaluates the expression (string=?

"hello" "goodbye") to false, then throws away the answer "something is wrong!"

and goes on to the second question/answer pair.

Practice Exercise 15.1.2 Now try an example in which none of the questions comes
out true:
(cond [(string=? "hello" "goodbye") "something is wrong!"]

[(string<? "snark" "boojum") "this isn’t true either"]

[(< 5 2) "nor this"]

)

Type this into the Interactions pane; you should get an error message saying cond: all
question results were false.

Copy the same four lines into the Definitions pane and hit “Run”; you should get the
same error message.

Now try the Stepper; you’ll see it evaluate each of the three questions in turn to false,
discard each of the three answers, and then produce the error message.

Practice Exercise 15.1.3 Here’s an example in which a question other than the last
one evaluates to true:
(cond [(= (+ 2 5) (- 10 3)) "yes, this works"]

[(string=? "hello" "goodbye") "this shouldn’t happen"]

[(string<? "goodbye" "hello")

"this is true but it shouldn’t get here"]

)

Note that since the first question evaluates to true, Racket returns "yes, this works"

and never bothers to even evaluate the other two questions, as you can see by using the

15.1. MAKING DECISIONS 209

Stepper. This demonstrates that cond, like define, and, and or, is a special form rather
than a regular function.

Of course, nobody really uses conditionals directly in Interactions; they’re almost
always used inside a function. Let’s try a more realistic example:

Worked Exercise 15.1.4 Develop a function reply which recognizes any one of the
strings "good morning", "good afternoon", or "good night", and returns either "I

need coffee", "I need a nap", or "bedtime!" respectively. If the input isn’t any of
the three known strings, the function may produce an error message.

Solution: Contract:

; reply : string -> string

If we wished, we could be more specific about what input values are allowed, and what
results are possible:

; reply:string("good morning","good afternoon",or "good night")->

; string ("I need coffee", "I need a nap", or "bedtime!")

Examples: There are exactly three legal inputs, and exactly three legal outputs, so
to test the program adequately, we should try all three.

"Examples of reply:"

(check-expect (reply "good morning") "I need coffee")

(check-expect (reply "good afternoon") "I need a nap")

(check-expect (reply "good night") "bedtime!")

Skeleton: The input represents a greeting, so let’s use that name for the parameter:

(define (reply greeting)

...)

Inventory: As usual, we need the parameter greeting. Since there are three possible
cases, we can be pretty sure the function will need a conditional with three clauses, or
question/answer pairs:

(define (reply greeting)

; greeting a string

...)

Skeleton, revisited: Since there are three possible cases, we can be pretty sure the
function will need a conditional with three clauses, or question/answer pairs:

(define (reply greeting)

; greeting a string

(cond [... ...]

[... ...]

[... ...]

))

To complete the function definition, we need to fill in the “. . . ” gaps. I usually
recommend filling in either all the answers, then all the questions, or vice versa, depending
on which looks easier. In this case, we know exactly what the possible answers are, so
let’s fill them in first:

210 CHAPTER 15. CONDITIONALS

(define (reply greeting)

; greeting a string

(cond [... "I need coffee"]

[... "I need a nap"]

[... "bedtime!"]

))

We still need to fill in the questions, each of which should be a Boolean expression,
probably involving greeting. Under what circumstances should the answer be "I need

coffee"? Obviously, when greeting is "good morning". Filling this in, we get
(define (reply greeting)

; greeting a string

(cond [(string=? greeting "good morning") "I need coffee"]

[... "I need a nap"]

[... "bedtime!"]

))

We can do the same thing for the other two cases:
(define (reply greeting)

; greeting a string

(cond [(string=? greeting "good morning") "I need coffee"]

[(string=? greeting "good afternoon")"I need a nap"]

[(string=? greeting "good night") "bedtime!"]

))

Now test the function on the three examples we wrote earlier; it should work.

Incidentally, if you write a function definition with several cond-clauses and you pro-
vide test cases for only some of them, when you hit “Run” to see the results, the parts
of the program you tested will be colored black, and the parts you didn’t test will be
reddish-brown.

Practice Exercise 15.1.5 Try commenting out one or two of the test cases and hitting
“Run” to see this.

15.2 Else and error-handling

The reply function is unsatisfying in a way: if the input is anything other than one of
the three known greetings, the user gets the ugly error message cond: all question results
were false. It would be friendlier if we could write our program with an “anything else”
case, producing a more appropriate message like "I don’t understand" or "huh?" if the
input isn’t something we recognize.

Racket provides a keyword else for just this purpose. If you use else as the last
question in a cond, it will catch all cases that haven’t been caught by any of the earlier
questions. For example,
(define (reply greeting)

; greeting a string

(cond [(string=? greeting "good morning") "I need coffee"]

[(string=? greeting "good afternoon") "I need a nap"]

[(string=? greeting "good night") "bedtime!"]

[else "huh?"]

))

15.3. DESIGN RECIPE 211

When this function is applied to a string like "good evening", which doesn’t match
any of the known greetings, Racket will then go on to the last question, which is else so
Racket returns the corresponding answer "huh?" rather than the error message.

SIDEBAR:

Technically, the else keyword isn’t necessary: if you were to use true as the last
question, it would (obviously) always evaluate to true, so it too would catch all cases
that haven’t been caught by any earlier question. Try the above function with true

in place of else; it should work exactly as before.
However, else is considered easier to read and understand, so most Racket pro-

grammers use it in this situation.

By the way, else cannot appear anywhere in Racket except as the last question in a
cond.

Note that the else is not in parentheses : it is not a function, and it cannot be applied
to arguments. If you put it in parentheses, you’ll get an error message.

15.3 Design recipe for functions that make decisions

To write functions on data types defined by choices, we’ll add a few more details to the
design recipe.

1. Write a contract (and perhaps a purpose statement).

2. Analyze input and output data types: if either or both is made up of several choices,
figure out how many and how to describe them.

3. Write examples of how to use the function, with correct answers. If an input or
output data type is defined by choices, be sure there’s at least one example for each
choice. If an input type involves sub-ranges, be sure there’s an example at the
borderline(s).

4. Write a function skeleton, specifying parameter names.

5. Write an inventory of available expressions, including parameter names and obvi-
ously relevant literals, along with their data types (and, if necessary, their values
for a chosen example).

6. Add some details to the skeleton: if an input or output data type is defined by several
choices, write a cond with that many question/answer pairs, with “. . . ” for all the
questions and answers.

7. Fill in the function body. If the skeleton involves a cond, fill in either all the
answers or all the questions, whichever is easier, and then go back to fill in the
other column. If one of the choices is “anything else”, use else as the last question
in the cond.

8. Test the function.

To elaborate on step 7,

• if the answers are simple (e.g. a fixed set of known values), first fill in all the answers,
then go back and figure out what question should lead to each answer; or

212 CHAPTER 15. CONDITIONALS

• if the questions are simpler than the answers (e.g. if the answers are complex ex-
pressions, but the questions are simply matching a parameter against a fixed set
of known values), first fill in all the questions, then go back and figure out what
expression will produce the right answer for each one. In particular, if one of the
input choices is “anything else”, detect this with else as the last question.

Recall that Syntax Rule 6 says the first expression in each cond-clause must be an
expression of type Boolean, but it doesn’t say anything about what type(s) the second
expressions must be. In most cases, these should all be the same type as the return type
of the function you’re writing. For example, reply is supposed to return a string, so
the second expression in each cond-clause is a string; in the e-commerce application we
discussed earlier, the return type is a picture, so the second expression in each cond-clause
should be a picture.

Exercise 15.3.1 Develop a function choose-picture that takes in a string (either
"basketball", "baseball", "Monopoly", etc.; you can choose your own names if you
wish, but don’t choose more than about five) and returns a picture of that object (which
you should be able to find on the Web).

Exercise 15.3.2 Modify exercise 15.3.1 so that if the input isn’t any of the known
games, it produces a picture of a question mark (or a person looking puzzled, or something
like that).

Exercise 15.3.3 Develop a function named random-bw-picture that takes in a width
and a height, and produces a rectangle that size and shape, in which each pixel is randomly
either black or white.

Exercise 15.3.4 The town of Racketville needs a new computerized voting system. In
an early version of the system, we assume there are exactly 4 voters (we’ll see later how
to handle an arbitrary number of voters).
Develop a function count-votes-4 that takes in five strings. The first is the name of
a candidate, and the other four are votes which might or might not be for that candidate.
The function should return how many of the votes are for the specified candidate. For
example,
(check-expect

(count-votes-4 "Anne" "Bob" "Charlie" "Bob" "Hortense") 0)

; since there are no votes for Anne

(check-expect

(count-votes-4 "Anne" "Bob" "Anne" "Phil" "Charlie") 1)

(check-expect

(count-votes-4 "Anne" "Anne" "Bob" "Anne" "Mary") 2)

(check-expect

(count-votes-4 "Bob" "Anne" "Bob" "Charlie" "Bob") 2)

Hint: Write an auxiliary function that takes in two strings and returns either 1 (if they
match) or 0 (if they don’t).

Obviously, it’s a pain passing around four votes as parameters, and it would be even
worse if you had hundreds or thousands of votes. We’ll see how to handle larger numbers
of data in Chapter 22.

15.3. DESIGN RECIPE 213

Exercise 15.3.5 Develop a function smallest-of-3 that takes in three numbers and
returns the smallest of them.

There is a built-in function min which does this job for you; for this exercise, use
conditionals, not min or anything like it.

Exercise 15.3.6 Develop a function rough-age that takes in a number representing
a person’s age and returns one of the strings "child", "teenager", or "adult" as ap-
propriate. A “teenager” is at least 13 but less than 20 years old; a “child” is under 13;
and an “adult” is at least 20.

Exercise 15.3.7 Using build3-image, build a rectangular image 150 pixels wide by
100 pixels high which is yellow above the diagonal (from top-left to bottom-right corner)
and blue below the diagonal.

Exercise 15.3.8 Develop a function make-stripes that takes in a width and height
(in pixels), and produces a rectangle that size and shape in which all the even-numbered
rows are red and the odd-numbered rows are blue. The result should be a bunch of narrow
stripes.

Exercise 15.3.9 These stripes are really too narrow to see easily. Develop a function

make-wide-stripes that does the same thing only with each stripe 5 pixels high: rows
0-4 are red, 5-9 are blue, 10-14 are red, etc.

Exercise 15.3.10 Develop a function make-diag-stripes that takes in a width and
height (in pixels), and produces a rectangle that size and shape filled with stripes running
from upper-right to lower-left.

214 CHAPTER 15. CONDITIONALS

Exercise 15.3.11 Define a function simplify-colors that takes in an image and
produces an image the same size and shape: for each pixel in the given image, if it has
more red than green or blue, make the resulting pixel pure red; if it has more green than
red or blue, make it green; and if it has more blue than red or green, make it pure blue. In
case of ties, you can decide what to do: pick one of the three colors arbitrarily, or make
it white, or something like that.

Exercise 15.3.12 Come up with other cool things to do to images using conditionals.
Go wild.

15.4 Case study: bank interest

My bank offers savings accounts with a sliding scale of interest, depending on how much
money is in the account: if you have less than $500 in the account, you earn no interest;
for $500-$1000, you earn 1% per year interest; for $1000-$4000, you earn 2% per year,
and for $4000 and up, you earn 3% per year.

Worked Exercise 15.4.1 Develop a function bank-interest that computes the an-
nual interest on a savings account with a specified balance.

Solution: The function produces the amount of interest earned (a number), based on
the balance in the account (a number). And it doesn’t make sense, for purposes of this
problem, to have a bank balance below 0, so we’ll exclude that:

; bank-interest : number(balance) -> number

; assumes balance is at least 0

The input and output types are both numbers. The output type doesn’t break down
in any obvious way into categories, but the input type does: there are four sub-ranges,
0-$500, $500-$1000, $1000-$4000, and $4000-up.

So how many examples will we need? There are four sub-ranges, so we’ll need at least
four examples; there are also three borderlines, at $500, $1000, and $4000, which need
to be tested too. (If we wanted to be especially foolproof, we could test $0 and negative
numbers too, but I’ll skip that for this example.) So we need at least seven test cases:
one inside each sub-range, and one at each borderline.

"Examples of bank-interest:"

(check-expect (bank-interest 200) 0)

(check-expect (bank-interest 500) ?)

(check-expect (bank-interest 800) (* 800 .01)) ; or 8

(check-expect (bank-interest 1000) ?)

(check-expect (bank-interest 2500) (* 2500 .02)) ; or 50

(check-expect (bank-interest 4000) ?)

(check-expect (bank-interest 5000) (* 5000 .03)) ; or 150

15.4. CASE STUDY: BANK INTEREST 215

The “right answers” inside each sub-range are obvious: $800 is in the 1% range, so we
compute 1% of $800 and get $8, and so on. But the problem statement is rather vague
about the borderlines.

For the $500 borderline, the problem actually said “if you have less than $500 in the
account . . . ”, which suggests that exactly $500 should be treated as in the $500-$1000
category. Common sense agrees: if the bank paid no interest on a balance of $500, some
customer with a balance of exactly $500 would complain, there’d be a TV news story
about it, and the bank would come off looking petty and stingy. The other borderlines are
less clear in the problem statement, but for consistency, and for the same public-relations
reason as before, let’s assume that $1000 is treated as in the $1000-$4000 category, and
$4000 is treated as in the $4000-up category. So now we can fill in the rest of the right
answers:

"Examples of bank-interest:"

(check-expect (bank-interest 200) 0)

(check-expect (bank-interest 500) (* 500 .01)) ; or 5

(check-expect (bank-interest 800) (* 800 .01)) ; or 8

(check-expect (bank-interest 1000) (* 1000 .02)) ; or 20

(check-expect (bank-interest 2500) (* 2500 .02)) ; or 50

(check-expect (bank-interest 4000) (* 4000 .03)) ; or 120

(check-expect (bank-interest 5000) (* 5000 .03)) ; or 150

Note that each of these “right answers” is found by multiplying the balance by an
appropriate interest rate.

The skeleton is straightforward:

(define (bank-interest balance)

...)

The inventory is easy too:

(define (bank-interest balance)

; balance a number, in dollars

...)

Since the input type is one of four choices, we’ll probably need a four-clause cond . . . but
wait! All the “right answers” match the same “pattern”: multiply the balance by the
interest rate. So maybe this function should simply apply that formula, and leave the job
of choosing the right interest rate to an auxiliary function, which might look something
like this:

; bank-interest-rate : number -> number

"Examples of bank-interest-rate:"

(check-expect (bank-interest-rate 200) 0)

(check-expect (bank-interest-rate 500) 0.01)

(check-expect (bank-interest-rate 800) 0.01)

(check-expect (bank-interest-rate 1000) 0.02)

(check-expect (bank-interest-rate 2500) 0.02)

(check-expect (bank-interest-rate 4000) 0.03)

(check-expect (bank-interest-rate 5000) 0.03)

Let’s pretend for a moment that we had this bank-interest-rate function. Then
bank-interest would be quite simple: compute the interest rate, and multiply by the
balance.

216 CHAPTER 15. CONDITIONALS

(define (bank-interest balance)

; balance a number, in dollars

(* balance (bank-interest-rate balance))

)

We didn’t need the four-clause conditional after all.

Of course, we’re not done with the problem, since we haven’t actually written the
bank-interest-rate function. So let’s write it. The next step in writing it is a skeleton:

(define (bank-interest-rate balance)

...)

The inventory contains a parameter name:

(define (bank-interest-rate balance)

; balance a number, in dollars

...)

This time there’s no obvious “pattern” that all the right answers fit; we actually need
the conditional:

(define (bank-interest-rate balance)

; balance a number in dollars

(cond [... ...]

[... ...]

[... ...]

[... ...]

))

Next, we need to fill in the questions and answers. The answers are easy:

(define (bank-interest-rate balance)

; balance a number in dollars

(cond [... .00]

[... .01]

[... .02]

[... .03]

))

Next, under what conditions is the right answer 0? When the balance is under $500,
i.e. (< balance 500). The “$4000-and-up” case is similarly easy: (>= balance 4000):

(define (bank-interest-rate balance)

; balance a number in dollars

(cond [(< balance 500) .00]

[... .01]

[... .02]

[(>= balance 4000) .03]

))

The other two cases are a little trickier. The $500-$1000 bracket should include all the
numbers that are at least 500, but strictly less than 1000, and the $1000-$4000 bracket
should include all the numbers that are at least 1000, but strictly less than 4000. This
calls for and:

15.5. ORDERING CASES IN A CONDITIONAL 217

(define (bank-interest-rate balance)

; balance a number in dollars

(cond [(< balance 500) .00]

[(and(>= balance 500)

(< balance 1000)) .01]

[(and(>= balance 1000)

(< balance 4000)) .02]

[(>= balance 4000) .03]

))

We should now be able to test the bank-interest-rate function, and if it works, un-
comment and test the bank-interest function.

15.5 Ordering cases in a conditional

The program could be written somewhat shorter and simpler by taking advantage of
the order in which DrRacket evaluates the cases of a conditional: it looks at the second
question only if the first wasn’t true, looks at the third only if the second wasn’t true,
etc. If the first question, (< balance 500), isn’t true, then we know that (>= balance

500) must be true, so we don’t need to ask it. This simplifies the second question to (<

balance 1000). Likewise, if this isn’t true, then (>= balance 1000) must be true, so
we can simplify the third question to (< balance 4000). If this in turn isn’t true, then
the fourth question (>= balance 4000) must be true, so we can simplify it to just else.
The result is
(define (bank-interest-rate balance)

; balance a number in dollars

(cond [(< balance 500) .00]

[(< balance 1000).01]

[(< balance 4000).02]

[else .03]

))

This sort of simplification isn’t always a good idea. In the original definition, the order
of the cases in the cond doesn’t matter: we could scramble them up, as in

(define (bank-interest-rate balance)

; balance a number in dollars

(cond [(and (>= balance 500)

(< balance 1000)) .01]

[(and (>= balance 1000)

(< balance 4000)) .02]

[(>= balance 4000) .03]

[(< balance 500) .00]

))

and the function would work just as well, although it might be slightly harder to read.
This is because the cases don’t overlap: there’s no possible value of balance for which two
different questions would be true, so it doesn’t matter in what order we ask the questions.
By looking at any one of the cases, you can tell when it will happen.

However, in the “simplified” version above, the second question includes the first
question, the third includes the second, and the fourth includes everything. As a result, if

218 CHAPTER 15. CONDITIONALS

you scrambled the order of the cases in the “simplified” definition, you would get wrong
answers. And to understand when any one of the cases will happen, you need to read
not only that case but all the ones before it as well. This is no big deal for this program,
which has only four cases, but imagine a program with dozens or hundreds of cases, added
by several programmers over the course of weeks or months: to understand under what
circumstances the 46th case will happen, you would have to read the first 45 as well!

I generally recommend writing the questions of a conditional so that no two overlap,
and each one completely describes the situations in which it will happen. I have three
exceptions to this rule:

• if one of the cases really is best described as “anything else”, then I would use an
else as the last question;

• if there are only two cases, I would use else as the second question rather than
repeating the whole first question with a not around it (or, better, use another
Racket construct named if instead of cond — look it up!); and

• if I’m extremely concerned about the speed of the program, I’ll take full advantage
of the order of the questions to simplify the later ones, in order to save a few
microseconds.

Different teachers have different opinions on this: if your instructor prefers the version
that takes advantage of the order of questions, go ahead and do it that way.

Exercise 15.5.1 A carpet store needs a function to compute how much to charge its
customers. Carpeting costs $5/yard, but if you buy 100 yards or more, there’s a 10%
discount on the whole order, and if you buy 500 yards or more, the discount becomes 20%
on the whole order.

Develop a function carpet-price that takes in the number of yards of carpeting
and returns its total price.

Exercise 15.5.2 Develop a function named digital-thermometer that takes in a
temperature (in degrees Fahrenheit) and produces an image of the temperature as a num-
ber, colored either green (below 99◦), yellow (at least 99◦ but less than 101◦) or red (at
least 101◦).

For example,

(digital-thermometer 98.3)

98.3

(digital-thermometer 99.5)

99.5

(digital-thermometer 102.7)

102.7

Hint: To convert a number to a string, use number->string. However, if you try it
on a number like 98.6, you may get a fraction rather than a decimal. If you want it in
decimal form, first make it inexact, using exact->inexact.

Hint: Use an auxiliary function to choose the color.

Exercise 15.5.3 Develop a function named letter-grade that takes in a grade av-
erage on a 100-point scale and returns one of the strings "A", "B", "C", "D", or "F",
according to the rule

15.6. UNNECESSARY CONDITIONALS 219

• An average of 90 or better is an A;

• An average of at least 80 but less than 90 is a B;

• An average of at least 70 but less than 80 is a C;

• An average of at least 60 but less than 70 is a D;

• An average of less than 60 is an F.

Exercise 15.5.4 Three candidates (Anne, Bob, and Charlie) are running for mayor of
Racketville, which, by court order, has a new computerized voting system. Develop a

function named who-won that takes in three numbers (the number of votes for Anne, the
number of votes for Bob, and the number of votes for Charlie, respectively) and returns
a string indicating who won – either "Anne", "Bob", or "Charlie". If two or more
candidates tied for first place, the function should return "tie".

Exercise 15.5.5 Develop a function named 4-votes->winner that takes in four strings
representing votes, and returns the name of the winner (or "tie" if there was a tie). You
may assume that the only candidates in the race are "Anne", "Bob", and "Charlie" (this
makes it much easier!)

Hint: This should be short and simple if you re-use previously-defined functions.

Exercise 15.5.6 Some credit card companies give you a refund at the end of the year
depending on how much you’ve used the card. Imagine a company that pays back

• 0.25% of the first $500 you charge;

• 0.50% of the next $1000 you charge (i.e. anything you charge between $500 and
$1500);

• 0.75% of the next $1000 you charge (i.e. between $1500 and $2500);

• 1% of anything you charge over $2500.

For example, a customer who charged $400 would get back $1.00, which is 0.25% of $400.
A customer who charged $1400 would get back 0.25% of the first $500 (making $1.25),
plus 0.50% of the next $900 (i.e. $4.50), for a total refund of $5.75.

Develop a function card-refund to determine how much refund will be paid to a
customer who has charged a specified amount on the card.

15.6 Unnecessary conditionals

The above recipe may seem to contradict the way we wrote functions in Chapter 13: in
most of the problems in that chapter, there were two or more categories of input, and two
categories of output (true and false), yet we didn’t need any conditionals. For example,
recall Worked Exercise 13.3.1, whose definition was

(define (may-drive? age)

; age a number

; 16 a fixed number we’re likely to need

(>= age 16)

)

220 CHAPTER 15. CONDITIONALS

In fact, we could have written this one using a conditional too:

(define (may-drive? age)

; age a number

; 16 a fixed number we’re likely to need

(cond [(>= age 16) true]

[(< age 16) false]

))

and it would work perfectly well, but it’s longer and more complicated than the previous
version. Indeed, every function in Chapter 13 could have been written using a conditional,
and would be longer and more complicated that way.

Rule of thumb: Functions that return Boolean can usually be written more simply
without a conditional than with one.

Since string=?, =, and so on return Booleans, their results can be compared using
boolean=?:

(define (reply greeting)

; greeting a string

(cond [(boolean=? (string=? greeting "good morning") true)

"I need coffee"]

[(boolean=? (string=? greeting "good afternoon") true)

"I need a nap"]

[(boolean=? (string=? greeting "good night") true)

"bedtime!"]

))

This works perfectly well, and passes all its test cases, but it’s longer and more compli-
cated than necessary. Likewise

(define (not-teenager? age)

; age a number

(boolean=? (and (>= age 13) (< age 20)) false)

)

could be more briefly written as

(define (not-teenager? age)

; age a number

(not (and (>= age 13) (< age 20)))

)

or as

(define (not-teenager? age)

; age a number

(or (< age 13) (>= age 20)))

)

Rule of thumb: If you’re using boolean=?, you’re probably making things longer
and more complicated than they need to be.

(The only time I can imagine needing boolean=? is when I have two Boolean expres-
sions, and I don’t care whether either one is true or false as long as they match. This
isn’t very common.)

15.7. NESTED CONDITIONALS 221

For another example, recall Exercise 13.7.1, which we wrote as follows:

(define (18-to-25? age)

; 18 a fixed number we’ll need

; 25 another fixed number we’ll need

; (>= age 18) a Boolean

; (<= age 25) a Boolean

(and (>= age 18)

(<= age 25))

)

We could have written this using a conditional:

(define (18-to-25? age)

; age a number

; 18 a fixed number we’ll need

; 25 another fixed number we’ll need

; (>= age 18) a Boolean

; (<= age 25) a Boolean

(cond [(>= age 18) (<= age 25)]

[(< age 18) false])

)

or even (putting one conditional inside another)

(define (18-to-25? age)

; age a number

; 18 a fixed number we’ll need

; 25 another fixed number we’ll need

; (>= age 18) a Boolean

; (<= age 25) a Boolean

(cond [(>= age 18)(cond [(<= age 25) true]

[(> age 25) false])

[(< age 18) false])

)

but again, these definitions are longer and more complicated than the one that doesn’t
use a conditional.

15.7 Nested conditionals

Yes, you can put one conditional inside another. The “answer” part of each cond-clause
is allowed to be any expression, and a cond is an expression, so why not? In the example
above, it wasn’t necessary, and even made the program longer and harder to understand.
But there are situations in which nested conditionals are the most natural way to solve a
problem.

Worked Exercise 15.7.1 Imagine that you work for a company that sells clothes over
the Internet: a Web page has a menu from which customers can choose which item of
clothing, and which color, they’re interested in. For simplicity, let’s suppose there are
only three items of clothing: pants, shirt, and shoes. The pants are available in black
or navy; the shirt is available in white or pink; and the shoes are available in pink,
burgundy, or navy. Your company photographer has given you pictures of all seven of

222 CHAPTER 15. CONDITIONALS

these items, which you’ve copied and pasted into DrRacket under the variable names
black-pants, navy-pants, pink-shirt, white-shirt, pink-shoes, burgundy-shoes,
and navy-shoes.

Develop a function show-clothing that takes in two strings representing the item
of clothing and the color, and returns a picture of the item of clothing. If the requested
combination of item and color doesn’t exist, it should return an appropriate error message.

Solution: The contract is clearly
; show-clothing: string(item) string(color) -> image

But wait: sometimes the function is supposed to return an error message instead! There
are at least two ways we can handle this: we could either build an image of the error
message (using the text function), or we could change the contract to return “image or
string”. For now, we’ll opt for consistency and always return an image. (In Chapter 19,
we’ll see another way to handle this.)

There are seven legal examples, and to be really confident we should test them all:
(check-expect (show-clothing "pants" "black") black-pants)

(check-expect (show-clothing "pants" "navy") navy-pants)

(check-expect (show-clothing "shirt" "white") white-shirt)

(check-expect (show-clothing "shirt" "pink") pink-shirt)

(check-expect (show-clothing "shoes" "pink") pink-shoes)

(check-expect (show-clothing "shoes" "burgundy") burgundy-shoes)

(check-expect (show-clothing "shoes" "navy") navy-shoes)

In addition, we should have some illegal examples to test the handling of nonexistent
items, unrecognized colors, etc.
(check-expect (show-clothing "hat" "black")

(text "What’s a hat?" 12 "red"))

(check-expect (show-clothing "pants" "burgundy")

(text "We don’t have pants in burgundy" 12 "red"))

The skeleton is easy:
(define (show-clothing item color)

...)

The inventory is fairly straightforward too:
(define (show-clothing item color)

; item string

; color string

; "pants" string

; "shirt" string

; "shoes" string

; "black" string

; "navy" string

; "white" string

; "pink" string

; "burgundy" string

...)

(Writing an inventory entry for every one of these literal strings is really boring, and
if it’s OK with your instructor, feel free to skip this.) We may also need some other
expressions in order to build the error messages, but we’ll come back to that later.

We know that item is supposed to be either "pants", "shirt", or "shoes" (or “any-
thing else”), so the body of the function will need a conditional with four cases:

15.7. NESTED CONDITIONALS 223

(define (show-clothing item color)

; item string

; color string

(cond [(string=? item "pants") ...]

[(string=? item "shirt") ...]

[(string=? item "shoes") ...]

[else ...])

)

If the item is in fact "pants", the color can be either "black", "navy", or “anything
else”, which can be most naturally represented by another cond inside the first one:

(define (show-clothing item color)

; item string

; color string

(cond [(string=? item "pants")

(cond [(string=? color "black") ...]

[(string=? color "navy") ...]

[else ...])]

[(string=? item "shirt") ...]

[(string=? item "shoes") ...]

[else ...])

)

We can do the same thing for "shirt" and "shoes":

(define (show-clothing item color)

; item string

; color string

(cond [(string=? item "pants")

(cond [(string=? color "black") ...]

[(string=? color "navy") ...]

[else ...])]

[(string=? item "shirt")

(cond [(string=? color "pink") ...]

[(string=? color "white") ...]

[else ...])]

[(string=? item "shoes")

(cond [(string=? color "pink") ...]

[(string=? color "burgundy") ...]

[(string=? color "navy") ...]

[else ...])]

[else ...])

)

224 CHAPTER 15. CONDITIONALS

After figuring out all of these conditions, the legal answers are easy:

(define (show-clothing item color)

; item string

; color string

(cond [(string=? item "pants")

(cond [(string=? color "black") black-pants]

[(string=? color "navy") navy-pants]

[else ...])]

[(string=? item "shirt")

(cond [(string=? color "pink") pink-shirt]

[(string=? color "white") white-shirt]

[else ...])]

[(string=? item "shoes")

(cond [(string=? color "pink") pink-shoes]

[(string=? color "burgundy") burgundy-shoes]

[(string=? color "navy") navy-shoes]

[else ...])]

[else ...])

)

All that remains is constructing the error messages, which we can do using text and
string-append. But this function definition is getting pretty long already; since building
these error messages really is a completely different sort of job from what we’ve been
doing so far, let’s have it done by auxiliary functions. Here’s one to handle unrecognized
items:

; bad-item : string(item) -> image

(define (bad-item item)

; item string

; (string-append "What’s a " item "?") string

; 12 number (font size)

; "red" string (text color)

(text (string-append "What’s a " item "?") 12 "red")

)

"Examples of bad-item:"

(check-expect (bad-item "hat") (text) "What’s a hat?" 12 "red")

(check-expect (bad-item "belt") (text) "What’s a belt?" 12 "red")

The analogous function for unrecognized colors is left for you to do; see Exercise 15.7.2
below.

15.8. DECISIONS AMONG DATA TYPES 225

The final definition of show-clothing looks like
(define (show-clothing item color)

; item string

; color string

(cond [(string=? item "pants")

(cond [(string=? color "black") black-pants]

[(string=? color "navy") navy-pants]

[else (bad-color item color)])]

[(string=? item "shirt")

(cond [(string=? color "pink") pink-shirt]

[(string=? color "white") white-shirt]

[else (bad-color item color)])]

[(string=? item "shoes")

(cond [(string=? color "pink") pink-shoes]

[(string=? color "burgundy") burgundy-shoes]

[(string=? color "navy") navy-shoes]

[else (bad-color item color)])]

[else (bad-item item)])

)

Exercise 15.7.2 Write the bad-color function needed in the above example.

Exercise 15.7.3 Develop a function make-shape that takes in three strings: a shape
(either "circle" or "triangle"), a size (either "small", "medium", or "large"), and
a color (any color that DrRacket recognizes), and produces an appropriate image.

Note: Make sure that a “medium circle” and a “medium triangle” are about the same
size.

15.8 Decisions among data types

Most the functions we’ve written so far have expected one specific type of input, and
produced one specific type of output — number, string, image, boolean, etc. But some-
times a function needs to be able to handle input of several different types. We’ll see more
useful applications of this ability in the next few chapters, but for now simply imagine
a function that takes in a number, which a confused user mistakenly puts in quotation
marks. The user would get an unfriendly error message like
+: expects type <number> as 1st argument, given “4”; other arguments were: 3
It would be really nice if our program could figure out that by "4" the user probably
meant the number 4. Even if we didn’t want to go that far, or if there were nothing rea-
sonable our program could do with the incorrect input, it would be nice if our program
could produce a friendlier message like
This program expects a number, like 3. You typed a quoted string, “4”.
To do this, our program would need to recognize that the input was a string rather than
a number as expected.

The ability to make decisions based on the types of our inputs (which computer
scientists call polymorphism) will be useful in a number of ways. In Chapter 19 we’ll

226 CHAPTER 15. CONDITIONALS

see how to produce friendly error messages like the above. But first, how do we detect
different types?

Recall from Chapter 13 that Racket has built-in type predicates, functions that take in
any type of input (including types you haven’t seen yet) and return either true or false
depending on whether the input is of that particular type. For example,

; number? : anything -> boolean

; image? : anything -> boolean

; string? : anything -> boolean

; boolean? : anything -> boolean

; integer? : anything -> boolean

...

With these functions in hand, and the decision-making ability provided by cond, one
can easily write functions that operate differently on different types of inputs.

Worked Exercise 15.8.1 Develop a function classify that tells what type its in-
put is, by returning one of the strings "image", "string", "number", or "other" as
appropriate.

(The only “other” type you’ve seen so far is boolean, but we’ll see more in the next
few chapters.)

Solution: The contract is

; classify : anything -> string

In the data analysis step, we observe that not just any string can be produced; the
result is always one of four choices, so a more informative contract would be
; classify : anything -> string

; ("image", "string", "number", or "other")

For that matter, the input is indeed “anything”, but we’re interested in which of four
categories it falls into (image, string, number, or anything else), so we could even write

; classify : anything (image, string, number, or anything else) ->

; string ("image", "string", "number", or "other")

(Again, we could write an inventory template for this, but we don’t expect to be writing
lots of functions that divide the world up in this particular way, so we won’t bother.)

Since the input and output data types each fall into four categories, there should be
at least four examples:

"Examples of classify:"

(check-expect (classify (circle 5 "solid" "green")) "image")

(check-expect (classify "hello there") "string")

(check-expect (classify 74) "number")

(check-expect (classify true) "other")

The skeleton is simple:

(define (classify thing)

...)

15.8. DECISIONS AMONG DATA TYPES 227

For the inventory, we normally start by listing parameters and labeling each one with
its type. In this case, we don’t know what data type thing is.

(define (classify thing)

; thing anything

...)

However, we know that there are four categories, both of input and of output, so we
can reasonably guess that the body of the function will involve a cond with four clauses:

(define (classify thing)

; thing anything

(cond [... ...]

[... ...]

[... ...]

[... ...]

)

)

The next step in writing a function involving conditionals is normally to fill in either
all the questions or all the answers, whichever is easier. We know that the answers are
"image", "string", and so on, so we can fill them in easily:

(define (classify thing)

; thing anything

(cond [... "image"]

[... "string"]

[... "number"]

[... "other"]

)

)

We still need to fill in the questions. The only expression we have available to work with
is the parameter thing, so we must ask questions about it. Under what circumstances is
the right answer "image"? Obviously, when thing is an image. Conveniently, the image?
function tests this. We can test the other types similarly.

(define (classify thing)

; thing anything

(cond [(image? thing) "image"]

[(string? thing) "string"]

[(number? thing) "number"]

[else "other"]

)

)

Note the else in the last clause, which catches any input that hasn’t matched any of
the previous criteria.

Exercise 15.8.2 Define a function named size that takes in a number, a string, or
an image, and returns “how big it is”. For a number, this means the absolute value of

228 CHAPTER 15. CONDITIONALS

the number. For a string, it means the length of the string. For an image, it means the
number of pixels, i.e. the width times the height.

Exercise 15.8.3 Define a function named big? that takes in either a number or a
string, and tells whether the argument is “big”. What does “big” mean? For numbers,
let’s say it means at least 1000, and for strings, let’s say it’s any string of length 10 or
more.

Hint: The function needs to handle two kinds of input, and for each kind of input there
are two possible answers and a “borderline”, so you’ll need six test cases.

Exercise 15.8.4 Develop a function named same? that takes in two arguments, each
of which is either a number or a string, and tells whether they’re “the same”. If one is a
number and the other a string, they’re obviously not “the same”; if both are numbers, you
can compare them using =; and if both are strings, you can compare them using string=?.

There’s actually a built-in function equal? that does this and more: it compares any
two objects, no matter what types, to tell whether they’re the same. You may not use it in
writing Exercise 15.8.4. You may use it in the rest of the book (except where I specifically
tell you not to), but in most cases it’s a better idea to use something more specific like
=, string=?, key=?, etc. because if you accidentally violate a contract and call one of
these on the wrong type of input, you’ll get an error message immediately rather than
the program going on as if everything were OK. Eventually it would probably produce
wrong answers, which are much harder to track down and fix than error messages.

Exercise 15.8.5 Develop a function named smart-add that takes two parameters and
adds them. The trick is that the parameters can be either numbers (like 17) or strings of
digits (like "17"); your function has to be able to handle both.

Hint: There are two parameters, each of which could be either of two types, so you’ll
need at least four examples.

15.9 Review of important words and concepts

Much of the power of computers comes from their ability to make decisions on their own,
using conditionals. A Racket conditional consists of the word cond and a sequence of
question/answer clauses: it evaluates each question in turn is evaluated, and as soon as
one comes out true, it returns the value of the corresponding answer. If none of the
questions evaluates to true, you get an error message. If you want to avoid this error
message, you can add another question/answer clause at the end, with the question being
simply the word else, which guarantees that if none of the previous answers was true,
this one will be. This is often used for error-handling.

In order to design functions that make decisions, we add some details to the skeleton
and body steps of the design recipe: we write the skeleton of a cond, with the right
number of cases, and then fill in the questions and the answers (I recommend either all
the questions, then all the answers, or vice versa, depending on which is easier).

Functions that return boolean can usually be written shorter and simpler without a
conditional than with one. Almost any time you use the boolean=? function, you could
have accomplished the same thing more simply without it.

15.10. REFERENCE 229

If a function has two or more inputs that each come in multiple categories, or if a
type has sub-categories of a specific category, often the most natural way to write the
function is with nested conditionals : the answer part of a conditional is itself another
whole conditional. However, if you find yourself doing this, there may be a shorter and
simpler way that doesn’t require nested conditionals.

People normally write Racket functions to take in particular types of arguments,
but you can also design a function to be more flexible, checking for itself what types
its arguments were and handling them appropriately. Every built-in Racket type has a
discriminator function, also known as a type predicate, whose name is the name of the
type, with a question-mark at the end (e.g. number?, string?, image?) which takes in
anything and tells whether or not it is of that type. You can use these discriminator
functions in a conditional to write polymorphic functions, functions that work differently
on different types of inputs.

15.10 Reference: Built-in functions for making deci-

sions

In this chapter, we’ve introduced one new function: equal?, which takes in two parameters
of any types and tells whether they’re the same. In general, it’s a good idea to use
something more specific, like string=? or =, because you’ll catch mistakes faster that
way.

This chapter also introduced the Syntax Rule 6, with the reserved words cond and
else. (A reserved word is a word whose meaning is built into the Racket language and
can’t be changed, but which isn’t called like a function. In particular, the reserved word
else can only appear as the last question in a cond.)

For the common case of a cond with only two cases, the second of which is else,
there’s a shorter form:

(if question answer-if-true answer-if-false)

Look it up in the Help Desk.

