
Chapter 19

Handling errors

19.1 Error messages

Recall Exercise 11.6.1, in which you built pictures of houses. Once build-house was
working, one could then build a whole village by writing something like
(place-image (build-house ...) 30 200

(place-image (build-house ...) 105 220

(place-image (build-house ...) 130 60

(empty-scene 300 300))))

Now suppose some foolish user provides a width or height that isn’t a positive number:
you’ll get an unfriendly error message like
rectangle: expected <positive number> as second argument, given: -30 .
You’d like to make this friendlier by giving the user a more informative message like
House height must be > 0
instead. One way to do this would be for build-house to return that string as its value.

Of course, this violates the contract of build-house, which said it returns an image.
No problem: now that we know about mixed data types, we can change the contract:
; build-house : number number string -> image-or-string

We’ll need some extra examples to test that it produces the appropriate string in the
appropriate cases; I’ll leave that to you. Finally, the body of the function will have an
extra conditional somewhere:
...

(cond [(> height 0) ...]

[else "House height must be > 0."])
But now when you try to build a village as before, you get the error message
place-image: expected <image> as first argument, given “House height must be > 0”

What happened? The build-house function promised, in its original contract, to
return an image, and place-image only works on images so it relies on this promise.
Now we’ve broken that promise by returning a string instead, so other programs that use
build-house don’t work any more. You could fix this by putting a conditional everywhere
that build-house is used, to check whether it returned an image or a string, but that’s a
royal pain, and would make your build-house function much more inconvenient to use.

The problem is that normally, the build-house function returns an image, which is
what place-image expects; the only time build-house returns a string is when something
is very wrong and it doesn’t make sense to call place-image at all. So the ideal solution

255

256 CHAPTER 19. HANDLING ERRORS

would be for build-house to produce an error message and never return to place-image

at all. (In Java, C++, and some other languages, this is referred to as “throwing an
exception”.) There’s a built-in function named error that does this. It uses a new data
type that we haven’t seen before: symbol. We’ll discuss it more in Chapter 29, but for
now, think of it as a function name with an apostrophe in front (but not at the end!).

The error function has contract
; error : object ...-> nothing

; The first argument is normally a symbol: the name of the function

; that discovered the error, with an apostrophe in front.

; Any additional arguments go into the error message too.

; The function doesn’t return, but stops the program.

Worked Exercise 19.1.1 Modify the build-house function so that if the width or height
is less than 0, it produces an appropriate error message and doesn’t return to its caller.

Solution: We don’t need to change the contract, since if build-house returns at all, it
will still return an image. We need to add some additional test cases:

(build-house 0 100 "blue") "should produce an error message:"

"build-house: House width must be > 0."
(build-house 100 0 "red") "should produce an error message:"

"build-house: House height must be > 0."

The skeleton and inventory don’t change, but the body now looks like
...

(cond [(<= width 0)

(error ’build-house "House width must be > 0.")]
[(<= height 0)

(error ’build-house "House height must be > 0.")]
[else

...])

In testing this function, you should get an error message in response to the first “bad”
test case. Indeed, you’ll never even see the "should produce an error message:" be-
cause the program stops before getting that far in the definitions pane. Likewise, you’ll
never get to the second “bad” test case at all, so you don’t know whether it works cor-
rectly. One way to handle this is to test one “bad” test case, then once it works, comment
it out and run again to test the next one. A better way to handle it is described below.

19.2 Testing for errors

You’re already familiar with the check-expect, check-within, check-member-of, and
check-range functions, which compare the actual answer from some expression with what
you say it “should be”. There’s another function, check-error, which “expects” the
expression to crash with a specific error message, and checks that this actually happens.

; check-error : test-expression string -> nothing

; Checks whether evaluation of the test-expression produces

; the specified string as an error message

19.3. WRITING USER-PROOF FUNCTIONS 257

For example, the above “bad” test cases could be rewritten as
(check-error (build-house 0 100 "blue")

"build-house: House width must be > 0.")
(check-error (build-house 100 0 "red")

"build-house: House height must be > 0.")
and you don’t need to comment out either of them, since check-error catches the first
error, checks that it’s correct, and goes on to the next.

Note that check-error will complain if the expression produces the wrong error
message, or even if it doesn’t produce an error message: try

(check-error (error ’whatever "this error message")

"that error message")

(check-error (+ 3 4) "something went wrong")

19.3 Writing user-proof functions

Exercise 19.3.1 Modify the solution to Exercise 15.1.4 so that if the input to reply isn’t
any of the known strings, it produces an error message and never returns, rather than
returning "huh?".

Exercise 19.3.2 Modify the solution to Exercise 9.2.3 so that if the input is an empty
string, it produces the error message chop-first-char: can’t chop from an empty string
and never returns.

Exercise 19.3.3 Modify the solution to Exercise 9.2.4 so that if the input is an empty
string, it produces the error message first-char: can’t get first character of an empty
string and never returns.

Exercise 19.3.4 Develop a function safe-double that takes in a number, a string,
a boolean, or an image. If the input is a number, the function doubles it and returns the
result. If the input is anything else, the function produces an appropriate error message,
e.g.
safe-double: This function expects a number, like 3; you gave it a picture.
or (even cooler)
safe-double: This function expects a number, like 3; you gave it the quoted string “five”.

Hint: The second example calls for inserting the actual string you were given into your
error message. This can be done using string-append, or using the format function,
which I haven’t told you about yet. If you wish, look it up and rewrite the function that
way.

19.4 Review of important words and concepts

A function contract is a binding promise; if you don’t return the type of result you
said you would return, other people’s programs will crash, and they’ll blame you. But
sometimes things go wrong, and there is no value of the promised return type that would
be correct. In this case, often the best answer is to “throw an exception”: to bail out of
any functions that have called this one, and display an error message in the Interactions
pane. The error function does this job for you; the check-error function in the testing
teachpack helps you test it.

258 CHAPTER 19. HANDLING ERRORS

19.5 Reference: Built-in functions for signaling and

testing errors

In this chapter, we introduced two new built-in functions:

• error

• check-error

(Technically, check-error is a special form rather than a function.)
We also mentioned the format function, which you are invited to look up for yourself.

