

PART IV

Definition by Self-reference

Chapter 22

Lists and functions on them

22.1 Limitations of structs

When we define a struct, among the first questions we ask is “how many parts does the
struct have?” This question assumes that the struct has a fixed number of parts: a posn

has two numbers, a color has three numbers, a person has two strings and a number, a
moving-x has a number and a string, In general, a struct is a way to collect a fixed
number of related pieces of information into one “package” that we can pass around as a
single object, and store in a single variable.

But what if we wanted to collect an unknown number of related pieces of information
into one “package”, pass it around as a single object, and store it in a single variable?
For example, consider the collection of students registered for a particular course: if a
student adds (or drops) the course, does that require redefining the struct with one more
(or fewer) field, then rewriting and retesting every function that operated on the struct,
since there are now one more (or one fewer) getter functions, and every constructor call
must now have one more (or one fewer) argument than before? That seems ridiculous:
one should be able to write software once and for all to work on a collection of students,
allowing the number of students to change while the program is running.

There are many other ways to collect related pieces of information into a package, of
which the simplest is a “list”.

22.2 What is a list?

You’re all familiar with lists in daily life: lists of friends, lists of schools or jobs to apply
to, lists of groceries to buy, lists of things to pack before going on a trip. In each case, a
list is not changed in any fundamental way by changing the number of items in it. A list
can be reduced to 1 or 0 items, and then have more items added to it later; reducing it
to 1 or even 0 items didn’t make it stop being a list.

This fact — that a list can have as few as 0 elements — underlies the way we’ll define
lists in Racket. Here are three apparently-obvious facts about lists:

1. A list is either empty or non-empty.

Not terribly exciting, although it suggests that we’ll do some kind of definition by
choices with two cases: empty and non-empty.

307

308 CHAPTER 22. LISTS

2. An empty list has no parts.

Again, not terribly exciting. The next one is a little more interesting:

3. A non-empty list has a first element. It also has “the rest” of the list,

i.e. everything after the first element.

This looks like a definition by parts: there are two parts, the “first” element and the
“rest”. What types are these parts? If we were defining a list of numbers, obviously,
the “first” element would be a number; in a list of strings, the “first” element would
be a string. But what about the “rest”? If the list consists of only one element, the
“rest” should be empty; if the list consists of two elements, the “rest” contains one
element; and so on. In other words, the “rest” of a non-empty list is a list (either
empty or non-empty).

When we introduced “definition by choices” and “definition by parts”, we said they
were ways to define a new data type from previously-defined data types. We’ve loosened
that requirement a bit now: the list data type is defined by choices from the non-empty-
list data type, which is defined by parts from (among other things) the list data type.
Neither data type can be “previous” to the other, because each depends on the other.
However, if we’re willing to define both at once, we can get a tremendous amount of
programming power.

The following diagram shows the relationships among types in a list of numbers: a
“list” is defined by choices as either “empty list” or “non-empty list”, while “non-empty
list” is defined by parts as a number and a “list”.

22.3 Defining lists in Racket

In this section we’ll develop a definition of lists, and learn to write functions on them,
using only what you already know about definition by parts and by choices. The resulting
definition is a little awkward to work with, so in section 22.4 we’ll discuss the more
practical version of lists that’s built into Racket. If you prefer to “cut to the chase,” you
can skip this section.

For concreteness, we’ll define a list of strings; you can also define a list of numbers, or
booleans, or even lists similarly. We’ll use “los” as shorthand for “list of strings”.

22.3. DEFINING LISTS IN RACKET 309

22.3.1 Data definitions

Recall our first fact about lists: “a list [of strings] is either empty or non-empty.” This
is a definition by choices with two choices. It tells us that for any function that takes in
a list of strings, we’ll need an empty test case and at least one non-empty test case. (In
fact, we’ll usually want at least three test cases: an empty example, an example of length
1, and at least one longer list.) It also tells us that the body of a function on lists of
strings will probably involve a two-way cond, deciding between the empty and non-empty
cases:

#|

(define (function-on-los L)

; L a list of strings

(cond [... ...]

[... ...]

))

|#

The second fact about lists, “An empty list has no parts,” can be represented in Racket
by defining a struct with no parts:

; An empty list has no parts.

(define-struct empty-list ())

; make-empty-list : nothing -> empty-list

; empty-list? : anything -> boolean

#|

(define (function-on-empty-list L)

; L an empty-list

...)

|#

This looks a little weird, admittedly: we’ve never before defined a struct with no parts,
but there’s no rule against it. Since there are no parts, there are no getters; there’s only
a constructor (which takes no parameters) and a discriminator. In other words, we can
create an empty list, and recognize it when we see it.

Note that I haven’t specified that an empty-list is an empty-list of strings : since it
doesn’t contain anything anyway, an empty-list of strings can be exactly the same as an
empty-list of numbers or anything else.

In practice, there’s seldom much point in writing a function whose only input is an
empty list. All empty lists contain exactly the same information, so such a function would
have to return the same answer in all cases, so why bother writing a function? So we’ll
skip the function-on-empty-list template from now on.

Now for the third fact about lists: “A non-empty list has two parts: the first element
and the rest.” More specifically: “A non-empty list of strings has two parts: the first
element (a string) and the rest (a list of strings).” This seems to call for definition by
parts. I’ll use “nelos” as shorthand for “non-empty list of strings”.

310 CHAPTER 22. LISTS

; A nelos has two parts: first (a string) and rest (a los)

(define-struct nelos (first rest))

; make-nelos : string los -> nelos

; nelos-first : nelos -> string

; nelos-rest : nelos -> los

; nelos? : anything -> boolean

#|

(define (function-on-nelos L)

; L a nelos

; (nelos-first L) a string

; (nelos-rest L) a los

; (function-on-los (nelos-rest L)) whatever this returns

...)

|#

Since (nelos-rest L) is a list of strings, the obvious thing to do to it is call some
function that works on a list of strings, like function-on-los. It’s quite useful to include
this in the inventory, as we’ll see shortly.

With this information, we can write the complete data definition, with input templates
for both los and nelos, fairly concisely:

; A los is either (make-empty-list) or a nelos

#|

(define (function-on-los L)

; L a list of strings

(cond [(empty-list? L) ...]

[(nelos? L) (function-on-nelos L)]

))

|#

22.3. DEFINING LISTS IN RACKET 311

; A nelos looks like

; (make-nelos string los)

#|

(define (function-on-nelos L)

; L a cons

; (nelos-first L) a string

; (nelos-rest L) a los

; (function-on-los (nelos-rest L)) whatever this returns

...)

|#

(We’ll come back to the output template in Chapter 23.)
Note that once a los has been determined to be non-empty, the obvious thing to do

to it is call some function that works on non-empty lists, like function-on-nelos.
Note also that because the los and nelos data types each refer to one another, the

function-on-los and function-on-nelos templates refer to one another in a corre-
sponding way.

22.3.2 Examples of the los data type

As with any new data type, we should make up some examples to make things feel more
real and concrete. We’ll need at least one empty example, which we can build with
make-empty-list:

(define nothing (make-empty-list))

and at least one non-empty example, which we can build with make-nelos. The
make-nelos function expects two arguments: a string and a los. The only los we al-
ready have is nothing, so

(define english (make-nelos "hello" nothing))

This represents a list of strings whose first element is "hello" and whose rest is an empty
list, so there is no second element.

Suppose we wanted a list with "bonjour" as its first element and "hello" as the
second and last. This is easy by calling make-nelos:

(define fr-eng (make-nelos "bonjour" english))

312 CHAPTER 22. LISTS

22.3. DEFINING LISTS IN RACKET 313

We can go on to build even longer lists, as shown in Figure 22.1.

Figure 22.1: Defining and using list-of-strings
; An empty list has no parts.

(define-struct empty-list ())

; make-empty-list : nothing -> empty-list

; empty-list? : anything -> boolean

; A nelos has two parts: first (a string) and rest (a los).

(define-struct nelos (first rest))

; make-nelos : string los -> nelos

; nelos-first : nelos -> string

; nelos-rest : nelos -> los

; nelos? : anything -> boolean

#|

(define (function-on-nelos L)

; L a nelos

; (nelos-first L) a string

; (nelos-rest L) a los

; (function-on-los (nelos-rest L)) whatever this returns

...)

|#

; A los is either an empty-list or a nelos.

#|

(define (function-on-los L)

; L a los

(cond [(empty-list? L) ...]

[(nelos? L) (function-on-nelos L)]

))

|#

(define nothing (make-empty-list))

(define english (make-nelos "hello" nothing))

(define fr-eng (make-nelos "bonjour" english))

(define heb-fr-eng (make-nelos "shalom" fr-eng))

(define shfe (make-nelos "buenos dias" heb-fr-eng))

(define ashfe (make-nelos "salaam" shfe))

(define dwarfs (make-nelos "sleepy" (make-nelos "sneezy"

(make-nelos "dopey" (make-nelos "doc" (make-nelos "happy"

(make-nelos "bashful" (make-nelos "grumpy" nothing))))))))

Practice Exercise 22.3.1 Copy Figure 22.1 into your Definitions pane (it should be
available as a download from the textbook Web site), and try the following expressions.
For each one, predict what it will return before hitting ENTER, and see whether you were

314 CHAPTER 22. LISTS

right. If not, figure out why it came out as it did.

(empty-list? nothing)

(nelos? nothing)

(nelos-first nothing)

(nelos-rest nothing)

(empty-list? english)

(nelos? english)

(nelos-first english)

(nelos-rest english)

(empty-list? (nelos-rest english))

(nelos? fr-eng)

(nelos-first fr-eng)

(nelos-rest fr-eng)

(nelos? (nelos-rest fr-eng))

(nelos-first (nelos-rest fr-eng))

(nelos-rest (nelos-rest fr-eng))

(nelos? ashfe)

(nelos-first ashfe)

(nelos-rest ashfe)

(nelos-first (nelos-rest (nelos-rest ashfe))))

(nelos-first (nelos-rest (nelos-rest (nelos-rest dwarfs))))

22.3.3 Writing a function on los

How would we write a function on the los data type? In a way, this is the wrong question:
our templates above show two functions, function-on-los and function-on-nelos, which
depend on one another, so when we write a specific function, it too will probably consist
of two functions that depend on one another.

Worked Exercise 22.3.2 Define a function count-strings that takes in a los and re-
turns how many strings are in it: 0 for an empty list, 1 for a list of one element, and so
on.

Solution: We’ll write two functions: one that works on a los and one that works on a
nelos.

Contracts:

; count-strings : los -> number

; count-strings-on-nelos : nelos -> number

The data analysis is already done.

Test cases:

(check-expect (count-strings nothing) 0)

(check-expect (count-strings english) 1)

(check-expect (count-strings fr-eng) 2)

(check-expect (count-strings ashfe) 5)

(check-expect (count-strings dwarfs) 7)

22.3. DEFINING LISTS IN RACKET 315

; can’t call (count-strings-on-nelos nothing)

; because nothing isn’t a nelos

(check-expect (count-strings-on-nelos english) 1)

(check-expect (count-strings-on-nelos fr-eng) 2)

(check-expect (count-strings-on-nelos ashfe) 5)

(check-expect (count-strings-on-nelos dwarfs) 7)

Skeletons and Inventories:

Conveniently, we already have templates that do most of the work for us:

(define (count-strings L)

; L a los

(cond [(empty-list? L) ...]

[(nelos? L) (count-strings-on-nelos L)]

))

(define (count-strings-on-nelos L)

; L a nelos

; (nelos-first L) a string

; (nelos-rest L) a los

; (count-strings (nelos-rest L))a number

...)

Note that count-strings and count-strings-on-nelos refer to one another in the
same way function-on-los and function-on-nelos refer to one another, which in turn
corresponds to the way los and nelos refer to one another.

Now we just need to fill in everywhere that there’s a “. . . ”. The first one, the answer
in the (empty-list? L) case, is easy: an empty list has a length of 0. (We could write
a count-strings-on-empty-list function to do this, but that seems like too much work
just to get the answer 0.)

(define (count-strings L)

; L a los

(cond [(empty-list? L) 0]

[(nelos? L) (count-strings-on-nelos L)]

))

The other “. . . ” is the body of count-strings-on-nelos. From the inventory, we have
an expression for the number of strings in the rest of the list. So how many strings are
there in the whole list? If you see immediately how to do this, great; if not, let’s try an
inventory with values. We’ll pick a moderately complicated example:
(define (count-strings-on-nelos L)

; L a nelos (cons "a" (cons "b" (cons "c" empty)))

; (nelos-first L) a string "a"

; (nelos-rest L) a los (cons "b" (cons "c" empty))

; (count-strings (nelos-rest L)) a number 2

; right answer a number 3

316 CHAPTER 22. LISTS

How could you get the right answer, 3, from the things above it? The one that most
closely resembles 3 is 2; you can get 3 from 2 by adding 1. This suggests the body

(define (count-strings-on-nelos L)

; L a nelos (cons "a" (cons "b" (cons "c" empty)))

; (nelos-first L) a string "a"

; (nelos-rest L) a los (cons "b" (cons "c" empty))

; (count-strings (nelos-rest L)) a number 2

; right answer a number 3

(+ 1 (count-strings (nelos-rest L))))

Does this make sense? It says the number of strings in the whole list is one more than
the number of strings in the rest of the list, which is certainly true.

Run the test cases, and they should all work. Use the Stepper to watch the computa-
tion for some non-trivial examples, like (count-strings shfe).

22.3.4 Collapsing two functions into one

We’ve written functions before that depended on auxiliary functions; the only new thing
here is that the auxiliary function depends on the original function in turn. And it’s
perfectly natural that when we’re working with two different data types, we have to write
two different functions. However, the only place count-strings-on-nelos is used is in-
side count-strings, so if we prefer, we can replace the call to count-strings-on-nelos

with its body:

(define (count-strings L)

; L a los

(cond [(empty-list? L) 0]

[(nelos? L)

; L a nelos

; (nelos-first L) a string

; (nelos-rest L) a los

; (count-strings (nelos-rest L)) a number

(+ 1 (count-strings (nelos-rest L)))]

))

Note that now the count-strings function calls itself. Some of you may have written
functions in the past that called themselves, and the most likely result was something
called an “infinite loop”: the function called itself to answer the same question, then
called itself to answer the same question, then called itself to answer the same question,
and never accomplished anything. What we’ve done here is different: rather than calling
the function to answer the same question, we’re calling it to answer a smaller question,
then using the result to figure out the answer to the original question.

The single-function solution is usually shorter and simpler, but later on we’ll encounter
situations in which we have to use the two-function solution, so you should know both
approaches.

In order to write functions on lists as a single function rather than two, we must
likewise collapse the two templates into one:

22.4. THE WAY WE REALLY DO LISTS 317

#|

(define (function-on-los L)

; L a los

(cond [(empty-list? L) ...]

[(nelos? L)

; L a nelos

; (nelos-first L) a string

; (nelos-rest L) a los

; (function-on-los (nelos-rest L)) whatever this returns

...]))

|#

22.4 The way we really do lists

The approach taken in Section 22.3 works, but it’s rather awkward to work with. Lists
are so common and useful that they’re built into Racket (and some other languages). In
reality, most Racket programmers use the built-in list functions rather than defining a
list data type themselves.

As in section 22.3, we’ll define a list of strings for concreteness. You can also define a
list of numbers, or booleans, or even lists similarly. We’ll use “los” as shorthand for “list
of strings”.

22.4.1 Data definitions

Recall our first fact about lists: “a list [of strings] is either empty or non-empty.” This
is a definition by choices, with two choices. It tells us that for any function that takes in
a list of strings, we’ll need an empty test case and at least one non-empty test case. (In
fact, we’ll usually want at least three test cases: an empty example, an example of length
1, and at least one longer list.) It also tells us that the body of a function on lists of
strings will probably involve a two-way cond, deciding between the empty and non-empty
cases:

318 CHAPTER 22. LISTS

#|

(define (function-on-los L)

; L a list of strings

(cond [... ...]

[... ...]

))

|#

The second fact about lists is “An empty list has no parts.” Racket provides a built-in
constant empty and a built-in function empty? to represent and recognize empty lists,
respectively.

; empty : a constant that stands for an empty list

; empty? : anything -> boolean

Now for the third fact about lists: “A non-empty list has two parts: the first element
and the rest.” Let’s make it more specific: “A non-empty list of strings has two parts: the
first element (a string) and the rest (a list of strings).” This seems to call for definition
by parts. For convenience, Racket has a built-in data type to represent a non-empty list.
Since putting one non-empty list inside another is the usual way to “construct” a large
list, we use the word cons (short for “construct”). Racket provides the following built-in
functions:

; A non-empty list, or cons, has two parts:

; first (whatever type the elements are) and

; rest (a list)

; cons : element list -> non-empty-list

; first : non-empty-list -> element

; rest : non-empty-list -> list

; cons? : anything -> boolean

With this information, we can write the complete data definition, with input templates
for both los and nelos, fairly concisely:

22.4. THE WAY WE REALLY DO LISTS 319

; A los is either empty or a nelos

#|

(define (function-on-los L)

; L a list of strings

(cond [(empty? L) ...]

[(cons? L) (function-on-nelos L)]

))

|#

; A nelos looks like

; (cons string los)

#|

(define (function-on-nelos L)

; L a cons

; (first L) a string

; (rest L) a los

; (function-on-los (rest L)) whatever this returns

...)

|#

(We’ll come back to the output template in Chapter 23.)
Note that because the los and nelos types refer to one another, the function-on-los

and function-on-nelos templates refer to one another in a corresponding way.

22.4.2 Examples of the los data type

As with any new data type, we should make up some examples to make things feel more
real and concrete. We have empty to provide an empty example. We’ll need to build
non-empty examples using cons, which (in our list-of-strings example) expects a string
and a list of strings. The only list of strings we already have is empty, so we’ll use that:

(define english (cons "hello" empty))

This represents a list of strings whose first element is "hello" and whose rest is an empty
list, so there is no second element.

Suppose we wanted a list with "bonjour" as its first element and "hello" as the
second and last. This is easy by calling cons:

320 CHAPTER 22. LISTS

(define fr-eng (cons "bonjour" english))

We can go on to build even longer lists, as shown in Figure 22.2.

Figure 22.2: Lists of strings, using built-in Racket features
; An empty list has no parts.

; empty : a constant

; empty? : anything -> boolean

; A cons has two parts: first (a string) and rest (a los).

; cons : string los -> nelos

; first : nelos -> string

; rest : nelos -> los

; cons? : anything -> boolean

#|

(define (function-on-nelos L)

; L a nelos

; (first L) a string

; (rest L) a los

; (function-on-los (rest L)) whatever this returns

...)

|#

; A los is either an empty-list or a nelos.

#|

(define (function-on-los L)

; L a los

(cond [(empty-list? L) ...]

[(nelos? L) (function-on-nelos L)]

))

|#

(define english (cons "hello" empty))

(define fr-eng (cons "bonjour" english))

(define heb-fr-eng (cons "shalom" fr-eng))

(define shfe (cons "buenos dias" heb-fr-eng))

(define ashfe (cons "salaam" shfe))

(define dwarfs (cons "sleepy" (cons "sneezy" (cons "dopey" (cons "doc"

(cons "happy" (cons "bashful" (cons "grumpy" empty))))))))

22.4. THE WAY WE REALLY DO LISTS 321

Practice Exercise 22.4.1 Copy Figure 22.2 into your Definitions pane (it should be
available as a download from the textbook Web site), and try the following expressions.
For each one, predict what it will return before hitting ENTER, and see whether you were
right. If not, figure out why it came out as it did.

(empty? empty)

(cons? empty)

(first empty)

(rest empty)

(empty? english)

(cons? english)

(first english)

(rest english)

(empty? (rest english))

(cons? fr-eng)

(first fr-eng)

(rest fr-eng)

(cons? (rest fr-eng))

(first (rest fr-eng))

(rest (rest fr-eng))

(cons? ashfe)

(first ashfe)

(rest ashfe)

(first (rest (rest ashfe))))

(first (rest (rest (rest dwarfs))))

22.4.3 Writing a function on los

How would we write a function on the los data type? In a way, this is the wrong question:
our templates above show two functions, function-on-los and function-on-nelos, which
depend on one another, so when we write a specific function, it too will probably consist
of two functions that depend on one another.

Worked Exercise 22.4.2 Define a function count-strings that takes in a los and re-
turns how many strings are in it: 0 for an empty list, 1 for a list of one element, and so
on.

Solution: We’ll write two functions: one that works on a los, and one that works on a
nelos.

Contracts:

; count-strings : los -> number

; count-strings-on-nelos : nelos -> number

The data analysis is already done.

Test cases:

322 CHAPTER 22. LISTS

(check-expect (count-strings empty) 0)

(check-expect (count-strings english) 1)

(check-expect (count-strings fr-eng) 2)

(check-expect (count-strings ashfe) 5)

(check-expect (count-strings dwarfs) 7)

; can’t call (count-strings-on-nelos empty)

; because empty isn’t a nelos

(check-expect (count-strings-on-nelos english) 1)

(check-expect (count-strings-on-nelos fr-eng) 2)

(check-expect (count-strings-on-nelos ashfe) 5)

(check-expect (count-strings-on-nelos dwarfs) 7)

Skeletons and Inventories:

Conveniently, we already have templates that do most of the work for us:

(define (count-strings L)

; L a los

(cond [(empty? L) ...]

[(cons? L) (count-strings-on-nelos L)]

))

(define (count-strings-on-nelos L)

; L a nelos

; (first L) a string

; (rest L) a los

; (count-strings (rest L)) a number

...)

Note that count-strings and count-strings-on-nelos refer to one another in the
same way function-on-los and function-on-nelos refer to one another, which in
turn corresponds to the way los and nelos refer to one another. The “main” function,
the one we’re really interested in, is count-strings, but we need a helper function
count-strings-on-nelos.

Now we just need to fill in everywhere that there’s a “. . . ”. The first one, the answer
in the (empty? L) case, is easy: an empty list has a length of 0. (We could write a
count-strings-on-empty-list function to do this, but that seems like too much work
just to get the answer 0.)

(define (count-strings L)

; L a los

(cond [(empty? L) 0]

[(cons? L) (count-strings-on-nelos L)]

))

The other “. . . ” is the body of count-strings-on-nelos. From the inventory, we have
an expression for the number of strings in the rest of the list. So how many strings are
there in the whole list? If you see immediately how to do this, great; if not, let’s try an
inventory with values. We’ll pick a moderately complicated example:

22.4. THE WAY WE REALLY DO LISTS 323

(define (count-strings-on-nelos L)

; L a nelos (cons "a" (cons "b" (cons "c" empty)))

; (first L) a string "a"

; (rest L) a los (cons "b" (cons "c" empty))

; (count-strings (rest L)) a number 2

; right answer a number 3

How could you get the right answer, 3, from the things above it? The one that most
closely resembles 3 is 2; you can get 3 from 2 by adding 1. This suggests the body

(define (count-strings-on-nelos L)

; L a nelos (cons "a" (cons "b" (cons "c" empty)))

; (first L) a string "a"

; (rest L) a los (cons "b" (cons "c" empty))

; (count-strings (rest L)) a number 2

; right answer a number 3

(+ 1 (count-strings (rest L))))

Does this make sense? It says the number of strings in the whole list is one more than
the number of strings in the rest of the list, which is certainly true.

Run the test cases, and they should all work. Use the Stepper to watch the computa-
tion for some non-trivial examples, like (count-strings shfe).

22.4.4 Collapsing two functions into one

We’ve written functions before that depended on auxiliary functions; the only new thing
here is that the auxiliary function depends on the original function in turn. And it’s
perfectly natural that when we’re working with two different data types, we have to write
two different functions. However, the only place count-strings-on-nelos is used is in-
side count-strings, so if we prefer, we can replace the call to count-strings-on-nelos

with its body:

(define (count-strings L)

; L a los

(cond [(empty? L) 0]

[(cons? L)

; L a nelos

; (first L) a string

; (rest L) a los

; (count-strings (rest L)) a number

(+ 1 (count-strings (rest L)))]

))

Note that now the count-strings function calls itself. Some of you may have written
functions in the past that called themselves, and the most likely result was something
called an “infinite loop”: the function called itself to answer the same question, then
called itself to answer the same question, then called itself to answer the same question,
and never accomplished anything. What we’ve done here is different: rather than calling
the function to answer the same question, we’re calling it to answer a smaller question,
then using the result to figure out the answer to the original question.

324 CHAPTER 22. LISTS

SIDEBAR:

Computer scientists use the word “recursion” for the notion that a function can call
itself, or two or more functions can call one another. Such functions are described
as “recursive”. Generations of computer science students have been mystified by
recursion, often because they try to think through the entire computation at once. It
seems to work better to think about only one level at a time. Concentrate on making
sure that

• the answer to the empty case is right, and

• if you have a correct answer for the rest of the list, you can construct a correct
answer for the whole list.

If this bothers you, here’s a way to justify it. Suppose we wrote a function this way
and it didn’t work correctly, i.e. there were some legal inputs on which it produced
a wrong answer; call these “bad” inputs. In particular, there must be a shortest bad
input. We know the function works correctly on the empty list, so the shortest bad
input must be non-empty, and thus have a “first” and a “rest”. The “rest” of this
list is shorter than the shortest bad input, so it’s not bad, i.e. the function works
correctly on it. We know the function produces a correct answer for the whole list
from a correct answer for the rest of the list. Since the answer on the rest of the
list is correct, that means the answer to the shortest bad input is correct too, which
means this isn’t a “bad” input after all. So the shortest “bad” input can’t be empty,
and it can’t be one item longer than a “good” input, so it can’t exist at all, i.e. the
function is always correct.

In order to write functions on lists as a single function rather than two, we must
likewise collapse the two templates into one:

#|

(define (function-on-los L)

; L a los

(cond [(empty? L) ...]

[(cons? L)

; L a nelos

; (first L) a string

; (rest L) a los

; (function-on-los (rest L)) whatever this returns

...]))

|#

22.5. LOTS OF FUNCTIONS TO WRITE ON LISTS 325

Again, it’s a matter of personal preference whether you solve a problem like this with
two functions that call one another, or one that calls itself; do whichever makes more
sense to you. They both work.

Whether you use two functions that call one another or one function that calls itself,
there will be somewhere that checks whether the list is empty, and returns an answer
without calling itself. This is called the base case of the recursion.

22.5 Lots of functions to write on lists

So far we’ve seen how to solve only one problem on lists, i.e. counting how many strings
are in a list of strings. We’ve seen slightly different definitions depending on whether we
define our own structs or use Racket’s built-in list features, and on whether we write it
as two functions that call one another or one function that calls itself, but it’s still only
one problem. To really get the hang of writing functions on lists, you’ll need to practice
on a number of examples.

I’ve described these examples using Racket’s built-in list features; they could of course
be written to use the empty-list and nelos structures defined in section 22.3, but the
definitions would be longer and harder to understand.

Worked Exercise 22.5.1 Define a data type list-of-numbers (or lon for short), in-
cluding a template for functions operating on lists of numbers. Develop a function
count-numbers that takes in a list of numbers and returns a number.

326 CHAPTER 22. LISTS

Solution: The data definition is similar to that for list-of-strings :

; A list-of-numbers is either

; empty or

; a nelon (non-empty list of numbers).

#|

(define (function-on-lon L)

; L a list of numbers

(cond [(empty? L) ...]

[(cons? L) (function-on-nelon L)]

))

|#

; A nelon looks like

; (cons number lon)

#|

(define (function-on-nelon L)

; L a cons

; (first L) a number

; (rest L) a lon

; (function-on-lon (rest L)) whatever this returns

...)

|#

And not surprisingly, the function definition is quite similar to that of count-strings:

; count-numbers : lon -> number

(check-expect (count-numbers empty) 0)

(check-expect (count-numbers (cons -4 empty)) 1)

(check-expect

(count-numbers (cons 5 (cons 2 (cons 8 (cons 6 empty)))))

4)

(check-expect (count-numbers-on-nelon (cons -4 empty)) 1)

(check-expect

(count-numbers-on-nelon (cons 5 (cons 2 (cons 8 (cons 6 empty)))))

4)

(define (count-numbers L)

; L a lon

(cond [(empty? L) 0]

[(cons? L) (count-numbers-on-nelon L)]

))

(define (count-numbers-on-nelon L)

; L a nelon

; (first L) a string

; (rest L) a lon

; (count-numbers (rest L)) a number

(+ 1 (count-numbers (rest L))))

or, writing it more simply as a single function,

22.5. LOTS OF FUNCTIONS TO WRITE ON LISTS 327

(define (count-numbers L)

; L a lon

(cond [(empty? L) 0]

[(cons? L)

; L a nelon

; (first L) a number

; (rest L) a lon

; (count-numbers (rest L)) a number

(+ 1 (count-numbers (rest L)))]

))

In fact, aside from its name, this function is identical to count-strings: neither one
actually makes any use of the type of the elements, so either one would work on a list
of any type. There’s a built-in Racket function length that does the same job, and now
that you’ve seen how you could have written it yourself, you should feel free to use the
built-in length function.

The next example is more interesting, and depends on the type of the elements.

Worked Exercise 22.5.2 Develop a function add-up that takes in a list of numbers
and returns the result of adding them all together. For example,

(check-expect (add-up (cons 4 (cons 8 (cons -3 empty)))) 9)

Solution: We already have the data definition for list-of-numbers, so we’ll go on to the
function. The contract, examples, skeleton, and inventory are easy:

; add-up : list-of-numbers -> number

(check-expect (add-up empty) 0)

(check-expect (add-up (cons 14 empty)) 14)

(check-expect (add-up (cons 3 (cons 4 empty))) 7)

(check-expect (add-up (cons 4 (cons 8 (cons -3 empty)))) 9)

(define (add-up L)

; L a lon

(cond [(empty? L) ...]

[(cons? L) (add-up-nelon L)]

))

(define (add-up-nelon L)

; L a nelon

; (first L) a number

; (rest L) a lon

; (add-up (rest L)) a number

...)

We need to fill in the two “. . . ” gaps. The answer to the empty case is obviously 0. For
the other “. . . ”, let’s try an inventory with values:

328 CHAPTER 22. LISTS

(define (add-up-nelon L)

; L nelon (cons 4 (cons 8 (cons -3 empty)))

; (first L) number 4

; (rest L) lon (cons 8 (cons -3 empty))

; (add-up (rest L)) number 5

; right answer number 9

...)

So how can you get the right answer, 9, from the things above it? The two lists don’t
look promising, but the numbers 4 and 5 do: we can get 9 by adding the 4 (i.e. (first

L)) and the 5 (i.e. (add-up (rest L))). This suggests the definition

(define (add-up-nelon L)

; L nelon (cons 4 (cons 8 (cons -3 empty)))

; (first L) number 4

; (rest L) lon (cons 8 (cons -3 empty))

; (add-up (rest L)) number 5

; right answer number 9

(+ (first L) (add-up (rest L))))

Does this make sense? Should the sum of a list of numbers be the same as the first
number plus the sum of the rest of the numbers? Of course. Test the function, and it
should work on all legal inputs.

Here’s a shorter single-function version, developed the same way.

(define (add-up L)

; L lon

(cond [(empty? L) 0]

[(cons? L)

; L nelon

; (first L) number

; (rest L) lon

; (add-up (rest L)) number

(+ (first L) (add-up (rest L)))

))

Exercise 22.5.3 Suppose you work for a toy company that maintains its inventory as a
list of strings, and somebody has come into the store looking for a doll. You want to know
whether there are any in stock. Develop a function contains-doll? that takes in a list
of strings and tells whether any of the strings in the list is "doll".

Exercise 22.5.4 Develop a function any-matches? that takes in a string and a list of
strings and tells whether any of the strings in the list is the same as the given string. For
example,

(check-expect

(any-matches? "fnord" (cons "snark" (cons "boojum" empty)))

false)

(check-expect

(any-matches? "fnord" (cons "snark" (cons "fnord" empty)))

true)

22.5. LOTS OF FUNCTIONS TO WRITE ON LISTS 329

Hint: The templates for operating on lists use a conditional to decide whether you’ve
got an empty or a non-empty list. This function needs to make another decision: does
the current string match the target or not? You can do this with another conditional,
or (since this function returns a boolean), you can do it more simply without the extra
conditional.

Exercise 22.5.5 Develop a function count-matches that takes in an object and a list
of objects and tells how many (possibly zero) of the objects in the list are the same as the
given object. For example,
(check-expect

(count-matches "cat" (cons "dog" (cons "cat" (cons "fish"

(cons "cat" (cons "cat" (cons "wombat" empty)))))))

3)

(check-expect

(count-matches 1 (cons 3 (cons 1 (cons 4

(cons 1 (cons 5 (cons 9 empty)))))))

2)

Hint: For this one, you probably will need a nested conditional.
There’s an additional difference: this function is supposed to work on any kind of

object, not just strings. So instead of string=?, you’ll need to use the built-in function
equal?.

Exercise 22.5.6 Develop a function count-votes-for-name that takes in a string (the
name of a candidate) and a list of strings (the votes cast by a bunch of voters) and tells
how many of the voters voted for this particular candidate.

Hint: This is really easy if you re-use previously-written functions.

Exercise 22.5.7 Develop a function count-over that takes in a number and a list
of numbers, and tells how many of the numbers in the list are larger than the specified
number.

Exercise 22.5.8 Develop a function average that takes in a list of numbers and returns
their average, i.e. their sum divided by how many there are. For this problem, you may
assume there is at least one number in the list.

Hint: Not every function on lists can best be written by following the templates . . .

Exercise 22.5.9 Develop a function safe-average that takes in a list of numbers and
returns their average; if the list is empty, it should signal an error with an appropriate
and user-friendly message.

Exercise 22.5.10 Develop a function convert-reversed that takes in a list of num-
bers. You may assume that all the numbers are integers in the range 0-9, i.e. decimal
digits. The function should interpret them as digits in a decimal number, ones place first
(trust me, this actually makes the problem easier!), and returns the number they represent.
For example,
(check-expect

(convert-reversed (cons 3 (cons 0 (cons 2 (cons 5 empty)))))

5203)

Do not use the built-in string->number function for this exercise.

330 CHAPTER 22. LISTS

Exercise 22.5.11 Develop a function multiply-all that takes in a list of numbers and
returns the result of multiplying them all together. For example,
(check-expect (multiply-all (cons 3 (cons 5 (cons 4 empty)))) 60)

Hint: What is the “right answer” for the empty list? It may not be what you think at
first!

Exercise 22.5.12 A “dollar store” used to mean a store where everything cost less than
a dollar. Develop a function dollar-store? that takes in a list of numbers (the prices
of various items), and tells whether the store qualifies as a “dollar store”.

Exercise 22.5.13 Develop a function all-match? that takes in a string and a list of
strings, and tells whether all the strings in the list match the given string. For example,
(check-expect

(all-match? "cat" (cons "cat" (cons "dog" (cons "cat" empty))))

false)

(check-expect

(all-match? "cat" (cons "cat" (cons "cat" empty)))

true)

Exercise 22.5.14 Develop a function general-bullseye that takes in a list of numbers
and produces a white image with black concentric rings at those radii.

Hint: I recommend using an empty image like (circle 0 "solid" "white") as the
answer for the empty case.

Exercise 22.5.15 Develop an animation that displays a bull’s-eye pattern of black
rings on a white background. Each second, an additional ring will be added, three pixels
outside the previous outer ring.

Hint: Use a list of numbers as the model. For your tick handler, write a function that
takes in a list of numbers and sticks one more number onto the front of the list, equal to
three times the length of the existing list.

Exercise 22.5.16 Develop an animation that displays a bull’s-eye pattern, as in Ex-
ercise 22.5.15, but each second, an additional ring will be added at a random radius.

In section 22.4.4, why did we move the body of function-on-nelos inside the body
of function-on-los, rather than the other way around? Because in most cases, we want
the resulting function to work on all lists, including empty. But sometimes it works better
to move function-on-los inside function-on-nelos instead.

Exercise 22.5.17 Develop a function largest that takes in a list of numbers and
returns the largest one.

Hint: This function doesn’t really make sense on an empty list, so the input data type
is really “non-empty list of numbers,” and the simplest test case should be a one-element
list. Since largest doesn’t make sense on an empty list, you should be careful never to
call it on an empty list.

If you use the two-function approach, the “main” function here is the one for non-
empty lists; the one for possibly-empty lists is the helper function. And if you use a

22.5. LOTS OF FUNCTIONS TO WRITE ON LISTS 331

one-function approach, you’ll need to move the function for possibly-empty lists inside
the function for non-empty lists, e.g.

(define (function-on-nelos L)

; (first L) a string

; (rest L) a list

(cond [(empty? (rest L)) ...]

[(cons? (rest L))

; (function-on-nelos (rest L)) whatever this returns

...]))

Exercise 22.5.18 Develop a function count-blocks that takes in a list of numbers,
which may contain some repetitions, and tells how many blocks of repeated numbers there
are. A block is one or more copies of the same number appearing in the list, with no other
numbers in between. For example,

(check-expect (count-blocks

(cons 3 (cons 3 (cons 2 (cons 7 (cons 7 (cons 7

(cons 2 (cons 2 empty)))))))))

4)

because this list has a block of 3’s, then a block of 2’s, then a block of 7’s, then another
block of 2’s: four blocks in all.

Hint: I know of at least two ways to solve this problem. Both involve useful techniques
that you should know; try both.

First, try writing a version of this function that only works on non-empty lists; as in
Exercise 22.5.17, the base case becomes “is the list one element long?”. For one-element
lists, the answer is easy; for longer lists, you know that the list has both a first and a
second element, and can reasonably ask whether they’re the same. Once this works on
all non-empty lists, add an “empty” case.

The other approach is to write a helper function that takes in not only a list of
numbers but also the number we’re “already looking at:” if the list is non-empty, you can
reasonably check whether its first number is the same as the one you’re already looking
at.

Exercise 22.5.19 Develop a function count-even-odd-blocks that takes in a list of
integers and tells how many blocks of consecutive even or consecutive odd numbers there
are. For example,

(check-expect (count-even-odd-blocks

(cons 3 (cons 9 (cons 2 (cons 7 (cons 1 (cons 1

(cons 2 (cons 4 empty)))))))))

4)

because the numbers 3 and 9 form a block of odd numbers; 2 is a block of even numbers;
7, 1, and 1 form a block of odd numbers; and 2 and 4 are a block of even numbers, for
four blocks in all.

Hint: Obviously, this is similar to Exercise 22.5.18, but if you use the “helper function”
approach, it doesn’t need to take in a specific “already seen” number, but only whether the
previous number was even or odd. Instead of passing in the previous number, therefore,
try writing two separate (but similar) helper functions even-helper and odd-helper.

332 CHAPTER 22. LISTS

This approach is a little longer, but it’s a powerful technique that you can use for many
problems in the future. Try it.

SIDEBAR:

There are many problems that call for scanning through a list from left to right,
looking for particular patterns. The above approach is one that computer scientists
call a finite-state machine or finite-state automaton.

Exercise 22.5.20 Develop a function random-element that takes in a non-empty list
and returns a randomly chosen element of it. Ideally, each element should be equally likely
to be chosen.

Hint: You’ll probably need the built-in list-ref function, which takes in a non-empty
list and a number, and returns the element that far away from the beginning of the list.
For example,
(check-expect

(list-ref (cons "a" (cons "b" (cons "c" empty))) 0)

"a")

(check-expect

(list-ref (cons "a" (cons "b" (cons "c" empty))) 1)

"b")

(check-expect

(list-ref (cons "a" (cons "b" (cons "c" empty))) 2)

"c")

list-ref produces an error message if you give it too large a number, so make sure you
don’t do that.

Since random-element is unpredictable, you won’t be able to test it with check-expect,
but you can call it a bunch of times with the same list and see whether each element is
chosen roughly the same number of times.

Warning: The list-ref function is useful when you need to get the element of a list
at an arbitrary numeric position. That’s actually not a common thing to need; 95% of
the time, you’ll be better off using first and rest.

Exercise 22.5.21 Write a data definition, including templates, for a list of lists of
strings. Write several examples of this data type.

Develop a function total-length that takes in a list of lists of strings and returns
the total number of strings appearing in all the lists put together.

Develop a function longest that takes in a non-empty list of lists of strings and
returns the longest of the lists. If there are two or more of the same maximum length, it
may return either one at your choice.

22.6 Lists of structs

As we’ve seen, writing a function to work on a list of numbers is almost exactly like
writing a function to work on a list of strings. Not surprisingly, writing a function to
work on a list of posns, or employees, or other types like that isn’t much harder.

Worked Exercise 22.6.1 Develop a function any-on-diag? that takes in a list of
posn structures and tells whether any of them are “on the diagonal,” i.e. have x and y

coordinates equal to one another.

22.6. LISTS OF STRUCTS 333

Solution: The data definition is straightforward:

; A list-of-posns is either

; empty or

;; a nelop (non-empty list of posns).

#|

(define (function-on-lop L)

; L a list of posns

(cond [(empty? L) ...]

[(cons? L) (function-on-nelop L)]

))

|#

; A nelop looks like

; (cons posn lop)

#|

(define (function-on-nelop L)

; L a cons

; (first L) a posn

; (posn-x (first L)) a number

; (posn-y (first L)) a number

; (rest L) a lop

; (function-on-lop (rest L)) whatever this returns

...)

|#

For test cases, we need an empty list and at least two or three non-empty lists: at
least one with right answer true and at least one with right answer false.

(check-expect (any-on-diag? empty) false)

(check-expect (any-on-diag? (cons (make-posn 5 6) empty)) false)

(check-expect (any-on-diag? (cons (make-posn 5 5) empty)) true)

(check-expect (any-on-diag? (cons (make-posn 5 6)

(cons (make-posn 19 3) empty)))

false)

(check-expect (any-on-diag? (cons (make-posn 5 6)

(cons (make-posn 19 19) empty)))

true)

(check-expect (any-on-diag? (cons (make-posn 5 5)

(cons (make-posn 19 3) empty)))

true)

334 CHAPTER 22. LISTS

The function templates give us a good start on writing the any-on-diag? function:

(define (any-on-diag? L)

; L a list of posns

(cond [(empty? L) ...]

[(cons? L) (any-on-diag-nelop? L)]

))

(define (any-on-diag-nelop? L)

; L a cons

; (first L) a posn

; (posn-x (first L)) a number

; (posn-y (first L)) a number

; (rest L) a lop

; (any-on-diag? (rest L)) a boolean

...)

The right answer for the empty list is false (that was one of our test cases), so we can fill
that in immediately. And the obvious question to ask about the posn is “are the x and y

coordinates equal?”, i.e. (= (posn-x (first L)) (posn-y (first L))), so we’ll add
that to the template too:

(define (any-on-diag? L)

; L a list of posns

(cond [(empty? L) false]

[(cons? L) (any-on-diag-nelop? L)]

))

(define (any-on-diag-nelop? L)

; L a cons

; (first L) a posn

; (posn-x (first L)) a number

; (posn-y (first L)) a number

; (= (posn-x (first L)) (posn-y (first L))) a boolean

; (rest L) a lop

; (any-on-diag? (rest L)) a boolean

...)

Now let’s try an inventory with values. In fact, since the function has to return
a boolean, we’ll do two inventories-with-values, one returning true and one returning
false:

22.6. LISTS OF STRUCTS 335

(define (any-on-diag-nelop? L)

; L a cons (cons (make-posn 5 6) (cons (make-posn 19 3) empty))

; (first L) a posn (make-posn 5 6)

; (posn-x (first L)) a number 5

; (posn-y (first L)) a number 6

; (= (posn-x (first L)) (posn-y (first L))) a boolean false

; (rest L) a lop (cons (make-posn 19 3) empty)

; (any-on-diag? (rest L)) a boolean false

; right answer a boolean false

...)

(define (any-on-diag-nelop? L)

; L a cons (cons (make-posn 5 5) (cons (make-posn 19 3) empty))

; (first L) a posn (make-posn 5 5)

; (posn-x (first L)) a number 5

; (posn-y (first L)) a number 5

; (= (posn-x (first L)) (posn-y (first L))) a boolean true

; (rest L) a lop (cons (make-posn 19 3) empty)

; (any-on-diag? (rest L)) a boolean false

; right answer a boolean true

...)

What expression could we fill in for the “. . . ” that would produce the right answer in
both cases? Well, the right answer is a boolean, and there are two booleans above it in
the inventory. The most common ways to combine booleans to get another boolean are
and and or. In this case or gives the right answer:

(define (any-on-diag-nelop? L)

; L cons

; (first L) posn

; (posn-x (first L)) number

; (posn-y (first L)) number

; (= (posn-x (first L)) (posn-y (first L))) boolean

; (rest L) lop

; (any-on-diag? (rest L)) boolean

(or (= (posn-x (first L)) (posn-y (first L)))

(any-on-diag? (rest L))))

Test the function(s), and you should get correct answers.

If you prefer to solve this as a single function, the process is similar, but the end result
is

336 CHAPTER 22. LISTS

(define (any-on-diag? L)

; L list of posns

(cond[(empty? L) false]

[(cons? L)

; L a cons

; (first L) posn

; (posn-x (first L)) number

; (posn-y (first L)) number

; (= (posn-x (first L)) (posn-y (first L))) boolean

; (rest L) lop

; (any-on-diag? (rest L)) boolean

(or (= (posn-x (first L)) (posn-y (first L)))

(any-on-diag? (rest L)))

]))

Exercise 22.6.2 Develop a function any-over-100K? that takes in a list of employee
structures (from Exercise 21.2.1) and tells whether any of them earn over $100,000 per
year.

Exercise 22.6.3 Develop a function lookup-by-name that takes in a string and a
list of employee structures (from Exercise 21.2.1) and returns the first one whose name
matches the string. If there is none, it should return false.

Exercise 22.6.4 Develop a function total-votes that takes in a list of candidate
structures (from Exercise 21.3.3) and returns the total number of votes cast in the election.

Exercise 22.6.5 Develop a function avg-votes that takes in a list of candidate

structures and returns the average number of votes for each candidate.

Hint: This doesn’t have a reasonable answer if there are no candidates. How do you
want to handle this case?

Exercise 22.6.6 Develop a function winner that takes in a list of candidate struc-
tures and returns the one with the most votes. If there are two or more tied for first place,
you can return whichever one you wish.

Hint: This doesn’t have a reasonable answer if there are no candidates. How do you
want to handle this case?

Exercise 22.6.7 Develop an animation similar to Exercise 20.6.4, but every few sec-
onds a dot is added to the screen (in addition to whatever dots are already there), and if
you click inside any of the existing dots, the game ends. (The game will be easy to win,
since pretty soon the screen fills with dots so it’s hard not to hit one.)

Hint: Use a list of posns as the model.

22.7. STRINGS AS LISTS 337

22.7 Strings as lists

Worked Exercise 22.7.1 Develop a function count-e that takes in a string and returns
the number of times the letter “e” appears in it. You may assume there are no capital
letters (i.e. you don’t need to count “E”).

Solution: The contract and examples are fairly straightforward:

; count-e : string -> number

(check-expect (count-e "") 0)

(check-expect (count-e "a") 0)

(check-expect (count-e "e") 1)

(check-expect (count-e "ab") 0)

(check-expect (count-e "ae") 1)

(check-expect (count-e "ea") 1)

(check-expect (count-e "ee") 2)

(check-expect

(count-e "Tweedledum and Tweedledee were going to a fair")

10)

But how do we write the function?

In a way, this looks similar to the count-matches function. Intuitively, a string is a
sequence of characters, which “feels” sort of like a list. But we don’t have a template for
writing functions on a string, looking at each letter one at a time.

There are two ways to handle this. One is to develop such a template so we can write
functions that operate directly on strings. The other is to convert a string into a list and
then use functions on lists to handle it. Both approaches are useful to know, so let’s try
both.

A template for strings

To develop a template for operating on strings, we’ll proceed by analogy with lists. A
string is either empty or non-empty; if it’s non-empty, it has a first character and “the
rest”.

If only we had built-in functions analogous to empty?, cons?, first, and rest. . .Wait:
Exercise 13.2.4 defines a function that tells whether a string is empty. We could easily
write a non-empty-string? function from it using not (or we could just use else, and
not define non-empty-string? at all). Exercise 19.3.3 defines a first-char function
analogous to first, while exercises 9.2.3 and 19.3.2 define a chop-first-char function
analogous to rest. So with these, the template is easy:

#|

(define (function-on-string str)

; str a string

(cond [(empty-string? str) ...]

[(non-empty-string? str) (function-on-nes str)]

))

|#

338 CHAPTER 22. LISTS

#|

(define (function-on-nes str)

; str non-empty string

; (first-char str) length-1 string

; (chop-first-char str) string

; (function-on-string (chop-first-char str)) whatever

...)

|#

or, collapsing the two functions into one,

#|

(define (function-on-string str)

(cond [(empty-string? str) ...]

[(non-empty-string? str)

; str non-empty string

; (first-char str) length-1 string

; (chop-first-char str) string

; (function-on-string (chop-first-char str)) whatever

...]))

|#

With this template, the solution is pretty easy:
(define (count-e str)

(cond [(empty-string? str) 0]

[(non-empty-string? str)

; str non-empty string

; (first-char str) length-1 string

; (chop-first-char str) string

; (count-e (chop-first-char str))

(cond [(string=? (first-char str) "e")

(+ 1 (count-e (chop-first-char str)))]

[else (count-e (chop-first-char str))])]))

The char data type

Before we can discuss the other approach, we need to learn about another data type: char.
Strings in Racket and most other languages are built from characters, which are actually
another data type you can work with directly. There are built-in functions char=?, which
compares two characters to see if they’re the same, and char?, which checks whether
something is a character at all.

Recall that to type in a string, regardless of length, you surround it in double-quotes.
To type in a character, you put #\ in front of it. For example, the first (and only)
character in the string "e" is #\e; the third character in the string "5347" is #\4; and
the third character in the string "Hi there" is #\ , which can also be written more
readably as #\space.)

Converting strings to lists

There’s a built-in function string->list which converts a string into a list of chars. So
using this approach, we could define count-e very simply as follows:

(define (count-e str)

(count-matches #\e (string->list str)))

22.8. ARBITRARILY NESTED LISTS 339

Note that count-matches works on a list of any type of object, including char.

I recommend trying some of the following problems using the template, and some
using conversion to a list, so you’re comfortable using both techniques.

Exercise 22.7.2 Develop a function count-vowels that takes in a string and returns
how many vowels (any of the letters “a”, “e”, “i”, “o”, or “u”) it contains. You may
assume there are no capital letters.

Exercise 22.7.3 Develop a function has-spaces? that takes in a string and tells
whether it contains any blanks.

Exercise 22.7.4 Develop a function count-words that takes in a string and tells how
many words are in it. A “word” is a sequence of letters; whether it’s one letter or ten, it
counts as a single word. Note also that there might be punctuation marks, spaces, multiple
spaces, numbers, etc. in between words.

Hint: This problem is similar to Exercise 22.5.19. In addition, you’ll probably want the
built-in function char-alphabetic?. Look it up in the Help Desk.

22.8 Arbitrarily nested lists

In Exercise 22.5.21 we saw that the elements of a list can themselves be lists (of strings,
numbers, etc.). There is also no rule that all the elements of a list are the same type: one
can have a list of which some elements are strings, others are lists of strings, and others
even lists of lists of strings. For example, suppose we were working with English sentences,
and had decided to represent a sentence as a list of words, e.g. the sentence “Bob likes
Mary” could be stored in the computer as (cons "Bob" (cons "likes" (cons "Mary"

empty))). But how should we represent a sentence like “Jeff said “Bob likes Mary”
yesterday”? The thing that Jeff said is in itself a whole sentence, so it would be nice to
represent it the same way we represent sentences . . . but it fits into the grammar of the
whole sentence in exactly the same way as if he had said only one word.

(cons "Jeff" (cons "said" (cons

(cons "Bob" (cons "likes" (cons "Mary" empty)))

(cons "yesterday" empty))))

Exercise 22.8.1 Write a data definition, including templates, for a nested string
list, in which each element may be either a string or another nested string list.

Exercise 22.8.2 Translate the following English sentences into nested string lists, using
a list to represent each quotation.

• “We watched “Rudolph the Red-Nosed Reindeer” and “Frosty the Snowman” on
Christmas Eve.”

• “ “This is silly,” said Mary.”

• “Grandpa said “I’ll read you a book called “The Princess Bride”, one of my favorites.
“Once upon a time, there was a beautiful princess named Buttercup. The stable-boy,
Wesley, was in love with her, but never said anything but “As you wish.” ” ” The
boy was already asleep.”

340 CHAPTER 22. LISTS

Exercise 22.8.3 Ingredient lists on food packaging sometimes get deeply nested. I found
a package of ice cream with the following ingredients list (I am not making this up!) :

Milk, skim milk, cream, hazelnut swirl (praline paste (hazelnuts, sugar,
milk chocolate (sugar, cocoa butter, milk, chocolate, natural flavor, soy lecithin),
bittersweet chocolate (sugar, chocolate, cocoa butter, butter oil, natural fla-
vor, soy lecithin)), corn oil, powdered sugar (sugar, corn starch), dark choco-
late (sugar, chocolate, cocoa butter, butter oil, natural flavor, soy lecithin),
corn starch, cocoa processed with alkali, coconut oil, mono- and di-glycerides,
salt, soy lecithin), sugar, chocolate truffle cake (semi-sweet chocolate (sugar,
chocolate, cocoa butter, soy lecithin), cream, chocolate cookie crumbs (enriched
flour (flour, niacin, reduced iron, thiamine mononitrate, riboflavin, folic acid),
sugar, partially hydrogenated soybena, cottonseed, and canola oil, cocoa pro-
cessed with alkali, high fructose corn syrup, yellow corn flour, chocolate, salt,
dextrose, baking soda, soy lecithin), corn syrup, butter, chocolate, sugar, nat-
ural flavor), bittersweet chocolate (sugar, chocolate, cocoa butter, butter oil,
natural flavor, soy lecithin), cocoa processed with alkali, egg yolks, natural
flavor, guar gum, carob bean gum, carrageenan, dextrose

We could represent this in Racket as follows:

(define milk-chocolate (cons "sugar" (cons "cocoa-butter"

(cons "milk" (cons "chocolate" (cons "natural flavor"

(cons "soy lecithin" empty)))))))

(define bittersweet-chocolate (cons "sugar" (cons "chocolate"

(cons "cocoa butter" (cons "butter oil" (cons

"natural flavor" (cons "soy lecithin" empty)))))))

(define praline-paste (cons "hazelnuts" (cons "sugar"

(cons milk-chocolate (cons bittersweet-chocolate empty)))))

...

Note how I’ve defined Racket variables for the ingredients that have ingredient lists of
their own.

Finish translating this ingredient list to Racket.

Exercise 22.8.4 Develop a function count-strings-nested that takes in a nested
string list and returns the total number of simple strings in it, no matter how many levels
of nested lists they’re inside.

Exercise 22.8.5 Develop a function max-nesting-depth that takes in a nested string
list and returns its maximum nesting depth: empty has a nesting depth of 0, a list of
strings has a nesting depth of 1, a list that contains some lists of strings has a nesting
depth of 2, etc.

It can be difficult to read and write such nested lists and the test cases for Exer-
cises 22.5.21, 22.8.1, 22.8.3, 22.8.4, and 22.8.5. In Section 23.3 we’ll learn a more compact
notation for lists that makes this easier.

22.9 Review of important words and concepts

Whereas a structure collects a fixed number of related pieces of information into one
object, a list allows you to collect a variable number of related pieces of information into

22.10. REFERENCE 341

one object. The list data type is defined by combining techniques we’ve already seen:
definition by choices (is it empty or not?) and definition by parts (if it’s non-empty, it
has a first and a rest, which is itself a list).

We already know how to write functions on data types defined by choices, and defined
by parts; the new feature is that since a list really involves two interdependent data types,
a function on lists is often written as two interdependent functions. However, since one
of these is generally only used in one place in the other, we can often make the program
shorter and simpler by combining the two functions into one that calls itself on the rest
of the list.

A list can contain any kind of data: numbers, strings, structs, or even other lists.
The template for functions that work on lists is almost the same for all of these; the only
difference is what you can do with (first the-list). In particular, if the first element
of a list is itself a list, you may need to call the same function on it.

Operating on strings is much like operating on lists. A function that takes in a string
can test whether it’s the empty string or not, extract its first character and the remaining
characters, and so on . . . or it can use the built-in function string->list to convert the
whole string into a list of characters, and then use the usual list template to work with
this list of characters.

22.10 Reference: Built-in functions on lists

This chapter introduced the following built-in constants and functions:

• empty

• empty?

• cons

• first

• rest

• cons?

• string->list

• char=?

• char?

• char-alphabetic?

• list-ref

