
354

Chapter 24

Whole numbers

24.1 What is a whole number?

A whole number1 is a non-negative integer: any of the numbers 0, 1, 2, 3,
What does the “. . .” in the above definition mean? It basically means “and so on,” or

“you know the rest.” But what if you were talking to somebody who really didn’t “know
the rest”? Perhaps an alien from another planet, whose mathematical background was
so different from yours that he/she/it couldn’t fill in the “and so on”. How would you
define whole numbers to someone who didn’t already know what whole numbers were?

In the 1880’s, two mathematicians named Richard Dedekind and Giuseppe Peano
addressed this problem more or less as follows:

• 0 is a whole number

• If α is a whole number, then so is S(α)

The S was intended to stand for “successor” — for example, 1 is the successor of 0, and
2 is the successor of 1. However, the above definition doesn’t require that you already
know what 0, or 1, or 2, or “successor”, or “plus” mean.

24.1.1 Defining wholes from structs

Imagine that Racket didn’t already know about whole numbers. We could define them
as follows:
; A built-whole is either 0 or (S built-whole).

(define-struct successor [previous])

(define (S x) ; shorter name for convenience

(make-successor x))

(define (P x) ; shorter name for convenience

(successor-previous x))

(I use the name built-whole to distinguish it from “ordinary wholes”, which we’ll use in
the next section.)

We would then start constructing examples of the data type:

1Actually, I was brought up to call these “natural numbers”, and Racket includes a natural? function

to tell whether something is one of them. But some books define “natural numbers” to start at 1 rather

than 0. By contrast, everybody seems to agree that the “whole numbers” start at 0, so that’s the term

I’ll use in this book.

355

356 CHAPTER 24. WHOLE NUMBERS

• 0

• (S 0), which “means” 1

• (S (S 0)), which “means” 2

• (P (S (S 0))), another way to represent 1

• (S (S (S (S (S 0))))), which “means” 5

and so on.

The above definition should remind you of the definition of a list in Chapter 22: a list
is either empty or (cons object list). We defined lists by choices; one of the choices
had two parts (which we could get by using first and rest), one of which was itself a
list.

This combination of def-
inition by choices and by parts led us to a standard way to write functions on lists.

Following that analogy, how would one write functions on this built-whole data type?
The data type is defined by two choices, one of which has one part, which is another
built-whole. So the template (collapsed into a single function) looks like

(define (function-on-built-whole n)

(cond [(equal? n 0) ...]

[(successor? n)

; n successor

; (P n) built-whole

; (function-on-built-whole (P n)) whatever this returns

]))

24.1. WHAT IS A WHOLE NUMBER? 357

Worked Exercise 24.1.1 Develop a function spams that takes in a built-whole and
returns a list with that many copies of the string "spam".

Solution: The contract is clearly

; spams : built-whole -> list-of-string

Since the data type has two choices, we need to make sure we’ve got an example of each,
and a more complex example

(check-expect (spams 0) empty)

(check-expect (spams (S 0)) (list "spam"))

(check-expect (spams (S (S (S 0)))) (list "spam" "spam" "spam"))

For the function skeleton, we’ll start by copying the single-function template from
above, changing the function name:

(define (spams n)

(cond [(equal? n 0) ...]

[(successor? n)

; n successor

; (P n) built-whole

; (spams (P n)) list of strings

]))

The answer in the 0 case is obviously empty. For the non-zero case, let’s try an
inventory with values:

(define (spams n)

(cond [(equal? n 0) empty]

[(successor? n)

; n successor 3

; (P n) built-whole 2

; (spams (P n)) list of strings (list "spam" "spam")

; right answer list of strings

; (list "spam" "spam" "spam")

]))

358 CHAPTER 24. WHOLE NUMBERS

The obvious way to get from (list "spam" "spam") to (list "spam" "spam" "spam")

is by cons-ing on another "spam", so . . .

(define (spams n)

(cond [(equal? n 0) empty]

[(successor? n)

; n successor 3

; (P n) built-whole 2

; (spams (P n)) list of strings (list "spam" "spam")

; right answer list of strings

; (list "spam" "spam" "spam")

(cons "spam" (spams (P n)))

]))

Test this on the examples, and it should work. Make up some examples of your own;
does it do what you expect?

SIDEBAR:

The word “spam” today means “commercial junk e-mail”. Have you ever wondered
how it got that meaning?

“Spam” was originally a brand name for a “Spiced Ham” product sold by the
Hormel meat company. In 1970, the British TV show “Monty Python’s Flying Cir-
cus” aired a comedy sketch about a restaurant that was peculiar in two ways: first,
every item on its menu included Spam, and second, one table of the restaurant was
occupied by Vikings who, on several occasions during the sketch, started singing
“Spam, spam, spam, spam . . . ”

In 1970, there was no such thing as e-mail. By 1980, e-mail was a well-known
phenomenon, although not many people had it, and comics could start joking “If we
have electronic mail, pretty soon we’ll have electronic junk mail.” By 1990, it was
no longer a joke but a nuisance. Legend has it that somebody (I don’t know who or
when — probably in the 1980’s) was going through his/her inbox deleting junk mail
and muttering “junk . . . junk . . . junk . . . ” when the Monty Python sketch popped
into his/her head and (s)he replaced the word “junk” with the word “spam”. And
the rest is history.

Exercise 24.1.2 Develop a function copies that takes in a string and a built-whole,
and produces a list of that many copies of the string.

Exercise 24.1.3 Develop a function whole-value that takes in a built-whole and
returns the ordinary number that it “means”. For example,

(check-expect (whole-value 0) 0)

(check-expect (whole-value (S 0)) 1)

(check-expect (whole-value (P (S (S (S (S (S 0))))))) 4)

24.1.2 Wholes, the way we really do it

One can do a lot with this definition of wholes, but writing (S (S (S (S (S 0))))) for
5 is a royal pain. In fact, Racket already knows about numbers, including whole numbers,
so we can use Racket’s predefined arithmetic operations.

24.1. WHAT IS A WHOLE NUMBER? 359

A whole is either 0 or (add1 whole).

We can replace
(equal? n 0) with the predefined (zero? n) or (= n 0);
(S n) with the predefined (add1 n) or (+ n 1);
(P n) with the predefined (sub1 n) or (- n 1); and
(successor? n) with the predefined (positive? n) or > n 0).

The resulting template looks like

(define (function-on-whole n)

(cond [(= n 0) ...]

[(> n 0)

; n positive whole

; (- n 1) whole

; (function-on-whole (- n 1)) whatever this returns

]))

Worked Exercise 24.1.4 Re-write the spams function of Exercise 24.1.1 to work on
ordinary, built-in whole numbers.

Solution: The contract changes to take in an ordinary whole number:

; spams : whole-number -> list-of-strings

360 CHAPTER 24. WHOLE NUMBERS

The examples change to use ordinary number notation:

(check-expect (spams 0) empty)

(check-expect (spams 1) (list "spam"))

(check-expect (spams 3) (list "spam" "spam" "spam"))

The function definition is exactly the same as before, but replacing the built-whole func-
tions with standard Racket arithmetic functions:

(define (spams n)

(cond [(= n 0) empty]

[(> n 0)

; n positive whole 3

; (- n 1) whole 2

; (spams (- n 1)) list of strings(list "spam" "spam")

; right answer list of strings

; (list "spam" "spam" "spam")

(cons "spam" (spams (- n 1)))

]))

Try this and make sure it still works.

Exercise 24.1.5 Re-write the copies function of Exercise 24.1.2 to take in a string
and an (ordinary) whole number.

Exercise 24.1.6 Develop a function count-down that takes in an (ordinary) whole
number and produces a list of the whole numbers from it down to 0. For example,

(check-expect (count-down 4) (list 4 3 2 1 0))

Exercise 24.1.7 Develop a function add-up-to that takes in a whole number and
returns the sum of all the whole numbers up to and including it.

Hint: The formula n(n+1)/2 solves the same problem, so you can use it to check your
answers. But you should write your function by actually adding up all the numbers, not
by using this formula.

Exercise 24.1.8 Develop a function factorial that takes in a whole number and
returns the product of all the whole numbers from 1 up to and including it.

Hint: What is the “right answer” for 0? There are at least two possible ways to answer
this: you could decide that the function has no answer at 0 (so the base case is at 1,
not 0), or you could pick an answer for 0 so that the other answers all come out right.
Mathematicians generally choose the latter.

Exercise 24.1.9 Develop a function fibonacci that takes in a whole number n and
produces the n-th Fibonacci number. The Fibonacci numbers are defined as follows: the
0-th Fibonacci number is 0, the 1st Fibonacci number is 1, and each subsequent Fibonacci
number is the sum of the previous two Fibonacci numbers. For example,

24.1. WHAT IS A WHOLE NUMBER? 361

(check-expect (fibonacci 0) 0)

(check-expect (fibonacci 1) 1)

(check-expect (fibonacci 2) 1)

(check-expect (fibonacci 3) 2)

(check-expect (fibonacci 4) 3)

(check-expect (fibonacci 5) 5)

(check-expect (fibonacci 6) 8)

(check-expect (fibonacci 7) 13)

Hint: The usual template involves calling (fibonacci (- n 1)) inside the body of
fibonacci. In this case, you’ll probably want to call (fibonacci (- n 2)) as well.
However, that doesn’t make sense unless you know that (- n 2) is a whole number, so
your base case needs to handle both 0 and 1.

Note: The definition of fibonacci that you get by following the template for whole
numbers is correct, but extremely slow. On my computer, (fibonacci 30) takes about
a second; (fibonacci 35) takes about ten seconds; and (fibonacci 37) takes almost
thirty seconds. Try watching it in the Stepper, and you’ll see that it asks the same
question over and over. See if you can find a way to solve the same problem much more
efficiently, using a helper function with some extra parameters. We’ll see another way to
fix this problem in Section 30.3.

SIDEBAR:

“Fibonacci” is the modern name for Leonardo filius Bonacci (“son of Bonaccio”),
a mathematician who lived in Pisa, Italy in the 12th and 13th centuries. He is
best known today for this sequence of numbers, which has surprising applications
in biology, number theory, architecture, etc. But his most significant impact on the
world was probably persuading European scholars to switch from Roman numerals
by showing how much easier it is to do arithmetic using Arabic numerals.

Exercise 24.1.10 Develop a function named dot-grid (remember this from Chap-
ter 5?) that takes two whole numbers width and height and produces a rectangular grid
of circles with width columns and height rows.

Exercise 24.1.11 Develop a function named randoms that takes in two whole numbers
how-many and limit and produces a list of how-many numbers, each chosen randomly from
0 up to limit.

Hint: Use the template on how-many, not on limit.

Exercise 24.1.12 Develop a function named random-posns that takes in three whole
numbers how-many, max-x, and max-y and produces a list of how-many posns, each with
x chosen randomly between 0 and max-x, and y chosen randomly between 0 and max-y.

362 CHAPTER 24. WHOLE NUMBERS

Exercise 24.1.13 Develop a function named table-of-squares that takes in a whole
number and returns a list of posns representing a table of numbers and their squares from
the given number down to 0. For example,

(check-expect (table-of-squares 4)

(list (make-posn 4 16)

(make-posn 3 9)

(make-posn 2 4)

(make-posn 1 1)

(make-posn 0 0)))

Note: I’ve put these in descending order because it’s easier to write the function that
way. It would be nice to produce the table in increasing order instead. We’ll see how to
do that in the next section.

24.2 Different base cases, different directions

Recall Exercise 24.1.7, a function that adds up the positive integers from a specified
number down to 0. What if we wanted to add up the positive numbers from a specified
number down to, say, 10 instead?

Worked Exercise 24.2.1 Develop a function add-up-from-10 that takes in a whole
number n ≥ 10 and returns the sum 10 + 11 + . . .+ n.

Generalize this to a function add-up-between that takes in two whole numbers m
and n and returns the sum m+ (m+ 1) + . . .+ n.

Solution: The function takes in a “whole number ≥ 10”, which is a new data type.
Here’s its data definition:

; A whole-num>=10 is either 10, or (add1 whole-num>=10)

The contract and examples are easy:

; add-up-from-10 : whole-number>=10 -> number

(check-expect (add-up-from-10 10) 10)

(check-expect (add-up-from-10 11) 21)

(check-expect (add-up-from-10 15) 65)

Since we’ve changed the data type, we’ll need a new template:

(define (function-on-wn>=10 n)

(cond [(= n 10) ...]

[(> n 10)

; n whole number > 10

; (- n 1) whole number >= 10

; (function-on-wn>=10 (- n 1)) whatever this returns

]))

With this, the definition is easy:

24.2. DIFFERENT BASE CASES, DIFFERENT DIRECTIONS 363

(define (add-up-from-10 n)

(cond [(= n 10) 10]

[(> n 10)

; n whole number > 10

; (- n 1) whole number >= 10

; (add-up-from-10 (- n 1)) number

(+ n (add-up-from-10 (- n 1)))

]))

It feels a bit inelegant to have n ≥ 10 be part of the contract; could we reasonably
make the function work correctly on all whole numbers? We would have to choose a
“right answer” for numbers less than 10. In that case, there are no numbers to add up,
so the answer should be 0.

; add-up-from-10 : whole-number -> number

(check-expect (add-up-from-10 8) 0)

(check-expect (add-up-from-10 10) 10)

(check-expect (add-up-from-10 11) 21)

(check-expect (add-up-from-10 15) 65)

(define (add-up-from-10 n)

(cond [(< n 10) 0]

[(= n 10) 10]

[(> n 10)

; n whole number > 10

; (- n 1) whole number >= 10

; (add-up-from-10 (- n 1)) number

(+ n (add-up-from-10 (- n 1)))

]))

This passes all its tests, but on further consideration, we realize that the right answer
to the (= n 10) case is the same as 10 plus the right answer to the (< n 10) case; we
could leave out the (= n 10) case, replacing (> n 10) with (>= n 10), and it would still
pass all its tests. Try this for yourself.

The more general add-up-between function differs from add-up-from-10 only by
replacing the 10 with the extra parameter m:

; add-up-between : whole-number(m) whole-number(n) -> number

(check-expect (add-up-between 8 6) 0)

(check-expect (add-up-between 8 8) 8)

(check-expect (add-up-between 7 9) 24)

(define (add-up-between m n)

(cond [(< n m) 0]

[(>= n m)

; n whole number > m

; (- n 1) whole number >= m

; (add-up-between m (- n 1))number

(+ n (add-up-between m (- n 1)))

]))

364 CHAPTER 24. WHOLE NUMBERS

Exercise 24.2.2 Develop a function count-down-to that takes in two whole numbers
low and high and produces a list of the numbers high, high-1, . . .low in that order. If
low > high, it should return an empty list.

What if we wanted the list in increasing order? Rather than treating high as a “whole
number ≥ low”, and calling the function recursively on (sub1 high), we instead treat
low as a “whole number ≤ high”, and calling the function recursively on (add1 low).

Exercise 24.2.3 Develop a function count-up-to that takes in two whole numbers
low and high and produces a list of the numbers low, low+1, . . .high. If low > high,
it should return an empty list.

Exercise 24.2.4 Develop a function increasing-table-of-squares which takes in
a whole number n and returns a list of posns representing a table of numbers and their
squares from 0 up to the given number.

24.3 Peano arithmetic

Imagine that for some reason the + function wasn’t working correctly on your computer
(although add1 and sub1 still worked). Could we make do without +?

It would be pretty easy to write a function to add 2:

; add2 : number -> number

(check-expect (add2 0) 2)

(check-expect (add2 1) 3)

(check-expect (add2 27) 29)

(define (add2 x)

(add1 (add1 x)))

But can we write a function that takes in two whole numbers as parameters and adds
them?

Worked Exercise 24.3.1 Develop a function wn-add to add two whole numbers,
without using any built-in arithmetic operators except add1, sub1, zero?, and positive?.

Solution: The contract and examples are straightforward:

; wn-add : whole-num (m) whole-num (n) -> whole-num

(check-expect (wn-add 0 0) 0)

(check-expect (wn-add 0 1) 1)

(check-expect (wn-add 0 3) 3)

(check-expect (wn-add 1 0) 1)

(check-expect (wn-add 3 0) 3)

(check-expect (wn-add 3 8) 11)

We have two whole-number parameters. In Chapter 25, we’ll discuss how to handle this
sort of situation in general, but for now let’s just follow the template on one of them,
pretending the other one is simple:

24.3. PEANO ARITHMETIC 365

(define (wn-add m n)

(cond [(zero? n) ...]

[(positive? n)

; m whole

; n positive whole

; (sub1 n) whole

; (wn-add m (sub1 n)) whole

...

]))

Now we need to fill in the . . . parts. The “zero” case is easy: if n = 0, then m+ n =
m+ 0 = m. For the nonzero case, we’ll do an inventory with values:

(define (wn-add m n)

(cond [(zero? n) m]

[(positive? n)

; m whole 3

; n positive whole 8

; (sub1 n) whole 7

; (wn-add m (sub1 n)) whole 10

; right answer whole 11

...

]))

Remember that we can only use add1 and sub1, not + or -. So the obvious way to
get 11 from 10 is add1:

(define (wn-add m n)

(cond [(zero? n) m]

[(positive? n)

; m whole 3

; n positive whole8

; (sub1 n) whole 7

; (wn-add m (sub1 n)) whole 10

; right answer whole 11

(add1 (wn-add m (sub1 n)))

]))

Does this make sense? Is it always true that m + n = 1 + (m + (n − 1))? Of course;
that’s simple algebra.

Exercise 24.3.2 Develop a function wn-mult which multiplies two whole numbers
together without using any built-in arithmetic operators except add1, sub1, zero?, and
positive?. You are allowed to use wn-add, because it’s not built-in; we just defined it
from these operators.

All the remaining exercises in this section are subject to the same restriction: “without
using any built-in arithmetic operators except add1, sub1, zero?, and positive?.” You
may, of course, re-use the functions you’ve already written in this section.

Exercise 24.3.3 Develop a function wn-raise which, given two whole numbers m
and n, computes mn.

366 CHAPTER 24. WHOLE NUMBERS

Exercise 24.3.4 Develop a function wn<= which, given two whole numbers m and n,
tells whether m ≤ n.

Exercise 24.3.5 Develop a function wn= which, given two whole numbers m and n,
tells whether they’re equal or not.

Exercise 24.3.6 Develop a function wn-sub which, given two whole numbers m and
n, computes m− n.

Hint: In this chapter, we’ve defined whole numbers, but not negative numbers, and
we haven’t promised that sub1 works on anything other than a positive whole number.
There are two ways you can write this function:

• The “purist” way uses sub1 only on positive whole numbers, and produces an error
message if you try to subtract a larger number from a smaller (this was actually a
common mathematical practice in the 18th century)

• The “pragmatist” way relies on the fact that Racket really does know about negative
numbers, and sub1 really does work on any number, not only positive wholes. This
way you can write wn-sub to work on any two whole numbers. The problem is that
the result may not be a whole number, so code like (wn-sub x (wn-sub y z)) may
not work.

Exercise 24.3.7 Develop two functions wn-quotient and wn-remainder which, given
two whole numbers m and n, compute the quotient and remainder of dividing m by n.
Both should produce an error message if n = 0.

Exercise 24.3.8 Develop a function wn-prime? which tells whether a given whole
number is prime.

Hint: There are several ways to do this. One way is to define a helper function
not-divisible-up-to? which, given two whole numbers m and n, tells whether m is
“not divisible by anything up to n” (except of course 1).

Racket also knows about fractions, but if it didn’t, we could define them ourselves,
just as we’ve defined wholes, addition, multiplication, and so on.

Exercise 24.3.9 Define a struct frac that represents a fraction in terms of whole
numbers (as we’ve defined them).

Exercise 24.3.10 Develop a function frac= that takes in two frac objects and tells
whether they’re equal. (Careful! What does it mean for two fractions to be equal?)

Exercise 24.3.11 Develop a function reduce-frac that takes in a frac and returns
an equivalent frac in lowest terms, i.e. with no common factors between numerator and
denominator.

Exercise 24.3.12 Develop a function frac-mult that takes in two fracs and returns
their product, as a frac.

24.4. THE WHOLES IN BINARY 367

Exercise 24.3.13 Develop a function frac-add that takes in two fracs and returns
their sum, as a frac.

24.4 The wholes in binary

Dedekind and Peano’s definition of the wholes isn’t the only way to define them. Here’s
another approach.

Almost every computer built since about 1950 has used binary or base-two notation
to represent numbers: for example, the number 19 is written 10011, indicating 1 · 24 +0 ·
23 + 0 · 22 + 1 · 21 + 1 · 20. In decimal notation, it’s really easy to multiply by 10 (just
write a 0 at the end of the number). Similarly, in base two, it’s really easy to multiply by
2 (just write a 0 at the end of the number). This inspires the following data definition:

A binary-whole-number is either

• 0, or

• S0(whole), or

• S1(whole)

where S0(x) is intended to correspond to writing a 0 at the end of the number x, and
S1(x) to writing a 1 at the end of x.

24.4.1 Defining binary wholes from structs

Let’s try this in Racket.

A built-binary-whole is either

0,

(S0 built-binary-whole), or

(S1 built-binary-whole).

(define-struct s0 (half))

(define-struct s1 (half))

(define (S0 x) (make-s0 x)) ; for short

(define (S1 x) (make-s1 x)) ; for short

368 CHAPTER 24. WHOLE NUMBERS

Some examples of this data type are

• 0

• (S1 0), which “means” 1

• (S0 (S1 0)), which “means” 2

• (S1 (S1 0)), which “means” 3

• (S1 (S1 (S0 (S0 (S1 0))))), which “means” 19

Obviously, it’s a lot easier to write 19 as
(S1 (S1 (S0 (S0 (S1 0)))))

than as
(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S 0))))))))))))))))))),
the way we would have written 19 in section 24.1.1.

A template based on this data definition has three cases: is it zero, is it an s0 structure,
or is it an s1 structure? I’ll use bbw as shorthand for built-binary-whole.

(define (function-on-bbw n)

(cond [(equal? n 0) ...]

[(s0? n)

; (s0-half n) bbw

; (function-on-bbw (s0-half n)) whatever

...]

[(s1? n)

; (s1-half n) bbw

; (function-on-bbw (s1-half n)) whatever

...]

))

24.4. THE WHOLES IN BINARY 369

Worked Exercise 24.4.1 Re-write the spams function to take in a built-binary-whole.

Solution: The contract and examples are straightforward:

; spams : built-binary-whole -> string-list

(check-expect (spams 0) empty)

(check-expect (spams (S1 0)) (list "spam"))

(check-expect (spams (S0 (S1 0))) (list "spam" "spam"))

(check-expect (spams (S0 (S1 (S1 0))))

(list "spam" "spam" "spam" "spam" "spam" "spam"))

(check-expect (spams (S1 (S1 (S1 0))))

(list "spam" "spam" "spam" "spam" "spam" "spam" "spam"))

The template gives us

(define (spams n)

(cond [(equal? n 0) ...]

[(s0? n)

; (s0-half n) whole

; (spams (s0-half n))string-list

...]

[(s1? n)

; (s1-half n) whole

; (spams (s1-half n))string-list

...]

))

Obviously, the right answer to the zero case is empty. For the other cases, we’ll use an
inventory with values.

(define (spams n)

(cond [(equal? n 0) empty]

[(s0? n)

; n whole (S0 (S1 (S1 0))), i.e. 6

; (s0-half n) whole (S1 (S1 0)), i.e. 3

; (spams (s0-half n))

; string-list (list "spam" "spam "spam")

; right answer string-list

; (list "spam" "spam" "spam" "spam" "spam" "spam")

...]

[(s1? n)

; n whole (S1 (S1 (S1 0))), i.e. 7

; (s1-half n) whole (S1 (S1 0)), i.e. 3

; (spams (s1-half n))

; string-list (list "spam" "spam" "spam")

; right answer string-list

; (list "spam" "spam" "spam" "spam" "spam" "spam "spam")

...]

))

370 CHAPTER 24. WHOLE NUMBERS

Now, how can you get a list of 6 spams from a list of 3 spams? There are a number
of ways, but the most obvious one is to append two copies of it together. Which seems
appropriate, since the recursive call is supposed to return “half as many” spams.

How to get a list of 7 spams from a list of 3 spams? Since the recursive call is on
“half” of an odd number, it’s really (n− 1)/2. So to get n from (n− 1)/2, you make two
copies and add one more. The function definition becomes
(define (spams n)

(cond [(equal? n 0) empty]

[(s0? n)

; n whole (S0 (S1 (S1 0))), i.e. 6

; (s0-half n) whole (S1 (S1 0)), i.e. 3

; (spams (s0-half n))

; string-list (list "spam" "spam "spam")

; right answer string-list

; (list "spam" "spam" "spam" "spam" "spam" "spam")

(append (spams (s0-half n))

(spams (s0-half n)))]

[(s1? n)

; n whole (S1 (S1 (S1 0))), i.e. 7

; (s1-half n) whole (S1 (S1 0)), i.e. 3

; (spams (s1-half n))

; string-list (list "spam" "spam" "spam")

; right answer string-list

; (list "spam" "spam" "spam" "spam" "spam" "spam "spam")

(cons "spam" (append (spams (s1-half n))

(spams (s1-half n))))]

))

Exercise 24.4.2 Rewrite the copies function to take in a built-binary-whole.

Exercise 24.4.3 Develop a function binary-add1 that takes in a built-binary-whole
and returns the next larger built-binary-whole. For example, the next larger whole after
5 is 6, so

(check-expect (binary-add1 (S1 (S0 (S1 0)))) (S0 (S1 (S1 0))))

Exercise 24.4.4 Develop a function bbw-value that takes in a built-binary-whole
and returns the (ordinary) whole number that it represents. For example,

(check-expect (binary-whole-value 0) 0)

(check-expect (binary-whole-value (S1 0)) 1)

(check-expect (binary-whole-value (S0 (S1 (S1 (S0 (S1 0)))))) 22)

24.4.2 Binary whole numbers, the way we really do it

Again, Racket already knows about numbers and arithmetic, so instead of the structures
s0 and s1, we might use

(define (S0 x) (* x 2))

(define (S1 x) (+ 1 (* x 2)))

(define (half x) (quotient x 2))

24.4. THE WHOLES IN BINARY 371

plus the built-in functions zero?, even?, and odd?.

The template becomes (using rbw as shorthand for “real binary whole”)

#|

(define (function-on-rbw n)

(cond [(zero? n) ...]

[(even? n)

; (half n) rbw

; (function-on-rbw (half n)) whatever

...]

[(odd? n)

; (half n) rbw

; (function-on-rbw (half n)) whatever

...]

))

|#

Worked Exercise 24.4.5 Re-write the spams function to take in an ordinary whole
number, using the binary template.

Solution: The contract and examples are the same as in Exercise 24.1.4. The definition
becomes

372 CHAPTER 24. WHOLE NUMBERS

(define (binary-spams n)

(cond [(zero? n) empty]

[(even? n)

; n whole 6

; (half n) whole 3

; (binary-spams (half n))

; string-list (list "spam" "spam "spam")

; right answer string-list

; (list "spam" "spam" "spam" "spam" "spam" "spam")

(append (binary-spams (half n))

(binary-spams (half n)))]

[(odd? n)

; n whole 7

; (half n) whole 3

; (binary-spams (half n))

; string-list (list "spam" "spam" "spam")

; right answer string-list

; (list "spam" "spam" "spam" "spam" "spam" "spam "spam")

(cons "spam" (append (binary-spams (half n))

(binary-spams (half n))))]

))

Exercise 24.4.6 Re-write the copies function of Exercise 24.4.2 so that it takes in an
ordinary whole number, but is still written using the binary template.

Exercise 24.4.7 Re-write the binary-add1 function of Exercise 24.4.3 so that it takes
in an ordinary whole number, but is still written using the binary template rather than
calling the built-in add1 or +. For example,

(check-expect (binary-add1 5) 6)

Exercise 24.4.8 Re-write the dot-grid function of Exercise 24.1.10 by using the bi-
nary template.

Exercise 24.4.9 Re-write the randoms function of Exercise 24.1.11 by using the binary
template.

24.5. REVIEW 373

Exercise 24.4.10 Re-write the random-posns function of Exercise 24.1.12 by using the
binary template.

Exercise 24.4.11 Essay question: Notice that I’ve picked some of the functions from
Section 24.1 to re-do using the binary template. Why did I pick these and not the others?
What kind of function lends itself to solving with the binary template, and what kind
doesn’t?

24.5 Review of important words and concepts

Programmers often want a computer to do something a specified number of times. If the
“number of times” is driven by a list of data, we can use the techniques of Chapters 22 and
23, but if it really is just a number, as in copies or dot-grid, we can use the analogous
technique of whole-number recursion.

Racket, like most other programming languages, has built-in support for arithmetic on
whole numbers and other kinds of numbers. (Most languages don’t handle fractions, or
very large whole numbers, as well as Racket does, but that’s a separate issue.) However, in
this chapter we’ve shown how to define arithmetic, whole numbers, and fractions. Along
the way, we’ve learned a useful technique for writing functions that do things a specified
number of times, like copies or dot-grid.

The whole numbers can be defined either using “successor”, as Dedekind and Peano
did, or using binary notation, as most modern computers do.

24.6 Reference: Built-in functions on whole numbers

In this chapter, we’ve introduced the built-in functions

• zero?

• positive?

• sub1

