
374

Chapter 25

Multiple recursive data

The inventories and template functions we’ve been using so far are generally based on the
data type of an input (or, in a few cases, on the data type of the result). If an input is a
list, we can use the input template of Chapter 22; if the output is a list, we can use the
output template of Chapter 23; if the input is a natural number, we can use the input
template of Chapter 24; etc.

But what template should we use when we have two or more inputs of complex types?
If your function takes two parameters x and y of complex types, there are four possi-

bilities:
y

simple complex

x
simple 1 2
complex 3 4

1. x and y are both simple;

2. x is simple but y is complex;

3. x is complex but y is simple;

4. x and y are both complex.

25.1 Separable parameters

In exercise 23.1.9, we wrote a list-append function that took in two list parameters. We
used the usual list template for the first and pretended the second was of a simple type.
In other words, we lumped cases 1 and 2 together, and cases 3 and 4 together.

list2
simple complex

list1
simple 1 2
complex 3 4

Likewise, in exercise 24.3.1, we wrote an wn-add function that took in two natural
number parameters. In that case, we used the usual natural-number template for one
of them and pretended the other one was of a simple type. The rest of the exercises in
section 24.3 can also be done in this way: a function that does different things depending
on whether x is simple or complex, perhaps calling a helper function that does different
things depending on whether y is simple or complex.

375

376 CHAPTER 25. MULTIPLE RECURSIVE DATA

I call this situation “separable parameters”, because we can separate the question of
whether x is simple or complex from the question of whether y is simple or complex.

25.2 Synchronized parameters

That approach works frequently, but not all the time. For example,

Worked Exercise 25.2.1 Develop a function pay-list that takes in two lists: one spec-
ifies the number of hours worked by each of a bunch of employees, and the other specifies
the corresponding hourly wage for each of those employees. It should produce a list of the
amounts each employee should be paid, in the same order.

Solution: The contract is straightforward:

; pay-list : list-of-numbers(hours)

list-of-numbers(hourly-wages)

-> list-of-numbers

For test cases, as usual, we’ll start with the simplest cases and then build up:

(check-expect (pay-list empty empty) empty)

(check-expect (pay-list (list 3) empty) ???)

The two lists we were given are of different sizes, and it’s not clear from the problem
assignment what should happen in this case. In fact, the problem doesn’t even make
sense if the lengths of the two lists are different. So let’s revise the contract:

; pay-list : list-of-numbers(hours)

list-of-numbers(hourly-wages)

-> list-of-numbers

; Assumes the two input lists are the same length.

; Result will be the same length.

Now that we’ve excluded inputs that make no sense, we can get back to the test cases:

(check-expect (pay-list empty empty) empty)

(check-expect (pay-list (list 30) (list 8)) (list 240))

(check-expect (pay-list (list 30 20 45) (list 8 10 10))

(list 240 200 450))

The skeleton is easy. For the inventory, we’ll try the usual list template on hours, and
treat hourly-wages as simple.
(define (pay-list hours hourly-wages)

; hours list of numbers (list 30 20 45)

; hourly-wages list of numbers (list 8 10 10)

(cond [(empty? hours) ...]

[(cons? hours)

; (first hours) number 30

; (rest hours) list of numbers (list 20 45)

; (pay-list (rest hours) hourly-wages)

; list of numbers ???

; right answer list of numbers (list 240 200 450)

]))

25.2. SYNCHRONIZED PARAMETERS 377

What is the “right answer” to the recursive call? It doesn’t have a right answer, because
it’s being called on two lists of different lengths!

We’ll have to try something different. It doesn’t make sense to call (pay-list (rest

hours) hourly-wages), or for that matter (pay-list hours (rest hourly-wages)),
because both of those calls break the contract by passing in lists of different lengths. But
(pay-list (rest hours) (rest hourly-wages)) would make sense, if we knew that
both of those things existed — that is, if both hours and hourly-wages were non-empty
lists. Similarly, if both of them were empty lists, the answer would be empty. So here’s a
revised inventory:

(define (pay-list hours hourly-wages)

; hours list of numbers (list 30 20 45)

; hourly-wages list of numbers (list 8 10 10)

(cond [(and (empty? hours) (empty? hourly-wages)) ...]

[(and (cons? hours) (cons? hourly-wages))

; (first hours) number 30

; (first hourly-wages) number 8

; (rest hours) list of numbers (list 20 45)

; (rest hourly-wages) list of numbers (list 10 10)

; (pay-list (rest hours) (rest hourly-wages))

; list of numbers (list 200 450)

; right answer list of numbers (list 240 200 450)

]))

Now it’s easy:

(define (pay-list hours hourly-wages)

; hours list of numbers (list 30 20 45)

; hourly-wages list of numbers (list 8 10 10)

(cond [(and (empty? hours) (empty? hourly-wages)) empty]

[(and (cons? hours) (cons? hourly-wages))

; (first hours) number 30

; (first hourly-wages) number 8

; (rest hours) list of numbers (list 20 45)

; (rest hourly-wages) list of numbers (list 10 10)

; (pay-list (rest hours) (rest hourly-wages))

; list of numbers (list 200 450)

; right answer list of numbers (list 240 200 450)

(cons (* (first hours) (first hourly-wages))

(pay-list (rest hours) (rest hourly-wages)))

]))

One thing might bother you about this definition. (At least it bothers me!) We’re
checking whether both parameters are empty (case 1), and whether both parameters are
non-empty (case 4), but what if one is empty and the other isn’t (cases 2 and 3)? That
would of course be an illegal input, but if some user tried it, (s)he would get an unfriendly
error message like cond: all question results were false, and the user might conclude that
our program was wrong, when in fact it’s the user’s fault. Instead, let’s handle this case
specifically with a more-informative error message:

378 CHAPTER 25. MULTIPLE RECURSIVE DATA

(define (pay-list hours hourly-wages)

(cond [(and (empty? hours) (empty? hourly-wages)) ...]

[(and (cons? hours) (cons? hourly-wages))

(cons (* (first hours) (first hourly-wages))

(pay-list (rest hours) (rest hourly-wages)))

]

[else

(error ’pay-list

"Number of hours and hourly wages must match.")

]))

(check-error (pay-list (list 3) empty)

"pay-list: Number of hours and hourly wages must match.")

(check-error (pay-list (list 3) (list 8 7.50))

"pay-list: Number of hours and hourly wages must match.")

In this example, it wasn’t enough to treat one of the two list inputs as if it were simple:
we had to go through the two lists in lock-step, looking at the first of both at the same
time, and the rest of both at the same time. It’s usually easy to spot such situations,
because they don’t make sense unless the inputs are the same size. When you see such a
problem, not only can you use an inventory like the above, but you can also include an
error-check that produces an informative error message if the inputs aren’t the same size.

For this sort of problem, cases 2 and 3 (in which one of x and y is simple and the
other complex) are lumped together — they’re both illegal — and we only really need to
worry about cases 1 and 4.

hourly-wages
simple complex

hours
simple 1 2
complex 3 4

25.3 Interacting parameters

There are problems that don’t seem to fit either of the preceding patterns: it’s reasonable
for either of the parameters to be simple and the other complex, and whatever one of
them is, it makes a difference what the other one is. The parameters interact with one
another.

Worked Exercise 25.3.1 Suppose the list-ref function weren’t built into DrRacket;
how would we write it? Since list-ref is built in, we’ll name ours pick-element instead.

Develop a function pick-element that takes in a natural number and a non-empty
list, and returns one of the elements of the list. If the number is 0, it returns the first
element of the list; if 1, it returns the second element; etc. If there is no such element, it
should produce an appropriate error message.

Solution: The contract is

; pick-element : natural non-empty-list -> object

25.3. INTERACTING PARAMETERS 379

A non-empty list is defined to be either (cons object empty) or (cons object

non-empty list); the template for it looks like

#|

(check-expect (function-on-nel (list "a")) ...)

(check-expect (function-on-nel (list "a" "b")) ...)

(check-expect (function-on-nel (list 3 1 4 1 5)) ...)

(define (function-on-nel L)

(cond [(empty? (rest L)) ...]

[(cons? (rest L))

; L non-empty list

; (first L) object

; (rest L) non-empty list

; (function-on-nel (rest L)) whatever

...

]))

|#

For our problem, the test cases clearly need to include long-enough and not-long-enough
lists.

(check-expect (pick-element 0 (list "a")) "a")

(check-expect (pick-element 0 (list 5 -2 17)) 5)

(check-error (pick-element 1 (list "a"))

"pick-element: no such element")

(check-expect (pick-element 1 (list 5 17)) 17)

(check-expect (pick-element 1 (list 5 -2 17)) -2)

(check-error (pick-element 4 (list "a"))

"pick-element: no such element")

(check-expect

(pick-element 4 (list "a" "b" "c" "d" "e"))

"e")

(check-expect

(pick-element 4 (list "a" "b" "c" "d" "e" "f" "g"))

"e")

As a first attempt, let’s try the separable-parameters approach, treating n as complex
and the list as simple.

(define (pick-element n things)

; n natural

; things non-empty list

(cond [(zero? n) ...]

[(positive? n)

; (sub1 n) natural

; (pick-element (sub1 n) things) object

...

]))

In the base case (n = 1), the right answer is either (first things) or an error message,
depending on whether things is empty. We can do that if necessary, using a nested cond.

380 CHAPTER 25. MULTIPLE RECURSIVE DATA

The recursive case is a problem: knowing the answer to (pick-element (sub1 n)

things) tells you nothing about the right answer to (pick-element n things). This
won’t work.

Maybe if, instead of treating n as complex and the list as simple, we treat the list as
complex and n as simple?

(define (pick-element n things)

; n natural

; things non-empty list

(cond [(empty? (rest things)) ...]

[(cons? (rest things))

; things non-empty list

; (rest things) list

; (pick-element n (rest things)) object

...

]))

The base case, again, will need a nested conditional to check whether n is 1 or larger.
The recursive case still has a problem: knowing the answer to (pick-element n (rest

things)) tells you nothing about the right answer to (pick-element n things).

There seems to be a sort of synchronization going on here: the list length doesn’t have
to be exactly the same as the number, but it does have to be at least as much. So let’s
try the synchronized approach. I’ll also throw in an “inventory with values” while we’re
at it.

(define (pick-element n things)

; n natural 1

; things non-empty list (list "a" "b" "c")

(cond [(and (zero? n) (empty? (rest things)))

(first things)]

[(and (positive? n) (cons? (rest things)))

; (sub1 n) natural 0

; (rest things) non-empty list (list "b" "c")

; (pick-element (sub1 n) (rest things))

; object "b"

; right answer object "b"

...]

[else (error ’pick-element "no such element")]

This looks a little more promising: the result of the recursive call is the same as the right
answer to the problem at hand. So let’s make that the answer in the second cond clause:

25.3. INTERACTING PARAMETERS 381

(define (pick-element n things)

; n natural 1

; things non-empty list (list "a" "b" "c")

(cond [(and (zero? n) (empty? (rest things)))

(first things)]

[(and (positive? n) (cons? (rest things)))

; (sub1 n) natural 0

; (rest things) non-empty list (list "b" "c")

; (pick-element (sub1 n) (rest things))

; object "b"

; right answer object "b"

(pick-element (sub1 n) (rest things))]

[else (error ’pick-element "no such element")]

This passes several of its tests, but not all: in particular, it fails tests in which the
element to be picked isn’t the last. By following the “synchronized” approach, we’ve
effectively forced the length of the list to be exactly one more than the number. To get
this function to work right, it must be more permissive: if the number is down to 0 and
the list isn’t only one element, that’s fine.

(define (pick-element n things)

; n natural 1

; things non-empty list (list "a" "b" "c")

(cond [(and (zero? n) (empty? (rest things)))

(first things)]

[(and (positive? n) (cons? (rest things)))

(first things)]

[(and (positive? n) (cons? (rest things)))

; (sub1 n) positive-natural0

; (rest things) non-empty list (list "b" "c")

; (pick-element (sub1 n) (rest things))

; object "b"

; right answer object "b"

(pick-element (sub1 n) (rest things))]

[else (error ’pick-element "no such element")]

The conditional now explicitly identifies and deals with all four cases:

n
simple complex

things
simple 1 2
complex 3 4

For this particular problem, two of the cases produce the same answer, so we can
combine them. Removing the inventory comments, we’re left with

(define (pick-element n things)

(cond [(zero? n) (first things)]

[(and (positive? n) (cons? (rest things)))

(pick-element (sub1 n) (rest things))]

[else (error ’pick-element "no such element")]))

382 CHAPTER 25. MULTIPLE RECURSIVE DATA

which does in fact pass all its tests.

In this case, we’ve actually combined cases 1 and 3:
n

simple complex

things
simple 1 2
complex 3 4

But in other situations, we might actually need all four cases to do four different things.
See the Exercises below.

The above function definition isn’t foolproof, in that if someone violates the contract
by passing in the number 0, or a negative number, or an empty list, it’ll produce an ugly
error message. We could remedy this by re-formulating the problem as accepting any
number and any list; the result would be

(define (pick-element n things)

(cond [(< n 0)

(error ’pick-element "illegal element number")]

[(empty? things)

(error ’pick-element "no such element")]

[(zero? n) (first things)]

[(and (positive? n) (cons? things))

(pick-element (sub1 n) (rest things))]))

25.4 Exercises

Some of these exercises involve separable parameters; some involve synchronized param-
eters; some involve interacting parameters, and may require treating all four possible
combinations of simple and complex separately.

Exercise 25.4.1 Develop a function cart-prod (short for “Cartesian product”) that
takes in two lists and returns a list of two-element lists, each with an element from the
first input list and an element from the second in that order. The result should include
all possible pairs of elements. You may assume that there are no duplicate elements in
the first list, and no duplicate elements in the second list (although there might be things
that are in both input lists.)

Hint: You’ll need a helper function.

Exercise 25.4.2 Develop a function make-posns that takes in two lists of numbers, the
same length, and produces a list of posns with x coordinates taken from the first list, in
order, and y coordinates from the corresponding elements of the second list.

25.4. EXERCISES 383

Exercise 25.4.3 Develop a function label-names that takes in a list of strings and a
natural number, which should be how many strings there are. It produces a list of two-
element lists, each comprising a different natural number and one of the strings from
the list. The numbers should be in decreasing order, starting with the given number and
ending with 1, and the strings should be in the order they were given. For example,
(check-expect (label-names (list "anne" "bob" "charlie") 3)

(list (list 3 "anne") (list 2 "bob") (list 1 "charlie")))

If the above exercise feels sorta strange and artificial, here’s a more natural (but
slightly harder) version, which will probably require a helper function:

Exercise 25.4.4 Develop a function label-names-2 that takes in a list of strings, and
produces a list of two-element lists, each comprising a different natural number and one
of the strings from the list. The numbers should be in increasing order, starting with 1
and ending with the number of strings in the list, and the strings should be in the order
they were given. For example,
(check-expect (label-names-2 (list "anne" "bob" "charlie"))

(list (list 1 "anne") (list 2 "bob") (list 3 "charlie")))

Exercise 25.4.5 Develop a function intersection that takes in two lists of strings and
returns a list of the strings that appear in both of them, leaving out any string that appears
in only one or the other. The strings in the result should be in the same order that they
appeared in the first list. You may assume that no string appears more than once in either
list.

Exercise 25.4.6 Develop a function union that takes in two lists of strings and returns
a list of the strings that appear in either list, but only once each. You may assume that
no string appears more than once in either list.

Exercise 25.4.7 Develop a function set-diff that takes in two lists of strings and re-
turns a list of the strings that appear in the first but not the second. You may assume
that no string appears more than once in either list.

Exercise 25.4.8 Re-do exercises 25.4.5, 25.4.6, and 25.4.7 without the assumption that
there are no duplicates in the inputs.

Exercise 25.4.9 Develop a function binary-add that takes in two natural numbers
and returns their sum, using the binary template (and not using the built-in + function).

Note: Somebody had to do this, not in Racket but in wires and transistors, in order
for your computer to be able to add.

Exercise 25.4.10 Develop a function binary-mult that takes in two natural numbers
and returns their product, using the binary template (and not using the built-in + or *

functions).

Note: Somebody had to do this, not in Racket but in wires and transistors, in order
for your computer to be able to multiply.

Exercise 25.4.11 Develop a function binary-raise that takes in two natural num-
bers m and n and returns mn, using the binary template (and not using the built-in +, *,
or expt functions).

384 CHAPTER 25. MULTIPLE RECURSIVE DATA

Exercise 25.4.12 Develop a function substring? that takes in two strings and tells
whether the first one appears in the second as a substring. For example,
(check-expect (substring? "bob" "") false)

(check-expect (substring? "" "bob") true)

(check-expect (substring? "b" "bob") true)

(check-expect (substring? "c" "bob") false)

(check-expect (substring? "bob" "bob") true)

(check-expect (substring? "bob" "bobs") true)

(check-expect (substring? "bob" "brats and snobs") false)

(check-expect (substring? "no rat" "brats and snobs") false)

(check-expect (substring? "bob" "thingbobs") true)

(check-expect (substring? "bob" "I botched it but bob fixed it")

true)

(check-expect (substring? "bob" "I botched it but amy fixed it")

false)

(There is a function in some dialects of Racket that does this job, but I want you to
do it using only char=?, comparing one character at a time.)

Exercise 25.4.13 Develop a function subsequence? that takes in two strings and tells
whether the characters of the first appear in the same order in the second (but possibly
with some other characters in between). For example,
(check-expect (subsequence? "bob" "") false)

(check-expect (subsequence? "" "bob") true)

(check-expect (subsequence? "b" "bob") true)

(check-expect (subsequence? "c" "bob") false)

(check-expect (subsequence? "bob" "bob") true)

(check-expect (subsequence? "bob" "bobs") true)

(check-expect (subsequence? "bob" "brats and snobs") true)

(check-expect (subsequence? "no rat" "brats and snobs") false)

(check-expect (subsequence? "bob" "thingbobs") true)

(check-expect (subsequence? "bob" "I botched it but bob fixed it")

true)

(check-expect (subsequence? "bob" "I botched it but amy fixed it")

true)
I don’t think there’s a built-in Racket function that will help much with this, but in any
case, I want you to do this using only char=?, comparing one character at a time.

Hint: Perhaps surprisingly, this problem is easier than substring?.

Exercise 25.4.14 Develop a function lcsubstring (“longest common substring”) that
takes in two strings and returns the longest string which is a substring of both of them.
For example,
(check-expect (lcsubstring "mickey mouse" "minnie mouser") "mouse")

The answer may not be unique: for example,

(lcsubstring "mickey mouse" "minnie mush")

could legitimately be either "mi", " m", or "us".

Hint: Different approaches to this can differ radically in efficiency. My first attempt took
several minutes to solve the (lcsubstring "mickey mouse" "minnie mush") problem.

25.4. EXERCISES 385

A different approach, using only things that you’ve seen already, solved the same problem
in 0.01 seconds; the difference is even more dramatic for longer strings.

Exercise 25.4.15 Develop a function lcsubsequence (“longest common subsequence”)
that takes in two strings and returns the longest string which is a subsequence of both of
them. For example,

(check-expect (lcsubsequence "mickey mouse" "minnie moose")

"mie mose")

The answer may not be unique: for example, (lcsubsequence "abc" "cba") could
legitimately be any of the strings "a", "b", or "c".

Hint: As in exercise 25.4.14, your program may be slow. My first attempt took about
2.5 seconds to solve (lcsubsequence "mickey mouse" "minnie moose"), and I don’t
know of a more efficient way to do it using what you’ve already seen. A technique called
dynamic programming or memoization, which we’ll discuss in Chapter 30, enabled me to
do it in about 0.01 seconds. Again, the difference is more dramatic for longer strings.

Exercise 25.4.16 A common task in computer science is pattern-matching: given a
pattern, ask whether a particular string matches it. In our pattern language, a "?" stands
for “any single character,” while "*" stands for “any zero or more characters.” For
example, the pattern "c?t" would match “cat” and “cut” but not “colt”, “cats”, or “dog”.
Similarly, the pattern "cat*" would match the strings “cat”, “cats”, “catastrophe”, etc.
but not “caltrop” or “dog”. The pattern "a??a*r" would match “abbatoir”, “akbar”, and
“araaar”, etc. but not “almoner”, “alakazam”, or “fnord”. The pattern "*.docx" would
match the name of any Word 2007 file (and thus could be used to decide which filenames
to show in a file dialog).

Define a function pattern-match? that takes in two strings: the pattern and the
target, and tells whether the target matches the pattern.

Note that the special characters "?" and "*" are special only when they appear in the
pattern; if they appear in the target, they should be treated as ordinary characters.

SIDEBAR:

Exercises 25.4.12 through 25.4.16 resemble problems that come up in biology: the
“strings” in that case are sequences of DNA bases in a gene, or sequences of amino
acids in a protein. The efficiency of such programs determines how quickly a genome
can be sequenced, a drug interaction predicted, a virus identified, etc.

386 CHAPTER 25. MULTIPLE RECURSIVE DATA

25.5 Review of important words and concepts

When you have to write a function that takes in two or more complex parameters (lists,
strings, natural numbers, etc.), you can take several different approaches.

• If the problem “doesn’t make sense” unless the parameters are “the same size” (or
have some particular relationship to one another), then you can generally take the
“synchronized parameters” approach: your function will check whether both are
simple (the base case) and whether both are complex (the recursive case). If one is
simple but the other complex, it produces an error message.

p2
simple complex

p1
simple 1 2
complex 3 4

(define (function-on-synch-params p1 p2)

(cond [(and (simple? p1) (simple? p2)) ...]

[(and (complex? p1) (complex? p2))

; (function-on-synch-params (simplify p1)

(simplify p2))

...]

[else (error ...)]))

(The functions simple?, complex?, and simplify in the above aren’t real functions;
they stand for however you identify simple and complex elements of the data type
in question, and how you simplify it. For example, if you were dealing with lists,
simple? would stand for empty?; complex? for cons?; and simplify for rest.)

• If the expression necessary to produce the right answer is the same for both simple
and complex second parameters, we call the parameters “separable”, and you can
just use a template on the first parameter, treating the second parameter as a simple
type.

p2
simple complex

p1
simple 1 2
complex 3 4

(define (function-on-separable-params p1 p2)

(cond [(simple? p1) ...]

[(complex? p1)

; (function-on-separable-params (simplify p1) p2)

...]))

Likewise, if the expression is the same for simple and complex first parameters,
you can use a template on the second parameter, treating the first as a simple type.

• If neither of the previous situations applies, you’ll probably need to identify all four
possible combinations of simple and complex parameters and treat them individ-
ually. Furthermore, in the case that both are complex, there are several different
reasonable recursive calls you could make.

25.6. REFERENCE 387

p2
simple complex

p1
simple 1 2
complex 3 4

(define (function-on-interacting-params p1 p2)

(cond [(and (simple? p1) (simple? p2)) ...]

[(and (simple? p1) (complex? p2))

; (function-on-interacting-params p1 (simplify p2))

...]

[(and (complex? p1) (simple? p2))

; (function-on-interacting-params (simplify p1) p2)

...]

[(and (complex? p1) (complex? p2))

; (function-on-interacting-params p1 (simplify p2))

; (function-on-interacting-params (simplify p1) p2)

; (function-on-interacting-params

; (simplify p1) (simplify p2))

...]))

Some functions that you can write using these techniques are correct, but surprisingly
slow and inefficient; a technique called dynamic programming or memoization, which we
can’t discuss until chapter 30, can improve the efficiency enormously.

25.6 Reference

No new functions or syntax rules were introduced in this chapter.

