
406

Chapter 28

Functions as objects

For this chapter, switch languages in DrRacket to “Intermediate Student Language with
Lambda” or higher. (We’ll discuss lambda in Section 28.6.)

28.1 Adding parameters

The original reason for defining functions was to avoid writing almost the same expression
over and over. Recall the rule from Chapter 4, if you write almost the exact same thing
over and over, you’re doing something wrong. So we parameterized the expression: made
it a function definition with one or more parameters. The part of those expressions that
was always the same became the body of the function definition, and the part that was
different became a parameter to the function.

Recall Exercise 22.5.3, a function contains-doll? which checked whether the string
"doll" occurs in a given list. Now imagine contains-baseball?, which checks whether
the string "baseball" occurs in a given list. The definitions of these two functions would
be almost identical, except that the word "doll" in one is replaced with "baseball" in
the other.

We respond, again, by parameterizing — in this case, adding a parameter to a function
that already has one. In Exercise 22.5.4, we wrote a function any-matches? that took in
an extra parameter and searches for that object in a given list. Once we’ve written, tested,
and debugged that more general function, contains-doll? and contains-baseball?

and anything else like them is trivial.
Now suppose we had written a function any-over-10? that took a list of numbers

and tells whether any of the numbers are larger than 10. (This should be an easy exercise
by now.) An obvious variant on this would be any-over-5?, whose definition would be
exactly the same, only with the number 5 replacing the number 10. To avoid having to
write each of these nearly-identical functions, we again add a parameter :

; any-over? : number list-of-numbers -> boolean

(check-expect (any-over? 5 empty) false)

(check-expect (any-over? 5 (list 3)) false)

(check-expect (any-over? 5 (list 5)) true)

(check-expect (any-over? 5 (list 6)) true)

(check-expect (any-over? 5 (list 7 2 4)) true)

(check-expect (any-over? 5 (list 3 2 4)) false)

(check-expect (any-over? 5 (list 3 2 5)) true)

407

408 CHAPTER 28. FUNCTIONS AS OBJECTS

(define (any-over? threshold numbers)

(cond [(empty? numbers) false]

[(cons? numbers)

(or (> (first numbers) threshold)

(any-over? threshold (rest numbers)))]))

28.2 Functions as parameters

What if we wanted to find whether any of the elements of a list were greater than or equal
to a particular threshold? Or if any of the elements of a list were smaller than a particular
threshold? any-over? won’t do it; the obvious analogues would be any-at-least? and
any-under?, which would be just like any-over? but with a >= or < in place of the >

in the above definition.

Again, we’re writing almost exactly the same code over and over, which probably
means we’re doing something wrong. And as before, the answer is to add a parameter.
But this time the “part that’s different” is a function rather than a number or a string.
Which means that our general function will have to take a function as a parameter.

You’ve already seen some functions — on-tick, on-draw, check-with, map-image,
build-image, etc. — that take in a function as an argument. But you haven’t been
allowed to write such functions yourself. This is because, for absolute beginning pro-
grammers, confusing a function with a variable is a very common mistake. But now that
you’re past those beginning mistakes, switch languages to DrRacket’s “Intermediate
Student Language with lambda”.

In Racket, function is a data type, just like number or string or list. If you can pass a
number or a list as an argument, there’s no reason not to pass a function as an argument.
Functions that operate on other functions are called higher-order functions.

The following exercise generalizes any-over? to allow for any-under?, any-at-least?,
any-equal?, etc.

Worked Exercise 28.2.1 Develop a function any-compares? that takes in a function,
a number, and a list of numbers, and tells whether any of the numbers in the list has the
specified relationship to the fixed number.

Solution: The contract and examples look like

; any-compares? : function number list-of-numbers -> boolean

(check-expect (any-compares? >= 5 (list 2 5 1)) true)

(check-expect (any-compares? > 5 (list 2 5 1)) false)

(check-expect (any-compares? = 5 (list 2 5 1)) true)

(check-expect (any-compares? = 5 (list 2 6 1)) false)

(check-expect (any-compares? < 5 (list 2 6 1)) true)

(check-expect (any-compares? < 5 (list 7 6 8)) false)

Before we go on with developing the function, let’s look again at the contract. The
first argument to any-compares? is supposed to be a function, so let’s try some other
functions.

28.2. FUNCTIONS AS PARAMETERS 409

What would (any-compares? + 5 (list 7 6 8)) do? Well, it compares each num-
ber in the list with 5, using the + operator, and if any of these questions returns
true . . . but wait! The + operator doesn’t return a boolean at all! Calling any-compares?
doesn’t make sense unless the function you give it returns a boolean.

What would (any-compares? positive? 5 (list 7 6 8)) do? It should com-
pare each number in the list with 5, using positive? . . . but wait! The positive?

function only takes one parameter, so how can it possibly “compare” two numbers? In
fact, calling any-compares? doesn’t make sense unless the function you give it takes
exactly two parameters.

To rule out such nonsensical uses of any-compares?, let’s make the contract more
precise: instead of just saying “function”, we’ll write down (in parentheses) the contract
that the function must satisfy:

; any-compares? : (number number -> boolean)

number

list-of-numbers

-> boolean

The skeleton looks like

(define (any-compares? compare? num nums)

; compare? number number -> boolean

; num number

; nums list of numbers

(cond [(empty? nums) ...]

[(cons? nums)

; (first nums) number

; (rest nums) list of numbers

; (any-compares? compare? num (rest nums)) boolean

...]))

So what can we do with compare?? It’s a function on two numbers, returning a
boolean, so the obvious thing to do with it is to call it on two numbers. Conveniently,
we have two numbers in the inventory: num and (first nums). There are two ways we
could call the function:

; (compare? (first nums) num) boolean

; (compare? num (first nums)) boolean

To see which one (or both) will actually help us, let’s use an inventory with values. We’ll
pick the example (any-compares? < 5 (list 2 6 7)) in which the first comparison
should be true, and the others false.

410 CHAPTER 28. FUNCTIONS AS OBJECTS

(define (any-compares? compare? num nums)

; compare? number number -> boolean <

; num number 5

; nums list of numbers (list 2 6 7)

(cond [(empty? nums) ...]

[(cons? nums)

; (first nums) number 2

; (rest nums) list of numbers (list 6 7)

; (compare? (first nums) num) boolean true

; (compare? num (first nums)) boolean false

; (any-compares? compare? num (rest nums))

boolean false

; right answer boolean true

...]))

So of the two, we seem to need (compare? (first nums) num). The final definition
(with the scratch work removed) is

(define (any-compares? compare? num nums)

(cond [(empty? nums) false]

[(cons? nums)

(or (compare? (first nums) num)

(any-compares? compare? num (rest nums)))]))

Now that we’ve written any-compares?, if we want any-over?, any-greater?,
any-less?, any-over-5?, etc., we can write them easily:

(define (any-over? num nums)

(any-compares? > num nums))

(define (any-at-least? num nums)

(any-compares? >= num nums))

(define (any-less? num nums)

(any-compares? < num nums))

(define (any-over-5? nums)

(any-compares? > 5 nums))

With the aid of a helper function, we can go even farther:

(define (divisible-by? x y)

(zero? (remainder x y)))

(define (any-even? nums)

(any-compares? divisible-by? 2 nums))

Or, if divisible-by? isn’t likely to be used anywhere else, we could wrap it up in a
local:

(define (any-even? nums)

(local [(define (divisible-by? x y)

(zero? (remainder x y)))]

(any-compares? divisible-by? 2 nums)))

28.2. FUNCTIONS AS PARAMETERS 411

What if we had defined prime?, as in Exercise 24.3.8, and wanted to know whether
any of the numbers in the list are prime? There’s no obvious way to use any-compares?
to solve this problem, because any-compares? insists on comparing each element of the
list with a particular fixed value. In fact, a more natural function than any-compares?

would be

; any-satisfies? (number -> boolean) list-of-numbers -> boolean

(check-expect (any-satisfies? even? (list 3 5 9)) false)

(check-expect (any-satisfies? even? (list 3 5 8)) true)

(define (over-5? x) (> x 5))

(check-expect (any-satisfies? over-5? (list 2 3 4)) false)

(check-expect (any-satisfies? over-5? (list 2 6 4)) true)

(check-expect (any-satisfies? prime? (list 2 6 4)) true)

(check-expect (any-satisfies? prime? (list 8 6 4)) false)

The definition (after taking out the scratch work) is

(define (any-satisfies? test? nums)

(cond [(empty? nums) false]

[(cons? nums)

(or (test? (first nums))

(any-satisfies? test? (rest nums)))]))

Worked Exercise 28.2.2 Suppose we had written any-satisfies? first. Define the
function any-compares?, taking advantage of having already written the more general
function.

Solution: Since any-satisfies? takes in a function of only one parameter, we need a
helper function that takes one parameter.

; ok? : num -> boolean

; applies the comparison function to

; the parameter and the fixed number

But what are “the comparison function” and “the fixed number”? They’re both param-
eters to any-compares?, so we can’t possibly know what they are until any-compares?
is called. However, we can write and test it by storing sample values of both in global
variables:

(define num 17)

(define compare? >)

(check-expect (ok? 14) false)

(check-expect (ok? 17) false)

(check-expect (ok? 19) true)

(define (ok? num-from-list)

; num-from-list number

; num number

; compare? (number number -> boolean)

(compare? num-from-list num))

Once this has passed its tests, change the definitions of num and compare?, change the
test cases appropriately, and see if it still passes the tests. If so, we perhaps have enough
confidence in it to move it inside another function:

412 CHAPTER 28. FUNCTIONS AS OBJECTS

(define (any-compares? compare? num nums)

(local [(define (ok? num-from-list)

(compare? num-from-list num))]

(any-satisfies? ok? nums)))

Again, this helper function could not have been written to stand by itself at the top level,
because it needs to know what compare? and num are.

Looking closely at the definition of any-satisfies?, we notice that nothing in the
code (except the variable names) actually mentions numbers. In fact, if we were to call
any-satisfies? on a function from string to boolean and a list of strings, it would work
just as well:

(define (contains-doll? toys)

(local [(define (is-doll? toy) (string=? toy "doll"))]

(any-satisfies? is-doll? toys)))

So what is the contract really? It wouldn’t work with a function from string to boolean
and a list of numbers, or vice versa; the input type of the function has to be the same type
as the elements of the list. We often write this using a capital letter like X to represent
“any type”:

; any-satisfies? (X -> boolean) list-of-X -> boolean

SIDEBAR:

The Java and C++ languages also allow you to write a function whose contract has
a “type variable” in it, like the X above. C++ calls these “templates”, and Java
calls them “generics”. Needless to say, the syntax is more complicated.

Exercise 28.2.3 Use any-satisfies? to write a any-over-100K? function that takes
in a list of employee structs (as in Exercise 21.2.1), and tells whether any of them earn
over $100,000/year. Your any-over-100K? function should have no recursive calls.

Exercise 28.2.4 Develop a function count-if that takes in a function (from X to
boolean) and a list of X’s, and returns how many of the elements of the list have the
property.

Exercise 28.2.5 Use count-if to write a count-evens function that takes a list of
numbers and returns how many of them are even. Your count-evens function should
have no recursive calls.

Exercise 28.2.6 Use count-if to write a count-dolls function that takes a list of
strings and returns how many of them are "doll". Your function should have no recursive
calls.

Exercise 28.2.7 Use count-if to write a count-multiples function that takes a num-
ber and a list of numbers and returns how many of them are multiples of that number.
Your function should have no recursive calls.

Exercise 28.2.8 Use count-if to write a count-earns-over-100K function that takes
a list of employee structs and returns how many of them earn over $100,000/year. Your
function should have no recursive calls.

28.3. FUNCTIONS RETURNING LISTS 413

Exercise 28.2.9 Use count-if to write a count-earns-over function that takes a list
of employee structs and a number, and returns how many of the employees earn over that
amount. Your function should have no recursive calls.

Exercise 28.2.10 Develop a function remove-if that takes in a function (from X to
boolean) and a list of X’s, and returns a list of the elements of the list for which the
function returns false (i.e. it “removes” the ones for which the function returns true).

(A function similar to remove-if is actually built into DrRacket: now that you’ve
written your own version, look up the filter function in the Help system.)

Exercise 28.2.11 Use remove-if to write a remove-over-5 function that takes in a list
of numbers and removes all the ones > 5. Your function should have no recursive calls.

Exercise 28.2.12 Use remove-if to write a remove-over function that takes in a num-
ber and a list of numbers and removes all the ones over that number. Your function should
have no recursive calls.

Exercise 28.2.13 Use remove-if to write a fire-over function that takes in a number
and a list of employee structs and removes all the ones that earn over that amount of
money per year. Your function should have no recursive calls.

Exercise 28.2.14 Develop a function nth-satisfying that takes in a whole number
n and a Boolean-valued function, and returns the n-th whole number that has the desired
property. For example,

(check-expect (nth-satisfying 3 even?) 4)

; even natural numbers 0, 2, 4

(check-expect (nth-satisfying 5 prime?) 11)

; prime numbers 2, 3, 5, 7, 11

(check-expect (nth-satisfying 5 over-10?) 15)

; 11, 12, 13, 14, 15

(check-expect (nth-satisfying 4 integer?) 3)

; 0, 1, 2, 3

Hint: You’ll probably need a helper function that takes in an extra parameter.

28.3 Functions returning lists

Consider the function cube-each:

; cube-each : list-of-numbers -> list-of-numbers

; returns a list of the cubes of the numbers, in the same order

(check-expect (cube-each empty) empty)

(check-expect (cube-each (list 2 6 -3)) (list 8 216 -27))

Defining this function should be straightforward by now. But what if you were then
asked to write sqrt-each or negate-each? Obviously, these are all defined in essentially
the same way, differing only in what function is applied to each element of the list. To
avoid having to write each of these separately, we’ll parameterize them with that function:

414 CHAPTER 28. FUNCTIONS AS OBJECTS

; do-to-each : (X -> X) list-of-X -> list-of-X

(check-expect (do-to-each sqrt (list 0 1 4)) (list 0 1 2))

(define (cube y)

(* y y y))

(check-expect (do-to-each cube (list 2 6 -3)) (list 8 216 -27))

Exercise 28.3.1 Develop this do-to-each function.

Exercise 28.3.2 Use do-to-each to write sqrt-each with no recursive calls.

Exercise 28.3.3 There’s a built-in function named identity which does nothing: it
returns its argument unchanged. It’s often useful as a simple test case for functions like
do-to-each.

What should (do-to-each identity ...) do? Try it.

Exercise 28.3.4 Use do-to-each to write add-3-to-each with no recursive calls.

Exercise 28.3.5 Use do-to-each to write a add-to-each function that takes in a num-
ber and a list of numbers and adds the number to each element of the list. No recursive
calls.

Exercise 28.3.6 Use do-to-each to write a give-10%-raises function that takes in a
list of employee structs and returns a list of the same employees, in the same order, but
with each one earning 10% more than before. Your function should have no recursive
calls.

Now that you’ve written do-to-each, notice that not only is there nothing in the code
that requires the elements of the list to be numbers; there is also nothing in the code that
requires the input list to be the same type as the output type. For example,

(check-expect

(do-to-each string-length (list "hello" "hi" "mazeltov"))

(list 5 2 8))

works, even though it violates the contract as we stated it above. In fact, the contract
should really be rewritten:

; do-to-each : (X -> Y) list-of-X -> list-of-Y

which makes sense: if X and Y are any two types (possibly the same), it takes in a
function from X to Y, applies it to each of a list of X’s, and produces a list of Y’s.

Exercise 28.3.7 Use do-to-each to write a names function that takes a list of employee
structs and returns a list of their names. Your function should have no recursive calls.

Actually, there’s a function similar to do-to-each built into DrRacket; now that
you’ve written your own version, look up the map function in the Help system. (Just as
map-image does something to each pixel of an image and produces an image the same
size, map does something to each element of a list and produces a list the same size.)
The biggest difference between do-to-each and map is that do-to-each always applies
a one-parameter function, whereas map takes in a function of any number of parameters,
and takes that number of lists. For example,

(check-expect (map + (list 1 2 3 4) (list 50 40 30 20))

(list 51 42 33 24))

28.4. CHOOSING A WINNER 415

Exercise 28.3.8 Rewrite exercise 23.4.1 using map or do-to-each wherever possible.
Is the result significantly shorter or clearer?

Exercise 28.3.9 Develop a function do-to-each-whole that takes in a whole number
n and a function f: whole -> X and produces a list of X’s: (f 0), (f 1), . . .(f (- n

1)). For example,

(check-expect (do-to-each-whole 5 sqr) (list 0 1 4 9 16))

Again, there’s actually a built-in function that does exactly this:

; build-list : whole (whole -> X) -> list-of-X

As build-image builds an image of a specified size and shape by calling a function on
the coordinates of each pixel, build-list builds a list of length N by calling a function
on each of the numbers 0, 1, . . . N − 1. Now that you’ve written do-to-each-whole, feel
free to use the predefined build-list instead.

Exercise 28.3.10 The sort function from Section 23.6 sorts a list of numbers in in-
creasing order. One could easily sort a list of numbers in decreasing order by replacing
a < with a > in the function definition. Generalize the sort function so it takes in
a function (call it precedes?) to tell whether one item in the list should come before
another.

Your function definition should no longer depend on the data in the list being numbers;
generalize the contract as far as you can.

Exercise 28.3.11 Develop a function sort-by-salary that takes in a list of employee
structures and sorts them from highest-paid to lowest-paid. You should be able to do this in
a few lines of code (not counting contracts, inventories, and test cases), without recursion,
by using general-sort.

Exercise 28.3.12 Rewrite sort-candidates (from exercise 23.6.2) with the help of
general-sort. It should take about four reasonably short lines, not counting contracts,
inventories, and test cases.

Exercise 28.3.13 Develop a function ranked-election that takes in a list of strings
(representing the votes cast by individual voters) and returns an ordered list of candidates,
from most votes to fewest votes. It should take two or three reasonably short lines, not
counting contracts, inventories, and test cases.

28.4 Choosing a winner

The smallest and largest functions, finding the smallest and largest number (respec-
tively) in a non-empty list, are of course very similar: where one has a <, the other has
a >. The highest-paid function, taking in a list of employee structs and returning the
one with the highest salary, is a little more complicated, but still does basically the same
thing: it compares two objects, picks one of them as the “winner”, then compares the
winner of this bout with another object, and so on until you’ve reduced the whole list to
one “champion”.

416 CHAPTER 28. FUNCTIONS AS OBJECTS

Obviously, the difference between one of these functions and another is the comparison
function, which we might call beats?. We can generalize all of these functions to a
champion function that takes in the beats? function and a non-empty list (it doesn’t
make sense on an empty list), runs a single-elimination tournament, and returns the list
element that “beats” all the rest.

Exercise 28.4.1 Develop the function champion as described above.

Hint: For efficiency, it’s probably a good idea to adapt the technique from Section 27.1
so you don’t call the function recursively twice.

Exercise 28.4.2 Use champion to rewrite smallest with no recursive calls.

Exercise 28.4.3 Use champion to write highest-paid with no recursive calls.

28.5 Accumulating over a list

Consider the functions add-up and multiply-all (Exercises 22.5.2 and 22.5.11). These
functions are extremely similar: they both combine two objects to get a third object,
which is then combined with another object to get a fourth, and so on. We should be
able to generalize these. How do they differ, and how are they the same?

The add-up and multiply-all functions obviously differ in what function they apply
(+ and ∗ respectively). But they also differ in the answer to the base case: the right
answer to (add-up empty) is 0, while the right answer to (multiply-all empty) is 1.
So we’ll need to add two parameters:

; combine : X (X X->X) list-of-X -> X

...

(define (add-up nums) (combine 0 + nums))

(define (multiply-all nums) (combine 1 * nums))

(check-expect (add-up (list 1 2 3 4)) 10)

(check-expect (multiply-all (list 1 2 3 4)) 24)

Exercise 28.5.1 Develop this combine function.

You may notice that there’s nothing in the function definition that requires the various
types to be the same. On the other hand, not every possible combination of data types
would make sense either.

Exercise 28.5.2 Correct the contract for combine to reflect which things must be the
same type. Allow as much generality as you can.

Exercise 28.5.3 Use combine to rewrite any-satisfies? with no recursive calls.

Exercise 28.5.4 Use combine to rewrite count-if with no recursive calls.

Exercise 28.5.5 Use combine to rewrite do-to-each with no recursive calls.

Exercise 28.5.6 Use combine to rewrite champion with no recursive calls.

There are two different functions built into DrRacket that act like combine. Now that
you’ve written your own version, look up foldr and foldl in the Help system.

28.6. ANONYMOUS FUNCTIONS 417

28.6 Anonymous functions

In many of the above exercises, we needed to write a little function (either locally or
standing on its own) for the sole purpose of passing it to a higher-order function like
any-satisfies?, count-if, remove-if, champion, or combine. This feels silly and
wasteful to me.

By way of analogy, suppose we wanted to compute 3+ (4 · 5). We could do this in two
steps:

(define temp (* 4 5))

(+ 3 temp)

but it’s much shorter and simpler to just say

(+ 3 (* 4 5))

In other words, we don’t need to give a name to the result of (* 4 5) if all we’re going
to do it pass it as an argument, once, to +.

If we’re going to use something many times, it makes sense to give it a name and use
that name each time. But if we’re going to use it only once, it makes more sense to just
use its value directly. Similarly, it seems silly to define a function with a name if we’re
only going to use it once, as an argument to another function.

Syntax Rule 9 (lambda (parameter parameter ...) expression)

is an expression whose value is a function that takes in the specified number of parameters.
The parameter names may appear in the expression.

lambda can be thought of as just like define, except that it doesn’t bother giving a
name to the function, but just returns it instead. Any place that a function can appear –
a “function” argument to a higher-order function, or even just after a left parenthesis —
a lambda expression can appear too. For example,

((lambda (y) (* y y y)) 1234567890)

is equivalent to

(* 1234567890 1234567890 1234567890)

More usefully,

(do-to-each (lambda (y) (* y y y)) (list 1 2 5 -3))

is equivalent to

(local [(define (cube y) (* y y y))]

(do-to-each cube (list 1 2 5 -3)))

which of course returns (list 1 8 125 -27).

Worked Exercise 28.6.1 Recall Exercise 28.2.2, in which we re-wrote any-compares?

using any-satisfies?. Re-do this exercise using lambda in place of local.

Solution: Instead of defining the ok? function locally, we’ll define it without a name
using lambda:

(define (any-compares? compare? num nums)

(any-satisfies? (lambda (x) (compare? x num))

nums))

418 CHAPTER 28. FUNCTIONS AS OBJECTS

Exercise 28.6.2 For each function you’ve defined in this chapter using local to create
a function to pass to a higher-order function, rewrite it using lambda instead. Is the
result longer or shorter than the local version?

A list of lists can be thought of as a two-dimensional table: the i, j element of the
table is simply the j’th element of the i’th list.

Exercise 28.6.3 Define a function multiplication-table that takes in a list of num-
bers and produces a two-dimensional table of multiplication results on those numbers: for
example,

(check-expect (multiplication-table (list 1 2 3 5))

(list (list 1 2 3 5)

(list 2 4 6 10)

(list 3 6 9 15)

(list 5 10 15 25))

Hint: You can write this in two or three lines, with no locals or recursive calls, by
using lambda and functions that you’ve already written.

Exercise 28.6.4 Explain how any expression using local definitions can be rewritten to
use lambda instead.

Hint: In a sense, this exercise asks you to write a function that takes in Racket expres-
sions and produces Racket expressions. We haven’t discussed how to do that in Racket
yet, however, so for this exercise you may simply describe, in English, what you would do
to an expression containing local to convert it into an equivalent expression containing
lambda.

Exercise 28.6.5 Explain how any expression using lambda can be rewritten to use local
instead.

Hint: See previous problem.

SIDEBAR:

Some programming languages, like C++, have nothing corresponding to lambda:
there’s no way to define a function without giving it a name. In Java, it can be done
using something called an “anonymous inner class”. Needless to say, the syntax is
more complicated.

28.7 Functions in variables

If function is a data type, along with number, string, and so on, we should be able to
store functions in variables. For example, following Syntax Rule 4, we could write

(define cube (lambda (y) (* y y y)))

28.8. FUNCTIONS RETURNING FUNCTIONS 419

Then, since the variable cube’s value is a function, we should be able to use it anywhere
that we could use a function, e.g.

(check-expect (cube 3) 27)

(check-expect (do-to-each cube (list 1 3 5)) (list 1 27 125))

In other words, such a variable would act exactly as though we had used Syntax Rule 5
to define a function by that name. In fact, deep down inside DrRacket,

(define (cube y) (* y y y))

is just an abbreviation1 for

(define cube (lambda (y) (* y y y)))

Recall Section 27.3, in which we defined a smallest function

(define (smallest nums)

(local [(define (smaller a b) (cond [(<= a b) a] [else b]))]

(cond [(empty? (rest nums)) (first nums)]

[(cons? (rest nums))

(smaller (first nums) (smallest (rest nums)))])))

One might object to this definition that it re-defines the smaller function each time
smallest is called, a small but annoying inefficiency. But now that we know that defin-
ing a function is just an abbreviation for defining a variable whose value is a lambda

expression, we can rewrite this:

(define smallest

(local [(define (smaller a b) (cond [(<= a b) a] [else b]))]

(lambda (nums)

(cond [(empty? (rest nums)) (first nums)]

[(cons? (rest nums))

(smaller (first nums)

(smallest (rest nums)))]))))

Rather than defining smaller inside the smallest function, we’ve defined it once, locally,
for just long enough to build an anonymous function, then (outside the local) give it the
name smallest.

This isn’t an essential, earth-shaking change to the function definition. Remember
this technique, though, because it’ll make a big difference in Chapter 30.

Exercise 28.7.1 Rewrite the sort function from Section 27.3 in this style, with the
local outside the function body.

28.8 Functions returning functions

Just as a function can take in functions as parameters, a function can also return a
function as its result. For a simple (and unrealistic) example, suppose we needed functions
add-2-to-each and add-3-to-each, which could be defined easily by

(define (add-2-to-each nums)

(do-to-each (lambda (x) (+ x 2)) nums))

(define (add-3-to-each nums)

(do-to-each (lambda (x) (+ x 3)) nums))

1A well-known programming textbook using Scheme (Racket’s immediate ancestor), Abelson & Suss-
man’s Structure and Interpretation of Computer Programs [ASS96], uses the latter notation from the
beginning.

420 CHAPTER 28. FUNCTIONS AS OBJECTS

We’ve written two extremely similar lambda-expressions, which we could generalize into
a function that takes in the 2 or the 3 and returns the function that will be passed to
do-to-each.

Worked Exercise 28.8.1 Define a function make-adder that takes in a number, and
returns a function that adds that number to its one argument.

Solution: The contract looks like

; make-adder : number -> (number -> number)

How would we test this? It turns out that check-expect doesn’t work very well on
functions — how do you test whether two functions are the same, short of calling them
both on every possible input? So we’ll have to apply the result of make-adder to a number
and see what it produces.

(define add2 (make-adder 2))

(define add5 (make-adder 5))

(check-expect (add2 4) 6)

(check-expect (add2 27) 29)

(check-expect (add5 4) 9)

(check-expect (add5 27) 32)

(check-expect ((make-adder 3) 2) 5)

Defining the function, however, is easy:

(define (make-adder num)

; num number

(lambda (x) (+ x num)))

or, if you prefer local,

(define (make-adder num)

; num number

(local [(define (addnum x) (+ x num))]

addnum))

Exercise 28.8.2 Define a function make-range that takes in two numbers and returns
a function that takes in a number and tells whether it’s between those two numbers (in-
clusive, i.e. it can equal either of them). For example,

28.8. FUNCTIONS RETURNING FUNCTIONS 421

(define teen? (make-range 13 19))

(define two-digit? (make-range 10 99))

(check-expect (teen? 12) false)

(check-expect (teen? 13) true)

(check-expect (teen? 16) true)

(check-expect (teen? 19) true)

(check-expect (teen? 22) false)

(check-expect (two-digit? 8) false)

(check-expect (two-digit? 10) true)

(check-expect (two-digit? 73) true)

(check-expect (two-digit? 99) true)

(check-expect (two-digit? 100) false)

(check-expect ((make-range 39 45) 38) false)

(check-expect ((make-range 39 45) 42) true)

Exercise 28.8.3 Define a function twice that takes in a function with contract X → X,
and returns another function with the same contract formed by calling the given function
on its own result. For example,

(define add2 (twice add1))

(define fourth-root (twice sqrt))

(check-expect (add2 5) 7)

(check-expect (fourth-root 256) 4)

If you did Exercise 9.2.8, recall the definition of the function digits, which tells how
many digits long the decimal representation of an integer is. What does (twice digits)

do?
What does (twice twice) do?

Exercise 28.8.4 Define a function iterate that takes in a whole number and a function
with contract X → X, and returns a function that applies the specified function the
specified number of times. For example,

(define add5 (iterate 5 add1))

(check-expect (add5 17) 22)

(define eighth-root (iterate 3 sqrt))

(check-expect (eighth-root 256) 2)

Note that the twice function above is a special case of iterate:

(define (twice f) (iterate 2 f))

What does (iterate 3 twice) do?

In solving problems 28.8.3 and 28.8.4, you needed to define a new function as the com-
position of two existing functions (that is, one function applied to the result of another).
This is such a common operation that Racket gives you a built-in function to do it:

; compose : (Y -> Z) (X -> Y) -> (X -> Z)

For example,

(define f (compose sqr add1))

(check-expect (f 0) 1)

(check-expect (f 1) 4)

(check-expect (f 2) 9)

422 CHAPTER 28. FUNCTIONS AS OBJECTS

Exercise 28.8.5 Rewrite the twice function of Exercise 28.8.3 using compose.

Exercise 28.8.6 Rewrite the iterate function of Exercise 28.8.4 using compose.

SIDEBAR:

The Java language technically doesn’t allow you to create, return, or pass functions
as values, but you can create, return, or pass “objects” that have functions associated
with them, which gives you the same power with more complicated syntax. However,
although you can create functions while the program is running, you have to specify
their contracts (which Java calls “interfaces”) in advance, while writing the program;
you can’t decide at run-time what contract the new function should have.

28.9 Sequences and series

Mathematicians often work with sequences of numbers. A sequence can be defined as a
function from whole numbers to numbers. For example, the sequence of even numbers
can be written 0, 2, 4, 6, 8, . . . or, thinking of it as a function, as (lambda (n) (* 2 n)).
Thus one could write

(define evens (lambda (n) (* 2 n)))

Exercise 28.9.1 Develop a function take which, given a whole number n and a se-
quence, produces a list of the first n values of that sequence. For example,

(check-expect (take 5 evens) (list 0 2 4 6 8))

This function will make it much easier to write test cases for functions that return
sequences!

Exercise 28.9.2 Develop a function arithmetic-sequence which, given two num-
bers initial and difference, produces the “arithmetic sequence” starting at initial
and increasing by difference at each step. For example,

(define evens (arithmetic-sequence 0 2))

(define odds (arithmetic-sequence 1 2))

(define ends-in-3 (arithmetic-sequence 3 10))

(check-expect (take 5 evens) (list 0 2 4 6 8))

(check-expect (take 6 odds) (list 1 3 5 7 9 11))

(check-expect (take 5 ends-in-3) (list 3 13 23 33 43))

Exercise 28.9.3 Develop a function geometric-sequence which, given two numbers
initial and ratio, produces the “geometric sequence” starting at initial and growing
by a factor of ratio at each step.

Exercise 28.9.4 Develop a function constant-sequence that takes in a number and
produces a sequence that always has that value.

(You can write this from scratch with lambda, or by re-using a previously-written
function.)

28.9. SEQUENCES AND SERIES 423

Exercise 28.9.5 Define a variable whose value is the “harmonic sequence”: 1, 1/2,
1/3, 1/4, 1/5,

Exercise 28.9.6 Define a variable wholes whose value is the sequence of whole num-
bers.

Hint: You can do this in three words, with no local and no lambda.

Exercise 28.9.7 Develop a function scale-sequence which, given a number and a
sequence, returns a sequence whose elements are that number times the corresponding
element of the original sequence.

Exercise 28.9.8 Develop a function add-sequences which, given two sequences, re-
turns a sequence whose n-th element is the n-th element of one sequence plus the n-th
element of the other.

Exercise 28.9.9 Develop a function subtract-sequences which, given two sequences,
returns a sequence whose n-th element is the n-th element of the first sequence minus the
n-th element of the second.

Exercise 28.9.10 Develop a function mult-sequences which, given two sequences,
returns a sequence whose n-th element is the product of the n-th elements of the two
sequences.

Exercise 28.9.11 Develop a function div-sequences which, given two sequences,
returns a sequence whose n-th element is the n-th element of the first sequence divided by
the n-th element of the second.

Note: If the second sequence is ever 0, the resulting “sequence” won’t be defined on all
whole numbers.

Exercise 28.9.12 Develop a function shift-sequence which, given an integer num-
ber d and a sequence, returns a sequence whose n-th element is the n + d-th element of
the given sequence. For example,

(define positive-evens (shift-sequence 1 evens))

(check-expect (take 5 positive-evens) (list 2 4 6 8 10))

Note: If the integer is negative, the result may not technically qualify as a “sequence”,
because it may not be defined on all whole numbers.

Exercise 28.9.13 Develop a function patch which, given two numbers n and x and
a sequence, produces a sequence exactly like the given sequence except that it returns x

on input n. (In other words, you’ve “patched” the sequence by changing its value at one
particular input.)

Exercise 28.9.14 Develop a function differences which, given a sequence, returns
its sequence of differences: element 1 minus element 0, element 2 minus element 1,
element 3 minus element 2, . . .

(You can write this from scratch, but try writing it by re-using some of the above
functions instead.)

424 CHAPTER 28. FUNCTIONS AS OBJECTS

Exercise 28.9.15 Develop a function partial-sum which, given a sequence, returns
its sequence of partial sums. The n-th element of the sequence of partial sums is the sum
of elements 0 through n− 1 of the original sequence. For example,

(define sum-of-wholes (partial-sum wholes))

(check-expect (take 5 sum-of-wholes) (list 0 1 3 6 10))

(define sum-of-odds (partial-sum odds))

What does sum-of-odds do? Why?

Define a variable to hold the sequence of partial sums of (geometric-sequence 1

1/2), and play with it. What can you say about its value?

Exercise 28.9.16 Define a variable fact to hold the sequence 1, 1, 2, 6, 24, 120, . . . of
factorials.

(Obviously, you can do this from scratch using recursion. But try doing it by using
operations on sequences, like the above.)

Many important mathematical functions can’t be computed exactly by a few additions
or multiplications, but are instead approximated by adding up the first entries of a par-
ticular sequence of numbers; the more entries you add up, the closer the approximation.
These are called Taylor series. For example, ex can be computed by the series

ex =

∞∑

n=0

xn

n!)

where n! is the usual mathematical notation for (factorial n) from exercise 24.1.8. In
other words,

ex =
x0

1
+

x1

1
+

x2

2
+

x3

6
+

x4

24
+ . . .

Exercise 28.9.17 Develop a function e-to-the that takes in a number x and returns
the sequence of partial sums of this series.

Theoretically, ex · e−x should be exactly 1 for all values of x. So you can test an
approximation’s accuracy by multiplying these two and comparing with 1. Define a func-
tion exp-error that takes in the value of x and the number of terms of the series to use,
multiplies the approximations of ex and e−x, and tells how far this is from 1.

How many steps does it take to get within 0.1? Within 0.01? Within 0.001? Within
0.000001?

The built-in Racket function exp computes ex. Compare (e-to-the x) with (exp x)

for various positive and negative values of x, looking in particular at how many steps it
takes to get to various levels of accuracy.

28.10. REVIEW 425

Exercise 28.9.18 The trigonometric function sin(x) has the Taylor series

sin(x) =

∞∑

n=0

(−1)n ·

x2n+1

(2n+ 1)!

That is,

sin(x) =
x

1
−

x3

6
+

x5

120
−

x7

5040
+ . . .

Develop a function taylor-sine that takes in a number x and returns the sequence
of partial sums of this series. (Again, I did this by using previously-defined operations on
sequences.)

Compare (taylor-sine x) with (sin x) for various positive and negative values of
x, looking at how many steps it takes to get to various levels of accuracy.

Exercise 28.9.19 Did you ever wonder how people discovered that π was about 3.14159?
There are various series that compute π, of which the simplest and best-known is

π =
∞∑

n=0

(−1)n ·

4

2n+ 1

In other words,

π =
4

1
−

4

3
+

4

5
−

4

7
+ . . .

Define the variable my-pi to be the sequence of partial sums of this series. (You can
do this from scratch, of course, but try doing it by using previously-defined sequences and
operations on sequences.)

Compare my-pi with the built-in Racket variable pi. How many steps does it take to
get to various levels of accuracy?

28.10 Review of important words and concepts

Racket treats function as a data type, just like number or string or list. One can write
a function that takes in, or returns, a function just as easily as one can write functions
working on other data types (although it’s a bit harder to write test cases). This technique
allows a programmer to write, test, and debug a single general function that covers the
functionality of many others, thus saving enormous amounts of programming time on
re-inventing the wheel. Some other languages allow you to do this too — for example,
some of this can be done in Java and C++ — but the syntax is usually more complicated
and confusing.

Racket also allows a programmer to construct functions “on the fly”, just in time to
pass them as arguments to other functions, without bothering to name them. Again,
some other languages allow this — including Java, but not C++ — but the syntax is
more complicated and confusing.

28.11 Reference: higher-order and anonymous func-

tions

This chapter introduced Syntax Rule 9, which constructs an anonymous function using
lambda and returns it.

426 CHAPTER 28. FUNCTIONS AS OBJECTS

It also introduced several predefined (mostly) higher-order functions:

• identity

• filter

• map

• build-list

• foldl

• foldr

